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Non-technical summary

Extreme weather events and climate-related natural hazards are becoming more frequent and

severe with the rise in global temperatures. Floods are already among the most damaging

hazards in Europe, where the economic and social costs of physical damage and relocation of

people and businesses have been material. While the increase in flood risk at the European

scale is substantial, its financial implications are still far from being fully understood.

Using a large cross-country data set of securitised loans, we study the impact of flood-

ing on credit to European small and medium-sized enterprises. First, exploiting detailed

information on loans at origination, we explore to what extent physical risk from flooding

is priced into the cost of small business credit. We find that banks charge higher interest

rates on loans to firms in counties that are exposed to a high risk of flooding. Moreover,

we do not find evidence that recent flooding change the perception and assessment of flood

risk, except when severe episodes are considered. Thus, if flood risk appears already salient

for lenders, the full extent of its implications for credit risk emerges in the case of disasters

when significant direct economic losses are reported.

In the second part of the paper, we investigate whether the occurrence of flood events has

a bearing on the deterioration of loan performance. Our findings point to a sizeable impact

of flooding on loan delinquency. Moreover, we uncover also an indirect effect of flooding

on the worsening of loan performance. Loans originated in the aftermath of flood events

are more likely to enter default than other loans. This intrinsic fragility is suggestive of

risk-taking behaviour by banks in granting post-disaster recovery lending.

All in all, the intensification of climate disasters due to climate change may become an

important source of financial vulnerability for European small and medium-sized businesses

and, consequently, for the banks financing them. Climate risk is acting as an amplifier of

existing SME vulnerabilities, stemming from both the lack of preparation to respond to

change change and limited resources to weather the effects of natural hazards. For banks,

climate risk compounds existing risk categories such as credit and market risks, and calls

for adequate and comprehensive risk management frameworks. More broadly, our findings

point to the importance of policies that mitigate the disruptive effects of climate change
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on the real economy and the financial sector, and help identify, monitor and report on the

underlying risks.
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1 Introduction

With the rise in global temperatures, extreme weather events and climate-related natural

hazards are becoming more frequent and severe. Floods are already among the most dam-

aging hazards in Europe, where the economic and social costs of physical damage and relo-

cation of people and businesses have been material (European Environment Agency, 2022).

While the increase in flood risk at the European scale is substantial, its financial implications

are still far from being fully understood. In addition to the direct economic losses, flooding

may entail indirect financial costs stemming, for instance, from the reduction in the value

of at-risk assets. Moreover, damage to fixed capital and business disruptions jeopardise the

ability of borrowers to meet their debt obligations. Both physical damage and the deteri-

oration of financing conditions are likely to turn out particularly costly for smaller firms

(Davlasheridze and Geylani, 2017), given the localised nature of their operations and their

high reliance on domestic bank credit as a source of finance (Hoffmann et al., 2022).

Using a large cross-country data set of securitised loans, we study the impact of flooding

on credit to European small and medium-sized enterprises (SMEs). First, exploiting local

variation in the exposure and vulnerability to flooding, we explore to what extent physical

risk is priced into new small business loans. We document that banks charge higher interest

rates on loans to firms in counties at high risk of flooding. The risk premium, around 6.4

basis points (bps) on average, increases for loans with longer maturities, and in the case of

smaller borrowers and local specialised banks, that is, cooperative and savings banks. By

contrast, at-risk firms that are movable- and intangible-intensive do not face a higher cost

of credit, reflecting lower vulnerability to physical risk. Moreover, we do not find evidence

that recent flooding change the perception and assessment of flood risk, hence, the extent of

the risk premium, except when severe episodes are considered. Thus, if flood risk appears

already salient for lenders, the full extent of its implications for credit risk emerges in the

case of disasters when significant direct economic losses are reported.

Next, as our data allows us to track loans during their lifetime, we use survival analysis
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to investigate whether the occurrence of flooding has a bearing on the deterioration of loan

performance, and, potentially, default. Our findings point to a significant impact of flood-

ing on loan delinquency. Firms exposed to a flood are more likely to fail to repay their

existing loans than firms in non-disaster areas by up to 1.6 times in the second year after

the water hazard. Moreover, we uncover an indirect effect of flooding on the worsening of

loan performance. For given financial characteristics, loans originated in the aftermath of

flood events are more likely to enter default status than other loans. The result holds even

as we account for the occurrence of floods during the loan lifetime. This intrinsic fragility

suggests that banks tend to take on more risk and relax their lending stadards when they

grant post-disaster recovery lending.

Our results indicate that flooding affects businesses not only through direct physical

damage, but also by worsening their financial conditions, notably by increasing their cost

of capital, and by jeopardising their ability to service their debt obligations. Hence, while

the full impact of climate change is expected to materialise in the long run (Pörtner et al.,

2022), climate-related disasters and extreme weather events may disrupt firm operations

in the short and medium term, not only in a direct way (Fatica et al., 2022a), but also

through the financial channel. This effect is exacerbated by the high reliance of SMEs on

bank funding, and their limited access to capital markets, which reduces the possibility of

substituting away from bank credit (Iyer et al., 2013).

All in all, our findings suggest that the intensification of climate disasters due to climate

change may become an important source of financial vulnerability for European small and

medium-sized businesses, and for the banks financing them. In a simple setup, we show that

different factors come into play when assessing whether climate risk premia accurately reflect

the increased credit risk that banks face on the loans granted to borrowers impacted by nat-

ural disasters. The capacity to accurately evaluate climate risk exposure and vulnerabilities

is crucial, particularly as rising temperatures exacerbate the impact of natural hazards also

in the short and medium term. In this context, firms’ preparedness and ability to weather
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the shocks can reduce the feedback loop to the cost of capital.

Our paper relates and contributes to two main strands of the literature. First, we add

to the fast-growing literature on the pricing of climate risk into financial assets (Giglio

et al., 2021). When it comes to physical risk in particular, so far the attention has focused

mainly on real estate valuation and, through this channel, on the mortgage market and the

implications thereon of long-term risks, such as sea level rise (Baldauf et al., 2020; Bernstein

et al., 2019; Nguyen et al., 2022). As for other assets, Acharya et al. (2022) explore the pricing

of heat stress in municipal and corporate bond as well as equity markets. The literature on

physical risk and corporate lending is also expanding, with analyses that focus exclusively

on syndicated loans (Correa et al., 2022; Jiang et al., 2023; Javadi and Masum, 2021; Huang

et al., 2022). Against this background, the extent to which physical climate risk is accounted

for in the pricing of loans to smaller businesses is still practically unexplored. To the best

of our knowledge, we are the first to fill this gap with evidence for Europe. In this respect,

our work complements recent evidence on the pricing of transition risk by Euro area banks

in Altavilla et al. (2023) to provide a full picture of how climate-related risks affect business

credit conditions in Europe.

Second, our paper relates to the literature on the impact of climate-related natural dis-

asters (Skouloudis et al., 2020), and, in this context, on the role of financial variables as an

amplifying mechanism for real economy vulnerabilities (Campiglio et al., 2023). A number of

studies document that natural hazards bring about an increase in the demand for credit for

reconstruction purposes (Berg and Schrader, 2012; Cortés and Strahan, 2017; Koetter et al.,

2020; Chavaz, 2016; Celil et al., 2022). Importantly, to meet increased demand, banks may

change the geographic composition of their lending, diverting credit away from non-disaster

areas (Rehbein and Ongena, 2022). While these studies extensively characterise natural dis-

asters as a demand shock from the lender’s perspective, there is still limited evidence on the

existence of a supply channel stemming from negative post-disaster loan performance (Noth

and Schuewer, 2018; Barth and Zhang, 2019). Our paper contributes to this literature by
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providing novel evidence in this direction for climate-related disasters. First and foremost,

our results that flooding is a significant risk factor for loan defaults indicate that an import-

ant supply effect is at play in recovery lending. Hence, banks may have to write off or incur

losses on existing loans to businesses located in areas impacted by natural disasters, while at

the same time they appear to be taking on more risk when extending new loans to disaster

firms. Second, our analysis points to the implications that projected and realised flood risks

have on financial outcomes. Fully characterising these supply effects is important to shed

light on bank credit as an amplification mechanism for the transmission of climate-related

shocks to the real economy, and on the potential financial stability implications (Noth and

Schuewer, 2018).

The remainder of the paper is structured as follows. Section 2 introduces the data.

Section 3 presents the analysis of loan pricing alongside descriptive evidence on the sample

of loans at origination. Loan default is investigated in Section 4. In Section 5, we discuss to

what extent risk pricing accounts for the observed deterioration in loan performance. Finally,

Section 6 concludes.

2 Data

2.1 Loan-level data

We obtain data on loans to SMEs from the European DataWarehouse (EDW), a centralised

repository part of the European Central Bank (ECB) loan-level initiative that collects, valid-

ates, and distributes information on securitised loans backing asset-backed securities (ABS)

pledged as collateral in the ECB repurchase agreement (“repo”) financing operations. SME

ABS deals are the second largest securitisation market in Europe, after residential mortgage-

backed securities, in terms of both outstanding amounts and new issuances (Association for

Financial Markets in Europe, 2023). By enhancing transparency, the ECB loan-level initi-

ative aimed to restore confidence in the securitisation market in the aftermath of the global
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financial crisis. It was widely recognised that proper assessments of ABSs had been hindered

by the lack of standardised, timely and accurate information on single loan exposures, pav-

ing the way for the crisis. As from January 2013, financial institutions that access the repo

borrowing facility are mandated to report information on their securitised portfolios on a

quarterly basis in a standardised format. We take advantage of these enhanced transparency

requirements to build a loan-level dataset that covers three European countries - Belgium,

Italy and Spain. Banks in these countries are among the most active in the securitisation of

SME loans in Europe (Ertan et al., 2017 and Van Bekkum et al., 2018). In Appendix A.1

we provide more details on the EDW data and the underlying securitisation process, and

assess their representativeness with respect to the universe of SME loans.

For each securitised credit facility, the EDW repository provides a number of loan charac-

teristics, as well as information on the borrower and on the lending bank.1 As for loan-level

variables, we observe the original loan balance and the maturity date, and several other

credit terms, such as the type and the purpose of the loan, its amortisation profile, and the

presence of collateral. This information is recorded at the date of origination, which is also

reported. Information on the lender is limited, but includes the bank name. As for the

borrower, we know its legal form and business type, the sector of the activity , and its loc-

ation. In particular, we have information on borrowers’ location at the NUTS3 level, which

identifies local units corresponding approximately to counties in the United States.2 Bor-

rowers’ location is crucial to match the loan-level data with the data on flooding described

hereinafter.3

In addition to the ‘static’ information recorded at origination, the EDW database contains

a number of variables that allow us to assess loan performance over time. Such ‘dynamic’

1The SME loan level reporting requirements include mandatory and optional variables, broadly covering
loan, asset-backed security pool and bank identifiers, borrower information and financials, loan characterist-
ics, loan interest rate details and loan performance information.

2NUTS3 local entities correspond to different administrative units across European countries, i.e.
provinces in Italy, or districts in Belgium. We refer to them as counties throughout the paper.

3Moreover, we augment the data set with macroeconomic variables, namely yearly Gross Domestic
Product (GDP) and employment growth rates at NUTS3 level.
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information is updated on a quarterly basis at the different cut-off dates when the periodic

reporting for each pool of securitised loans occurs. Time-varying loan characteristics include

the loan balance and the interest rate, as well as the loan status, notably whether the credit

facility is in delinquency. In that case, the delinquent amount and number of days in arrears

are also reported. Consistent with the time coverage of the flooding data, our sample includes

loans originated between 2008 and 2019. We refer to Appendix A.1 for a description of the

data cleaning steps we use to build our sample.

2.2 Data on flooding

We draw data on flooding from the Risk Data Hub (RDH) of the European Commission’s

Joint Research Centre (Faiella et al., 2020). The RDH is a web-based geographical inform-

ation system platform that provides harmonised data and methodologies for disaster risk

assessment in Europe.4 In the context of the new EU Strategy on adaptation to climate

change, the RDH is set to become the reference platform for standardising the recording and

collection of granular data on climate-related hazards and losses, and physical risk data at

the EU level.5 It also provides input to the analysis of climate risks from a macro-prudential

perspective and to the development of climate stress tests by European financial supervisors

(European Central Bank and European Systemic Risk Board, 2021). The information in the

RDH is structured in two separate modules that cover risk analysis and historical events,

respectively. We describe these in turn.

Flood risk. The Risk Analysis Module of the RDH provides indicators that allow for

multi-sector assessment of potential risks and losses from natural hazards at the European

level (Antofie et al., 2019). The risk indicator (R) captures the potential impact of a hazard

(H ) for a specific area or community in a given period of time (t). As such, it compounds

4More details are available at https://drmkc.jrc.ec.europa.eu/risk-data-hub/#/methodologies.
5See European Commission (2021) “Forging a climate-resilient Europe - the new EU strategy on adapt-

ation to climate change”, COM(2021) 82 final, 24 February.
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two different metrics associated to the occurrence of a natural hazard, namely exposure (E )

and vulnerability (V ), as in:

R = f(t,H,E, V ). (1)

The exposure component combines geolocalised information on relevant flood metrics, such

as frequencies and intensities, and on layers for physical assets. Flood frequency at the local

level is assessed starting from model simulations on the areas at risk of being inundated by

floods with different return periods.6 The simulated return periods are 10, 50, 100, 200 and

500 years.7 Then, the associated potential impacts are determined based on land use at

the local level. In other words, the indicator is calculated using information on the share

of industrial and commercial, residential and agricultural areas at risk of being inundated

by a flood with a specific return period occurring within each territorial unit. The average

expected impacts are assessed at different projection horizons, namely for 1, 2, 5, 10, 15 and

25 years, by computing the probabilities of occurrence associated to floods with the specified

return periods. As events are assumed independent, the expected exposure is defined as the

sum of the exposure levels weighted by the corresponding probabilities (Antofie et al., 2020).

By construction, the exposure indicator captures the maximum potential impact of flood-

ing in a given location. As such, it is not, in itself, a sufficient metric to determine flood

risk, since it is possible to be exposed but not vulnerable to a particular hazard.8 The

vulnerability component intends to assess precisely the predisposition, deficiencies or lack

of capacity of the exposed elements to withstand the natural hazards. It is conceived as

a multidimensional indicator comprising a social, economic, political, environmental, and

physical dimension (see Table A.1 in Appendix A.2).

6The simulated inundation maps as a measure of the areal extent of the flood-prone areas are derived
from the hydrological model LISFLOOD (Dottori et al., 2022).

7Return periods are estimates of the interval of time between events. For example, a return time of 10
years indicates that the event will occur once in 10 years on average, therefore the probability that a similar
event could occur in the same interval of time is 1/10, or 10%. In this context, scenarios associated with
increased hazard probabilities correspond to lower return periods.

8Flood protection measures, such as water-proofing of buildings, reduce the vulnerability of flood-exposed
areas, making them not necessarily at risk.
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Figure 1: Flood risk. The figure shows the map of flood risk across counties (NUTS3 units). The
flood risk indicator is averaged across the projections years (i.e., 1, 2, 5, 10, 15 and 25 years) and normalised
within country over the [0, 10] scale. Low (high) values indicate low (high) flood risk, i.e. potential impact
of flooding. For counties in grey the indicator is not available.

By combining the metrics for exposure and vulnerability, the overall risk indicator provides

a measure of the potential impacts of hazards on different assets in a specific location. We

employ the risk indicator for industrial and commercial buildings, defined at county level

and averaged across the different projection periods.9 The values of the risk indicator are

normalised within countries on a scale ranging from 0 to 10, which indicate, respectively,

minimum and maximum risk.10 Figure 1 maps the normalised flood risk across counties,

with darker shades corresponding to higher levels of risk. In the empirical analysis, we con-

sider counties at high (low) risk of flooding those counties for which the value of the flood

risk indicators is above (below) the median value of the distribution of the normalised risk

scores.

9Other assets for which the risk indicator is calculated are residential real estate and agricultural areas.
10In assessing the information content of the RDH risk indicator, European Central Bank and European

Systemic Risk Board (2021) find that the resulting flood risk profiles of the local areas are broadly comparable
to these obtained aggregating more granular metrics such as the one provided by Four Twenty Seven, an
affiliate of Moody’s. Four Twenty Seven assesses risks at the company level, and is available for approximately
1.5 million firms in Europe.
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Flood events. Data on flood events is drawn from the historical module of the RDH.

This is an EU-wide disaster loss database that provides information on past events with

records on the impact (quantified as human losses and economic damage) and geographical

location of the hazard. The module collects information from multiple databases, including

the International Disasters Database (EM-DAT), and other sources of metadata.11 Available

information includes the type of hazard, the date of the event, and the affected local areas,

classified at NUTS3 level. Additional variables that further qualify the event – such as the

size of the flooded area, the number of injured and dead people, as well as the economic

losses associated with the event – are provided for roughly half of the recorded events in our

sample.12 We retain information on events classified as river floods, flash floods and coastal

floods, while we disregard flooding connected to other major disasters, such as avalanches

and landslides. Figure 2 reports the number of floods by NUTS3 observed over the period

from January 2007 to December 2018. On average, the counties in our sample are hit

by 3 floods. There is no significant difference in flood frequency among coastal counties -

potentially subject to coastal and fiver floods - and land-locked areas, exposed only to river

floods. With 2 floods on average per county Belgium is the least affected country, while

Spain is the most impacted, with 4 floods on average. The Spanish county of Valencia is the

one recording the highest number of flood events - 9 over the period under analysis.

We use the records of flood events to create measures of realised flood risk at the local

level. We combine the information about the localisation and dating of flood events with

the loan-level data set to characterise the impact of flooding on local credit conditions. For

11Faiella et al. (2020) discuss in detail the criteria for inclusion of natural disasters in the RDH database.
They are generally based on the number of fatalities or of people affected by the natural disaster, and/or
a declaration of a state of emergency, and/or a call for international assistance. The exact criteria slightly
vary, depending on the specific source, as the database is constructed using multiple sources. The use of
different sources allows for a more comprehensive account of disasters compared to the standard sources
alone, such as EM-DAT, which tend to underreport events characterised by minimal level of fatalities or
those not requiring international aid, mainly in developed countries (Botzen et al., 2019)

12As detailed in Faiella et al. (2020), information about the precise amount of damage from natural
disasters is scarce, and direct economic losses may be reported ex-post with measurement error. Hence, we
do not consider the distribution of losses in our analysis, but we make only the distinction between flood
events with and without economic losses. The former can be considered as a proxy for more severe hazards.
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Figure 2: Flood events. The figure maps the number of flood events across counties (NUTS3 units)
over the 2007-2018 period.

that, we create a set of binary variables that indicate whether in the q months before the

observation date there has been at least one flood event in the county where the borrowing

firm is located. In the baseline case, we consider q = 6. However, where appropriate, we also

experiment with alternative time ranges, namely 12 and 24 months.

In the loan-level analyses, we account for the realisation of flood risk that may occur

before loan origination as well as during the lifetime of the credit facility. Hence, for each

loan, we can disentangle whether it was originated in the aftermath of a flood episode, and,

in case it entered delinquency, whether that happened following a flood episode. In the

former case, the reference date with respect to which we compute flood occurrence is the

date of loan origination. In the latter case, the reference time are the dates after origination

when the loan is observed, i.e. the reporting dates.
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3 Flood risk and the cost of SME credit

This section studies whether flood-related physical risk affects the cost of SME credit, fo-

cusing on loans at origination.

3.1 Descriptive evidence

Table 1 reports the descriptive statistics on the main loan-level characteristics recorded at

the time of origination. Our final estimating sample contains approximately 1 million unique

term loans. The avearge interest rate is 383.4 basis points (bps), and ranges from 90 to 790

bps moving from the 5th to the 95th percentile of the distribution.13 The average loan term

is around 5.5 years (66.5 months). The average loan balance is around EUR 145,000. The

middle and lower panels of Table 1 report summary statistics for the sub-samples of loans

extended in high-risk and in low-risk counties, i.e. those with a flood risk measure above

(below) the median of risk scores, respectively. At 394.5 bps, the average interest rate on

credit facilities to borrowers facing a high risk of flooding is higher than that in the sub-

sample of firms in low-risk counties (363.8 bps). Also, the average loan balance is larger in

high-risk counties than in low-risk areas (EUR 150,860 vs. EUR 134,550). By contrast, both

the average loan term and the fraction of the loan value that is collateralised are lower in

high risk counties than in low-risk ones. All the differences are statistically significant at 1%

level.

Figure 3 displays the distribution of the balance and the term of the loans in our sample.

The distributions are skewed towards small amounts and short maturities, which is not

surprising since borrowers are small and medium-sized enterprises. We have only limited

information on borrowers’ characteristics. Roughly 84% of the firms in our sample are

classified as limited companies, 8.3% are individual companies, and 2.2% are reported as

13The EDW database provides the interest rate type and the current interest rate observed at the different
reporting dates. To obtain our dependent variable, we consider all loans with a fixed interest rate, assuming
that the rate observed during the loan lifetime be equal to the one at origination. Further, among the loans
with a floating interest rate, we consider only those for which the current interest rate has been observed
within 12 months from the date of origination.
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Table 1: Descriptive statistics at loan origination.
Mean, standard deviation (std. dev.) and selected percentiles for the interest rate, loan term, loan balance

and the fraction of the loan value that is collateralised. All variables are as observed at origination. Summary

statistics are provided for the full sample of loans (top panel), and for the sub-samples of loans originated in

high-risk counties (middle panel) and in low-risk counties (bottom panel). (*) denotes that a one-sided t-test

for the for mean equality across the sub-samples of loan in high-risk and low-risk counties has p value<0.001.

Mean Std. dev. p5 p25 p50 p75 p95
Full sample
Interest rate (bps) 383.45 224.19 90.00 215.00 350.00 515.00 790.00
Loan term (months) 66.55 46.16 12.03 37.02 60.03 72.07 180.13
Loan balance (’000 EUR) 145.00 420.39 5.00 16.00 31.00 80.52 536.00
Collateralised 72.80 24.66 22.61 58.60 79.58 92.47 100.00
High-risk counties
Interest rate (bps) 394.49 229.58 90.00 225.00 366.30 532.70 800.00
Loan term (months) 65.70 45.07 13.02 37.02 60.03 72.07 180.10
Loan balance (’000 EUR) 150.86 441.87 5.00 15.50 30.00 80.00 600.00
Collateralised 72.18 24.77 21.83 58.24 78.86 91.97 100.00
Low-risk counties
Interest rate (bps) 363.80 (*) 212.84 92.20 200.00 330.50 490.00 745.00
Loan term (months) 68.06 (*) 47.99 12.03 37.05 60.03 72.07 180.13
Loan balance (’000 EUR) 134.55 (*) 378.92 6.00 17.52 33.00 86.25 500.00
Collateralised 73.91 (*) 24.42 24.11 59.71 80.77 93.95 100.00
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Figure 3: Distribution of loan balance at origination and loan term. The left panel
reports the distribution of the loan balance (thousands of EUR). The right panel reports the distribution of
the loan term (months).

partnerships.

Table 2 details the number of loans originated after flood events, in the full sample (top

panel) and in the sub-sample that includes only counties at high risk of flooding (bottom

panel). As discussed in Section 2, we consider the time windows of 6, 12, and 24 months

following a flood episode. Approximately 131,074 individual SME loans, or 12% of the total

number of loans in our sample, are originated within two quarters following a water hazard.

When we consider a two-year window after flooding, the share reaches 42%. Conditional

on being originated in the aftermath of flood episodes, about 38% of loans are extended

after severe disasters, that is, floods with reported economic losses. Moreover, almost all the

post-disaster loans are originated after a single flood rather than after multiple flood events.

The fraction of post-disaster loans originated after multiple floods ranges from 0.4% when we

focus on the half-year time span, to 7.2% in the 2-year period. At 0.6% and 8.1% respectively,

the shares are practically unchanged when we consider only the high-risk counties. Flood

frequency becomes compelling when we take a long-term perspective, however. For each

month-year when we observe new loans, we calculate the cumulative sum of floods in each
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Table 2: Number of loans originated after flooding.
Number of loans originated 6, 12, and 24 months after at least one flood (first row), a severe flood (i.e.,
a flood with reported economic losses), multiple flood episodes, and in flood-prone counties, for the full
sample (top panel) and for high-risk counties (bottom panel). The total number of loans in the full sample
is 1,050,948, of which 673,067 in high-risk counties, and 748,447 in flood-prone counties.

6 months 12 months 24 months
Full sample
At least one flood 131,074 250,893 442,729
Severe flood 50,404 100,642 191,112
Multiple floods 4,603 16,253 75,913
Flood in flood-prone county 109,264 208,379 354,888
High-risk counties
At least one flood 85,706 164,309 292,685
Severe flood 37,555 75,375 144,599
Multiple floods 3,918 12,302 54,606
Flood in flood-prone county 72,996 139,772 241,281

county from the year 2000, the first year when we have a comprehensive recording of flood

episodes. Then, we define as flood-prone those counties exposed to a number of floods above

the median value of the distribution of flood episodes. Overall, around 71% of all loans in

our sample are originated in flood-prone counties.

3.2 The empirical model

The baseline regression model for the cost of credit takes the following form:

iribj,t = α + βHighRiskj + γXij,t + φbrsl,y + εibj,t. (2)

The dependent variable, iribj,t is the interest rate on loan i granted at time t to firm b,

located in county j. Our variable of interest is High riskj is an indicator variable that takes

value 1 if the normalised flood risk indicator for the county where the loan is extended is

above the median of the empirical distribution of risk scores. Hence, counties with risk scores

below the median are considered at low risk of flooding (i.e., High riskj = 0). In Equation

(2), the estimate of β measures the average interest rate premium for high flood risk. Xij,t
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is a vector of covariates defined at the loan level and at the county level. We include the

loan term (expressed in months), and the amount borrowed (in million euros), both taken

in the logarithmic scale. We also control for non-price lending conditions by including a

variable that captures the share of the loan value that is collateralised. Growth rates for

the county GDP and employment are included to account for the general macroeconomic

conditions at the local level. Further, φbsrl,y denote sets of fixed effects defined at the

borrower (b), industry (s) × region (r), lender (l) and year (y) levels, as detailed in the next

section, aimed at tightening our identification strategy by controlling for demand and supply

factors in credit developments (Jakovljević et al., 2020). Business type dummies take care

of time-invariant heterogeneity across categories of borrowers, distinguishing among public

companies, limited companies, partnerships, individual firms and other borrowers. Moreover,

in the spirit of Degryse et al. (2019), we include the interaction between industry (NACE 2

digit classification) and region (NUTS2), and further also with time, to control for demand-

related shocks that may affect the cost of SME credit. In this setup, the effect of flood risk

is identified from the cross-sectional variability across counties within each region. The fixed

effects defined at the lender and the year level account for unobserved heterogeneity on the

supply side of credit and time varying shocks that could affect loan pricing. Finally, εibj,t is

the stochastic disturbance term.

3.3 Results

3.3.1 Baseline results

Table 3 reports the results from estimating different versions of Equation (2).14 The spe-

cification in column (1) includes fixed effects for business types and industry × region, in

addition to the loan characteristics and the macroeconomic controls. The coefficient of the

High riskj indicator is positive and statistically significant at 1% level. The point estimate

indicates an average flood risk premium of around 9.5 bps. The coefficient on the loan term

14We implement the estimation using the reghdfe command by Correia (2014).
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is also positive and highly statistically significant, suggesting that the term structure of in-

terest rates on SME loans is positively sloped. There is a negative and statistically significant

correlation between the loan amount and its cost at origination. Finally, the interest rate

declines with the fraction of the loan value that is collateralised, in line with the perceived

lower riskiness, ceteris paribus.

Column (2) adds lender fixed effects, which take care of unobserved heterogeneity on the

supply side of credit. The estimates of the flood risk premium increase to 10.8 bps, and is

still highly statistically significant. The coefficients of the control variables are qualitatively

and quantitatively unchanged. In column (3) we add year fixed effects. Controlling for time-

varying unobserved shocks that affect loan pricing slightly reduces the flood risk premium,

estimated at 7.1 bps, without altering its high statistical significance. Finally, in column (4),

we interact the industry × region and the lender fixed effects with the year dummies. This

allows us to take care of time-varying demand and supply factors that may drive loan interest

rates. The point estimate for the flood risk premium is around 6.4 bps, which is around 2%

of the average value of the interest rate at loan origination in the sample. It appears rather

small in magnitude, also in comparison with evidence on the pricing of physical climate risk

into other financial assets. For instance, Correa et al. (2022) document that, in the case of

hurricanes, syndicated loans bear a risk premium for at-risk but unaffected borrowers in the

range of 19 bps. As for debt capital markets, Acharya et al. (2022) find that exposure to

local heat stress leads to municipal bond yield spreads that are higher by around 15 basis

points per annum.

3.3.2 Robustness

In this section, we provide several robustness checks for the baseline estimates presented in

column (4) of Table 3. Specifically, we test the definition of our dependent variable, the

granularity of the fixed effects and the adequacy of our main explanatory variable measure

to capture localised risk. The results are reported in Table 4.
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Table 3: Flood risk and the cost of SME credit: baseline results.
The table reports estimation results for different variants of Equation (2). The dependent variable is the
interest rate at loan origination (in bps). High risk is an indicator variable equal to one for counties at high
risk of flooding, and zero otherwise. The regressions include loan-level controls, macroeconomic controls,
and sets of fixed effects as specified. Standard errors, robust for heteroskedasticity and clustered at the
county level, are reported in parentheses. ***, **, and * indicate that the parameter estimate is significantly
different from zero at the 1%, 5%, and 10% level, respectively.

(1) (2) (3) (4)

High risk 9.4825*** 10.8026*** 7.0823*** 6.3737***
(3.5758) (3.3630) (2.3717) (2.3315)

Loan term 39.2858*** 40.2847*** 11.9477*** 16.6737***
(5.8240) (5.7128) (4.1154) (4.1759)

Loan balance -18.9868*** -17.7309*** -21.3329*** -22.5675***
(2.4547) (2.0225) (1.9221) (1.9654)

Collateralised -0.8536*** -0.9122*** 0.4324*** 0.3787***
(0.1750) (0.1910) (0.0873) (0.0787)

Macroeconomic controls Yes Yes Yes Yes
Business type FE Yes Yes Yes Yes
Industry × Region FE Yes Yes Yes No
Lender FE No Yes Yes No
Time FE No No Yes No
Industry × Region × Time FE No No No Yes
Lender × Time FE No No No Yes
Adjusted R-squared 0.309 0.334 0.402 0.451
Observations 1,050,948 1,050,948 1,050,948 1,050,948

In column (1) we use the spread of the loan interest rate over the 3-month monthly

EURIBOR as the dependent variable. This allows us to account for money market conditions

at the time the loan is extended. At 6.1 bps, the estimated risk premium is in line with the

baseline estimates. The specification in column (2) redefines the granularity of the time fixed

effects to address the concern of confounding demand and supply factors. Specifically, we

introduce year-month fixed effects interacted both with industry × region dummies and with

lender fixed effects to allow for shocks occurring at a higher frequency than in the baseline

specification. Again, the coefficient estimate for the flood risk premium is quantitatively and

qualitatively similar to the estimates from the baseline model in column (4) of Table 3 .
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Table 4: Robustness of the baseline results
The table reports estimation results for different variants of Equation (2). Highrisk is an indicator variable
equal to one for counties at high risk of flooding, and zero otherwise. The dependent variable in column (1)
is the spread of the interest rate at loan origination over the 3-month EURIBOR (in bps). In columns (2)
and (3), the dependent variable is the loan interest rate at origination (in bps). In column (2), interaction
time fixed effects are defined at year-month level. In column (3), the estimating equations include a high risk
indicator defined based on the highest riskiness quartile of the counties bordering the NUTS3 unit where
the loan is extended. The regressions include loan-level controls, macroeconomic controls, and sets of fixed
effects as specified. Standard errors, robust for heteroskedasticity and clustered at the county level, are
reported in parentheses. ***, **, and * indicate that the parameter estimate is significantly different from
zero at the 1%, 5%, and 10% level, respectively.

(1) (2) (3)
Interest rate spread Year-month FE Bordering counties’ risk

High risk 6.3352*** 5.7210** 6.3463***
(2.3248) (2.4301) (2.3477)

Bordering counties’ risk 4.7139
(2.8802)

Loan term 17.1625*** 17.5812*** 16.6283***
(3.9856) (4.4572) (4.1761)

Loan balance -23.2528*** -23.6188*** -22.4552***
(1.8838) (1.9943) (1.9521)

Collateralised 0.3930*** 0.4258*** 0.3777***
(0.0737) (0.0811) (0.0789)

Macroeconomic controls Yes Yes Yes
Business type FE Yes Yes Yes
Industry × Region × Time FE Yes Yes Yes
Lender × Time FE Yes Yes Yes
Adjusted R-squared 0.411 0.474 0.451
Observations 1,050,948 990,464 1,047,717

Finally, we test the adequacy of our risk measure and for the presence of spatial spillovers

in the effect of local physical climate risk into SME overall financing costs (Bassetti et al.,

2024). To address the concern that it may capture other unobserved characteristics in

the broad geographic area, we consider the riskiness of the counties bordering the ones

where each loan is extended. Hence, in column (3) we introduce another risk measure

(Bordering counties’ risk), an indicator variable that captures still above-median flood risk.

It is defined on the basis of the highest value of the flood risk indicator among all the
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counties bordering the one when the loan is originated. This variable should not affect

the pricing of bank credit extended in counties exposed to a different level of flood risk.

The coefficient estimate on the bordering counties’ risk indicator is indeed not statistically

significant. By contrast, controlling for this additional source of risk does not affect the

size and the statistical significance of the coefficient estimate for the High risk indicator,

pointing to the relevance of the local flood risk measure, and to the absence of significant

spatial spillovers, in the pricing of small business loans.

3.3.3 Mechanisms

In this section, we focus on the factors driving heterogeneity in the flood risk premium to

get a better understanding of the mechanisms through which flood risk affects the cost of

credit to small businesses.

Table 5: Flood risk and the cost of SME credit: mechanisms.
The table reports estimation results for Equation (2) on different subsamples. The dependent variable is the
interest rate at loan origination (in bps). High risk is an indicator variable equal to one for counties at high
risk of flooding, and zero otherwise. Column (1) considers only borrowers having legal form as partnerships
and individual firms. Column (2) considers only borrowers classified as small and micro firms. Column (3)
includes in the estimating sample borrowers from knowledge-intensive (KIA) sectors. Column (4) and (5)
restrict the estimating sample to borrowers in industries with the highest intensity of intangible capital and
movable capital, respectively (defined as those in the top quartile of the respective distributions). Column
(6) uses only loans extended by cooperative and savings banks. Columns (7)-(8) split the sample into loans
with short and with long duration, respectively, using the median loan term at origination as threshold.
The regressions include loan level controls, macroeconomic controls, and sets of fixed effects as specified.
Standard errors, robust for heteroskedasticity and clustered at the county level, are reported in parentheses.
***, **, and * indicate that the parameter estimate is significantly different from zero at the 1%, 5%, and
10% level, respectively.

(1) (2) (3) (4) (5) (6) (7) (8)

High risk 7.4446* 6.9429** 3.7089 5.9776 4.1588 27.6288*** 5.2626** 8.1248***
(3.9230) (2.9724) (2.4319) (4.2371) (2.5460) (6.6164) (2.3123) (2.5660)

Loan term 0.2420 -2.3475 16.0753*** 13.0216*** 11.4847 -22.1547*** 20.5270*** -20.4398
(5.2005) (4.5446) (4.4833) (4.2125) (8.1251) (5.4804) (1.5414) (13.6697)

Loan balance -20.6793*** -19.8656*** -18.1076*** -19.2653*** -24.4990*** -42.3969*** -11.4956** -34.0404***
(4.1780) (3.2156) (1.6030) (1.6780) (1.0203) (2.1635) (4.8414) (1.4454)

Collateralised 0.6909*** 0.5129*** 0.3380*** 0.5332*** 0.4006*** 0.7878*** -0.2152*** 0.6369***
(0.0786) (0.0302) (0.1059) (0.0810) (0.1187) (0.1552) (0.0674) (0.0808)

Macroeconomic controls Yes Yes Yes Yes Yes Yes Yes Yes
Business type FE Yes Yes Yes Yes Yes Yes Yes Yes
Industry × Region × Time FE Yes Yes Yes Yes Yes Yes Yes Yes
Lender × Time FE Yes Yes Yes Yes Yes Yes Yes Yes
Adjusted R-squared 0.318 0.342 0.503 0.400 0.488 0.512 0.428 0.498
Observations 395,470 336,629 196,943 91,183 200,924 83,304 415,295 630,236
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We first gauge the extent of the risk premium across different types of borrowers, based

on characteristics that capture their broad financial vulnerability and, hence, arguably, their

ability to weather climate-related shocks. The results are reported in Table 5. In column

(1), we consider only borrowers that have legal form as partnerships or individual firms.

These, presumably smaller, borrowers do not benefit from limited liability legal provisions.

At around 7.4 bps, the estimated risk premium is larger than the coefficient estimate in the

full sample. It is statistically significant at the 10% level.

To formally test the implications of firm size, in column (2) we single out only borrowers

classified as small or micro firms, according to the official definition of the European Com-

mission.15 This reduces the sample to roughly 337,000 unique loans. The flood risk premium

on credit to small and micro firms is in the range of 6.9 bps, only marginally higher than

the estimate for the full sample, and statistically significant at 5% level. Smaller borrowers

face already a higher cost of credit. The average interest rate for smaller firms is around 428

bps, by roughly one-fifth larger than the average rate on loans to medium-sized firms in our

sample. This gap presumably already reflects considerations on lower credit worthiness and

financial fragility of small and micro businesses (Fatica et al., 2022b), which do not appear

exacerbated by their vulnerability to the impact of physical climate risks, however.

We next explore whether the type of inputs used in production have a bearing on flood

risk pricing. We focus on firms’ reliance on production inputs that, in principle, should

make them less vulnerable to physical damage, such as intangibles and movable assets.

Moreover, when intangible assets result from R&D and similar activities, such as software,

patents or licenses, they have the potential to enhance post-disaster firm performance and

productivity. We implement this approach using different proxies defined at the sectoral

level. First, we single out borrowers in sectors with predominating knowledge-intensive

activities (KIA), according to the Eurostat classification.16 The estimates are reported in

15Based on the European Commission guidelines, small and micro firms are firms with (i) fewer than 50
employees, and (ii) either annual sales below EUR 10 million or total assets below EUR 10 million. See
https://ec.europa.eu/growth/smes/sme-definition.

16Knowledge-intensive activities (KIA) are identified on the basis of the share of skilled employment over

23

https://ec.europa.eu/growth/smes/sme-definition


column (3). The flood risk premium for firms in KIA sectors is rather small, and statistically

insignificant. Second, we consider categories of capital assets. We derive data on capital and

investment at the sectoral level from the EUKLEMS and INTANProd databases, which

provide harmonised estimates for capital inputs, including intangible assets, in Europe.17

For each sector, we aggregate the estimated capital stocks (at current replacement prices)

into intangible/tangible and movable/immovable assets, and then calculate their shares with

respect to the value of the total capital stock used in production.18 Then, we consider in the

estimation only the borrowers in the sectors where the shares of intangible and movable assets

over the total capital stock is in the top quartile of the respective empirical distributions.19

The estimates in column (4) are on the sub-sample of firms in sectors at high intensity of

intangible assets. The risk premium is not statistically different from zero, lending support

to the hypothesis of limited implications of physical damage for the operations of firms that

make an intensive use of tangible assets. Similar conclusions are reached for borrowers in

sectors at high intensity of movable capital, since the flood risk premium in column (5) is

not estimated with precision.

Next, we turn to the supply side of credit to test whether the magnitude of the risk

premium changes across bank types. Based on the reported bank names, we retrieve the

banks’ specialisation, distinguishing among commercial, savings, cooperative banks and spe-

cialised governmental credit institutions.20 Then, we retain only savings and cooperative

banks in the estimating sample. The results reported in column (5) point to a significant

total employment.
17Data and methodolgical background are available from https://euklems-intanprod-llee.luiss.it/.
18As for tangible assets, we sum up computing equipment, communications equipment, transport equip-

ment, other machinery and equipment, total non-residential structures, cultivated assets. Following the
standard classification we consider research and development, computer software and databases, and other
intellectual property products (IPP) assets as intangible assets. Further, other machinery and equipment
and total non-residential structures are classified are immovable assets, whereas the remaining assets are
considered movable.

19The distributions are rather skewed towards larger shares of tangible and immovable assets. For instance,
the median share of tangibles over total capital assets across sectors is 93.5%, while that of immovable assets
is 86.3%. Hence, to meaningfully disentangle high (low) reliance on intangibles or movables (tangibles or
immovables) we use the quartiles as thresholds.

20We draw information on bank specialisation from Moody’s ORBIS Bank Focus.
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flood risk premium of 27.6 bps, a fourfold increase with respect to the baseline estimates ob-

tained in the full sample that includes also commercial banks. Arguably, this result suggest

that smaller lenders are aware of physical climate risk, and also that they need to price it,

given their limited capacity to geographically diversify their loan portfolio.

Finally, we focus on loan duration. It is held that since the most disruptive consequences

of climate change will fully materialise at longer horizons, pricing physical risk should be

particularly compelling for loans with longer maturities. The argument is especially relev-

ant for mortgage lending, which usually extends for several decades (Nguyen et al., 2022).

Nonetheless, as flood risk is relevant also in the short and medium term, it is still an open

question whether and how its pricing changes across loan maturities, especially because

business loans, particularly those extended to SMEs, are characterised by relatively short

duration (Chodorow-Reich et al., 2021). The median loan term in our sample is 5.5 years,

with maturities ranging from 1 year to slightly less than 15 years moving from the 5th to

the 95th percentile of the empirical distribution. To shed light on the role of loan term in

physical risk pricing, we run the baseline regression model on two sub-samples comprising

credit facilities with duration below and above the sample median, respectively. The results

are reported in columns (6) and (7) of Table 5. Loans with shorter maturities display a lower

risk premium than loans with longer duration, 5.3 vs 8.1 bps on average. This evidence cor-

roborates the view that climate risk considerations become particularly compelling at longer

horizons.21

3.4 Projected or realised risk?

The results from the analysis of SMEs’ borrowing costs highlight that physical risk related

to flooding is priced into small business credit. As it is based on probabilistic scenarios

and modelling simulations, our measure of flood risk captures projected risks and impacts.

21Another option banks have is to shorten duration of loans in order to have the right to reprice more
frequently and be less exposed to the flooding risk overall. We do not find that flood risk significantly affect
contractual loan maturity. Results are available upon request.
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Hence, our empirical results should ideally capture expectations on the prospective impact

of flooding. However, it may well be that the interest rate mark-up estimated in our model

reflects lenders’ considerations on the short-term damage from realised risk rather than

concerns for current and prospective climate risk developments. In this section, we test

this hypothesis using the information on historical flood events to build several measures of

realised flood risk.

The results are reported in Table 6. First, we use a time-varying measure of flood

frequency over the long term to pinpoint counties that have been most exposed to water

hazards. Specifically, we calculate the cumulative sum of flood events for each county and

month-year starting from 2000, the year since when flood episodes are comprehensively

recorded in our data sources. Then, we define an indicator variable (Flood prone) that

equals 1 for the counties above the median value of the cumulative flood events, and 0

otherwise. Column (1) in Table 6 reports the coefficient estimates from the model in Equation

(2), augmented with the indicator for flood-prone counties. The estimated coefficient for

flood risk is qualitatively and quantitatively similar to the baseline case. By contrast, the

coefficient on the flood-prone dummy is not estimated with precision. Hence, there is no

evidence that SME bank credit is more expensive in flood-prone areas than in counties where

flooding is less frequent.

Next, we test several alternative backward-looking measures of realised risk, with a focus

on the short and medium term, that is, on the occurrence of flood episodes in the months

before loan origination. In particular, using the information on the precise date of origina-

tion and flooding, for each loan in our sample we appraise whether it was extended in the

aftermath of at least one flood episode. As the benchmark case, we consider the 6 months

following the flood episode. Then, we define an indicator variable Flood that takes the value

of 1 for loans extended in the semester after flooding, and 0 otherwise. The results are

reported in column (2) of Table 6 - Panel a. The estimated flood risk premium remains

unchanged compared to the baseline model specification without realised risk. Thus, pro-
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Table 6: Realised flood risk and the cost of SME credit.
The table reports estimation results for different variants of Equation (2). The dependent variable is the
interest rate at loan origination (in bps). High risk is an indicator variable equal to one for counties at
high risk of flooding, and zero otherwise. Flood prone is an indicator variable equal to one in counties above
the median of the empirical distribution of cumulative flood events over the long run, and zero otherwise.
Flood is an indicator variable equal to one if there has been at least one flood episode in the six months
before loan origination, and zero otherwise. Column (3) considers only severe events for the definition of
the Flood indicator. Column (4) considers only multiple floods for the definition of the Flood indicator.
Panel b adds the effect of a flood occurring in a high-risk county. The regressions include loan level controls,
macroeconomic controls, and sets of fixed effects as specified. Standard errors, robust for heteroskedasticity
and clustered at the county level, are reported in parentheses. ***, **, and * indicate that the parameter
estimate is significantly different from zero at the 1%, 5%, and 10% level, respectively.

(1) (2) (3) (4)
Panel a

High risk 6.3643*** 6.3709*** 6.3106*** 6.3795***
(2.3073) (2.3321) (2.3112) (2.3287)

Flood prone 0.8656
(5.7441)

Flood 0.7746 2.9361 -4.7866
(2.2549) (3.1271) (8.3332)

Loan term 16.6742*** 16.6707*** 16.6683*** 16.6739***
(4.1769) (4.1743) (4.1776) (4.1760)

Loan balance -22.5674*** -22.5673*** -22.5645*** -22.5663***
(1.9653) (1.9652) (1.9653) (1.9655)

Collateralised 0.3787*** 0.3787*** 0.3787*** 0.3786***
(0.0787) (0.0787) (0.0787) (0.0787)

Macroeconomic controls Yes Yes Yes Yes
Business type FE Yes Yes Yes Yes
Industry × Region × Time FE Yes Yes Yes Yes
Lender × Time FE Yes Yes Yes Yes
Adjusted R-squared 0.451 0.451 0.451 0.451
Observations 1,050,948 1,050,948 1,050,948 1,050,948

Panel b

High risk 6.6439*** 5.7643** 6.3106***
(2.3235) (2.3036) (2.3222)

Flood 2.1544 -6.8463 -28.5504
(2.2530) (4.8773) (27.6648)

High risk × Flood -2.1693 13.3647** 29.0074
(3.6223) (5.4209) (27.6648)

Loan term 16.6693*** 16.6747*** 16.6690***
(4.1747) (4.1779) (4.1754)

Loan balance -22.5679*** -22.5660*** -22.5658***
(1.9654) (1.9648) (1.9653)

Collateralised 0.3788*** 0.3784*** 0.3787***
(0.0787) (0.0787) (0.0787)

Macroeconomic controls Yes Yes Yes
Business type FE Yes Yes Yes
Industry × Region × Time FE Yes Yes Yes
Lender × Time FE Yes Yes Yes
Adjusted R-squared 0.451 0.451 0.451
Observations 1,050,948 1,050,948 1,050,94827



spective risk is taken into account also in the presence of realised risk. By contrast, the

coefficient on the indicator for recent flooding is positive, but not statistically significant.

Hence, while still reflecting flooding risk, loans extended in the aftermath of the disaster are

not priced differently than loans originated in non-flooded areas. This evidence is in line

with the results in Koetter et al. (2020), who document that the recovery lending after the

2013 flooding in Germany was not accompanied by higher lending margins. In fact, evidence

from the banking literature concurs on disasters acting as a positive shock to the demand for

credit (Berg and Schrader, 2012; Koetter et al., 2020). At the same time, the expansion of

credit supply to accommodate increased demand (Cortés and Strahan, 2017; Chavaz, 2016;

Celil et al., 2022) dampens the effects on prices.

Physical features of flood episodes, including their severity, are an important source of

heterogeneity in the impact of water hazards on firm performance (Fatica et al., 2022a).

Likewise, disaster severity may have implications for the cost of SME credit. To test for this

potential differential effect, the indicator for loans originated after flooding in column (3) con-

siders only severe flood episodes, defined as those with reported economic losses (Roth Tran

and Wilson, 2020). The Flood dummy is redefined accordingly. The estimates in column (3)

corroborate the previous findings that the cost of credit is unrelated to recent flooding, even

if the disaster is severe enough to cause (officially reported) economic losses. Moreover, the

size and significance of the premium on prospective flood risk remain unchanged.

Finally, we consider the occurrence of multiple disasters in the semester before loan

origination. Repeated flood episodes in a short time frame, by providing relevant information

on the intensifying frequency of climate-related disasters, may worsen perceived credit risk

at the local level, and, hence, increase the cost of credit. Therefore, we redefine the indicator

for Flood as taking unit value only for loans originated in the 6 months after multiple flood

events, and 0 otherwise. The results are in column (4). The coefficient for the realised flood

indicator is negative, but not estimated with precision. This supports the notion that realised

risk over the short term does not affect loan pricing. Moreover, once again, the inclusion of
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this alternative measure of realised risk leaves the estimated premium for prospective flood

risk unaffected.

While the actual occurrence of flood damage in itself is not incorporated into the price

of small business loans, it may in principle alter the perception of the associated prospective

flood risk. Chen et al. (2012) highlight the ‘latent’ nature of disaster risk, and predict its surge

in the aftermath of actual disasters, which reduces agency problems, as well as disagreement

by facilitating inference on both the likelihood and severity of hazards. Along the same line

of reasoning, in our framework, recent flood episodes may increase the salience of physical

climate risk (Correa et al., 2022), as, arguably, they reduce uncertainty over the frequency of

disasters. We test this hypothesis by introducing an interaction term between the high risk

indicator and the dummies for recent floods in the model already augmented with the latter

variables. The estimates are reported in panel b of Table 6. In the baseline case where the

recent occurrence of at least one flood episode is considered (column (2)), the interaction term

is not statistically significant. Results are similar when only multiple events are accounted

for, as in column (4). By contrast, in the case of severe floods (column (3)), the interaction

term is estimated at 13.4 bps and is statistically significant at 5% level. Hence, the flood risk

premium raises to almost 19 bps in high-risk counties recently stricken by severe flooding.

Overall, this indicates that recent flooding, even if occurring frequently, does not change the

perception of prospective flood risk, unless it is accompanied by significant economic losses.

The short-term cost of realised water damage makes increases the salience of the implications

of more severe disasters for lenders exposed to at-risk borrowers.

4 Flooding and loan performance

In this section, we study the effects of flooding on loan performance. We aim to assess

whether realised flood risk has a bearing on the occurrence of late payments and, eventually,

of loan default. We consider two different instances when flooding can impair loan perform-

29



ance. First and foremost, there is a direct effect, whereby firms’ capacity to service debt

obligations deteriorates in the aftermath of disasters (Noth and Schuewer, 2018). Second,

we consider also an indirect effect that may materialise for loans originated after a disaster.

This case captures risk-taking by banks or potential loosening of lending standards in the

presence of increased loan demand for reconstruction purposes after the occurrence of water

hazards (Bos et al., 2022).

We employ survival analysis, which models the likelihood of loan i to default before

it reaches its final maturity or the observation period ends. Compared to standard binary

models, such as the logit, a time-varying duration model allows us to account also for implicit

measures of risk-taking. The hazard rate in a duration model has the intuitive interpretation

as the probability of default in each period, conditional on surviving until that period.22

As such, the hazard rate can be considered a per-period measure of risk and, hence, it is

comparable between loans with different maturities.

Formally, let S(t) = Pr(T > t) be the probability of survival beyond time t, also known

as survival function. We define the hazard function, also known as hazard rate, as:

h(t) = lim
∆t−→0

Pr(t < T < t+∆t|T > t)

∆t
. (3)

Given a p-dimensional vector of covariates x, we can model the survival time as h(t|x) =

exp(ϕo + ϕ′x), where the exponent imposes the non-negativity of h(·). In the Cox’s propor-

tional hazard model (Cox, 1972) the hazard function is:

h(t|x) = h0(t) exp(ϕ
′x), (4)

where h0(t) is an unknown non-negative function that incorporates the baseline hazard when

22We refer to Gupta et al., 2018 for an overview of the application of hazard models in predicting SMEs
failures and to Dirick et al., 2017 for an introduction to survival analysis.
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the vector of covariates xi1 = . . . = xip = 0. The associated survival function is:

S(t|x) = exp

(
− exp(ϕ′x)

∫ t

0

ho(u)du

)
= exp(− exp(ϕ′x)H0(t)), (5)

where H0(t) is the cumulative of the baseline hazard function h0(t).

Let yit be a binary variable indicating whether the ith loan in time t is defaulted or not.

For each loan i, we define the survival time T as the time at which the default (i.e., yiT = 1)

occurs, and the censoring time C as the end of the observation period or the loan’s final

maturity. We compute the time variable t as the difference in months between the cut-off

dates (i.e., the dates when the the loan is observed) and the loan’s origination date.

The vector x includes a binary variable that indicates whether the county where loan i

was extended experienced at least one flood in the previous q months. This allows us to test

the direct impact of recent flood events on the deterioration of performance. As disasters and

their economic consequences may induce firm distress with a delay, we estimate variants of the

proportional hazard model for different time horizons, that is, we consider, alternatively, q =

6, 12, and 24 months. As a second test, we verify whether flooding at origination matters for

loan performance. We do so by augmenting the model with a binary variable that indicates

the occurrence of at least one flood episode in the q months before loan origination. As

before, we consider, alternatively, q = 6, 12, 24. As an additional flood-related variable,

we control for projected risk by using the dummy High risk, which equals 1 for the counties

that have a normalised risk indicator above the median value of the empirical distribution

of food risk, and 0 otherwise. The vector x includes also loan-level regressors, namely the

current interest rate, as well as the logs of the loan balance (in euros), the residual loan

term (in months), and a variable measuring the share of loan value that is collateralised. We

also include lender fixed effects, and fixed effects for the business type and the sector of the

borrower, as well as the growth rates of GDP and employment at the county level to control

for local macroeconomic conditions.23

23The choice of variables follows Barbaglia et al. (2023), who investigate the delinquency of residential
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To define the dependent variable, we exploit the information on the loan payments sched-

ule in the EDW database. We classify a loan as defaulted if it is reported in arrears for more

than 90 consecutive days. If a loan is labelled as defaulted, we discard all updates of the

loan status following the date when it first appears in prolonged delinquency. Hence, we do

not consider the possibility of defaulted loans returning to a performing status. While the

focus of this section is on loan default, in Appendix B we also estimate the duration model

for late payments, considering as dependent variable a binary variable that indicates when

the loan first enters arrears status.24

Table 7 reports the results of the Cox’s proportional hazard model. To simplify the discus-

sion, the table displays the estimated hazard rates, instead of the underlying coefficients. A

hazard ratio higher than 1 for a covariate indicates that loans with that feature or risk factor

have a shorter survival than loans without that feature. If the hazard ratio is lower than 1, it

would mean that the hazard was less in loans with the potential risk factor. Columns (1)-(3)

in the table focus on the direct impact of flooding on loan default using the occurrence of

flood events before the observation date. The results in column (1) indicate that, if any,

the negative impact of flooding on loan default does not significantly materialise in the 6

months after the disaster. The hazard ratio associated with the occurrence of flooding in the

previous 6 months is 0.93, which suggests a protective effect of the hazard on outstanding

loans, ceteris paribus. One possible explanation behind this counterintuitive result is the ef-

fect of emergency financial aid and relief measures enacted as immediate response to natural

disasters. For instance, the emergency relief measures for flooded areas in Italy normally

include direct transfer and subsidies, tax holidays and suspension of debt payments.25 Evid-

mortgages in Europe using data from the EDW. Their results indicate that interest rates and local economic
conditions as the most important drivers of mortgage default.

24We consider arrears on principal or interest payments.
25As an example, several large banks pledged support after the September 2023 severe flash floods in

the Marche region. Intesa Sanpaolo allocated EUR 200 million for emergency aid, including a 12-month
loan repayment moratorium. UniCredit offered a suspension for a year of capital reimbursements on loans
to customers based in the flood-stricken areas, while Credit Agricole promised loans on more favourable
terms and fast-track procedures for their approval. See https://www.reuters.com/business/finance/

top-banks-italy-rush-help-clients-flood-stricken-marche-region-2022-09-16/.
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Table 7: Flooding and loan default.
The table reports the hazard ratios from a Cox’s proportional hazard model for loan survival. Flood is an
indicator variable equal to one if there has been at least one flood episode in the 6, 12, or 24 months before
loan default, and zero otherwise. High risk is an indicator variable equal to one for counties belonging
to the top two quartiles of the country-specific distributions of the flood risk measure, and zero otherwise.
Flood before origination is an indicator variable equal to one if there has been at least one flood episode
in the 6, 12, or 24 months before loan origination, and zero otherwise. Columns (1)-(3) focus on the direct
impact of flooding on loan default using the occurrence of flood events before the observation date. Columns
(4)-(6) focus on the impact of flooding on loan default using flood events occurred before the origination date
of the loan. All regressions control for industry, lender, region (NUTS2) and business type fixed effects, as
well as growth rates of GDP and employment. ***, **, and * indicate that the hazard estimate is significantly
different from zero at the 1%, 5%, and 10% level, respectively.

(1) (2) (3) (4) (5) (6)
Realised flood risk before default Realised flood risk at loan origination

6 months 12 months 24 months 6 months 12 months 24 months

High risk 1.0021 1.0022 1.0052 1.0027 1.0030 1.0055
(0.0182) (0.0182) (0.0183) (0.0182) (0.0182) (0.0184)

Flood 0.9306*** 1.1981*** 1.6066*** 0.9306*** 1.1958*** 1.6016***
(0.0240) (0.0230) (0.0266) (0.0240) (0.0229) (0.0266)

Flood before origination 1.1741*** 1.2301*** 1.0399**
(0.0248) (0.0206) (0.0163)

Interest rate 1.1185*** 1.1214*** 1.1262*** 1.1178*** 1.1191*** 1.1256***
(0.0057) (0.0057) (0.0057) (0.0057) (0.0057) (0.0057)

Loan balance 0.8653*** 0.8662*** 0.8681*** 0.8651*** 0.8660*** 0.8680***
(0.0070) (0.0070) (0.0070) (0.0070) (0.0069) (0.0070)

Residual loan term 1.0203** 1.0169* 1.0155* 1.0219** 1.0199** 1.0160*
(0.0089) (0.0089) (0.0089) (0.0089) (0.0090) (0.0089)

Collateralised 1.0104*** 1.0105*** 1.0104*** 1.0103*** 1.0104*** 1.0104***
(0.0004) (0.0004) (0.0004) (0.0004) (0.0004) (0.0004)

Macroeconomic controls Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes Yes
Business type FE Yes Yes Yes Yes Yes Yes
Lender FE Yes Yes Yes Yes Yes Yes
Region FE Yes Yes Yes Yes Yes Yes
Observations 6,328,791 6,328,791 6,328,791 6,328,791 6,328,791 6,328,791
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ence from the US in Collier et al. (2024) indicates that government-provided recovery loans

to small businesses following natural disasters reduce firm distress, increase employment and

revenue, and reduce the share of firm debt that is delinquent and the duration of delinquent

debt, which can be precursors to bankruptcy and exit. Similarly, Davlasheridze and Geylani

(2017) find that small business administration disaster loans are effective in mitigating dis-

aster aftereffects, including firm exit. While we do not have data on post-flooding emergency

measures for the events in our sample, we conjecture that a similar mechanism may be at

play here, whereby the rapid injection of liquidity and emergency measures enable firms to

weather the shock, at least in the short run. The estimated hazard for the flood risk variable

is statistically insignificant. Hence, loans in high-risk counties do not have per se a shorter

survival probability than loans extended to firms that do not face a high risk of flooding.

As expected, this suggests no separate effect of prospective risk on loan survival. As for the

other explanatory variables, all the estimated effects are highly statistically significant and

economically meaningful. A 1-basis point rise in the interest rate increases the hazard rate

by roughly one-tenth. A higher residual balance decreases the probability of loan default.

By contrast, loans that have higher residual duration and are more collateralised are more

likely to enter default status than other loans, ceteris paribus, although the size of the effect

is rather small form an economic perspective.

The second and third columns of Table 7 consider the occurrence of at least one flood in,

respectively, the 12 and 24 months before the observation date. When longer horizons are

considered, the estimated hazards associated with the Flood variable are larger in magnitude.

Being located in a flooded county increases the probability of defaulting on debt repayment

in a statistically significant way. In the 12 months following the disaster, loans to flooded

borrowers face a hazard 20% greater than credit facilities to firms that did not experience

water damage in the previous year (column(2)). Considering the 2-year window as in column

(3), the estimated hazard ratio reaches 1.6. Our results indicate that the impact of flooding

on loans’ probability of default is more pronounced and turn sizeable at longer horizons.
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While in the first months after the flood exposed firms may still rely on their cash holdings

and different form of financial aid to cushion the negative shock (Joseph et al., 2022), they

are likely to encounter liquidity and solvency issues in the medium term, as water damage

disrupt firm operations in a significant and persistent way (Fatica et al., 2022a). In fact,

the results on loan arrears show that flooding increases the probability of late payments on

outstanding loans already in the first six months after the event, with these signs of financial

fragility persisting during our two-year observation period (see Appendix B).

There is a second, indirect way through which flooding may affect loan performance.

Rebuilding efforts after natural disasters increase the demand for credit (Berg and Schrader,

2012; Koetter et al., 2020). However, in a context where the timely availability of funds

is crucial for the continuity of firms’ operations, banks might increase risk-taking or relax

their credit standards when they provide recovery lending to disaster-stricken SMEs. To test

whether banks incur systematically more credit risk in their recovery loans, we augment the

survival model with an indicator variable for post-disaster lending activity. Specifically, in

line with the loan pricing model in Section 3, we use a dummy (Flood before origination)

that takes value 1 for loans originated in the q months after flooding, and 0 otherwise.

We consider, alternatively, q = 6, 12, 24. The results are reported in columns (4)-(6) of

Table 7. The hazard ratios of the variables for flood risk and the occurrence of recent water

hazards are practically unchanged with respect to the baseline specification. Interesting

results emerge when turning to the variable that captures flooding at origination. The hazard

ratio associated with origination 6 month after flooding is 1.17 (column (4)), and 1.23 for

the 12 month-span (column (5)). Hence, loans originated up to 1 year after a flood event are

on average 1.2 times more likely to default than other loans, all other factors being equal. In

other words, the hazard rate increases by one-fifth for post-disaster loans compared to loans

extended in normal times. Importantly, the result holds while keeping other observable loan

characteristics, such as the interest rate, the residual duration, the balance and the fraction

of the loan that is collateralised, constant. The fragility of recovery loans materialises also
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for credit extended 2 years after the disaster, although it is, expectedly, much more muted.

The estimated hazards ratio in column (6) is 1.04. Overall, these findings indicate that

the cohorts of loans extended in the aftermath of flooding perform worse than other credit

facilities, pointing to an additional channel through which realised physical climate risk affect

SMEs’ financial vulnerability and distress.26

5 The pricing of flood risk: a back-of-the-envelope as-

sessment

The results in Section 3 indicate that flood-related climate risk is priced into new loans to

small and medium-sized firms. Moreover, there is substantial heterogeneity in the size of the

risk premium across borrower and lender types. Section 4 shows that flood episodes are an

important risk factor for firms’ ability to service their debt as they significantly increase the

relative likelihood of loan default. Hence, the question of whether flood risk is adequately

priced against realised risk naturally arises.

In this section, we attempt to provide a first answer to this question resorting to a very

stylised framework inspired by the valuation of Credit Default Swaps with a constant hazard

rate model (Hirsa and Neftci, 2014). The standard equation takes the form:

S = PD(1−R), (6)

where S is the interest rate spread, PD is the loan default probability, and R is the recovery

rate in case of loan default, so that (1 − R) is the loss given default (LGD) associated to

the loan, or LGD = (1 − R). Defining S0 the average loan spread observed in the sample,

and with Ŝf the spread in the case the realised flood risk is fully priced, we can retrieve the

26The results in Appendix B show that recovery loans are also more likely to enter into arrears than loans
originated in normal times. The effects are milder than in the case of default, presumably reflecting the fact
that short-term late payments are relatively more likely to occur than prolonged arrears, and hence flooding
has worsens only marginally existing financial fragility.
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corresponding risk premium by plugging the relevant observed variables and the estimated

parameters into the ratio Ŝf/S0, or:
27

Ŝf/S0 = ĥ( ˆLGDf/LGD0). (7)

In equation 7, ĥ is the estimated hazard ratio obtained from the survival model estimated

in Section 4.

As for the calibration of the loss given default, we exploit the information available in

the EDW data, which reflects banks’ internal assessment of the LGD on the loans in their

portfolios. Also in this case, we need values for the LGD in the different scenarios with and

without flood risk accounted for. To this purpose, we formally test whether the estimated

loss given default that the banks report on each loan is affected by disaster risk and flooding

occurrence both during the lifetime of the loan and when it is originated. The empirical model

and the full set of results are reported in Appendix C. We find that banks do not adjust

their estimated LGD on existing loans in the aftermath of flooding, notwithstanding the

deterioration of loan performance uncovered in the survival model. Similarly, the occurrence

of floods before loan origination does not increase the ex-ante assessment of the LGD. By

contrast, estimates of the LGD are not significantly affected by the projected flood-related

physical risk in the county where the loan is granted, although the effect is rather small in

magnitude.

Following the analysis of loan default, we assess the pricing of climate risk against flooding

occurring at different points in time, that is during the lifetime of the loan and before its

origination. Let us consider first the case of flooding occurring before loan origination.

Factoring in the hazard ratio corresponding to the 12-month time window, we obtain an

optimal interest rate of around 438 bps. This corresponds to a risk premium for the indirect

27We calculate the optimal interest rate, R̂f from the spread in Equation (7), defined over the EURIBOR

as Ŝf =R̂f−EURIBOR. S0 is computed using the average interest rate in the sample of 383.45 bps (see
Table 1). The average value of the 3-month EURIBOR over our sample period is 144 bps.
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effect of flooding of around 55 bps over the average interest rate in the sample, that is almost

9 times the estimated risk premium in our empirical model in Section 3.28 Turning to the

24-month horizon, and using the corresponding hazard ratio of 1.04 (see column (5) of Table

7), gives a hypothetical optimal risk premium of 9.5 bps, which is rather close to our baseline

estimates. This reflects the fact that the intrinsic fragility we uncover for post-disaster loans

fades at longer time spans.

In the case of realised risk during the loan’s lifetime, we need to account also for the

probability of the occurrence of flooding in the future, which is not known when the loan

is priced at origination. We use the simulations of the probabilistic scenarios underlying

the flood risk risk indicator, which factor in the potential occurrence of events of different

severity, i.e. for floods with different return periods (see Appendix A.2).29 As a plausible

scenario that matches ordinary levels of risk, instead of extreme events which are relatively

rare, we focus on simulated flood episodes with a 10-year return period. Figure 4 plots the

corresponding hypothetical level of the interest rate that accounts for that risk, over different

projection periods.30

The patterns of hypothetical optimal prices appears roughly in line with the sample

average interest rate for current flood risk projections over a 10-year horizon. This suggests

the pricing of projected flood risk appears to adequately reflect the increased credit risk

associated with water hazards at the median loan term in our sample (around 6 years).

Considering projection periods below (above) the decade would imply an overestimation

(underestimation) of the risk premium.

Admittedly, this is a very simple and stylised exercise, which we do not purport has

the validity and robustness of a fully fledged multi-period dynamic optimisation process.

28We calculate 438.54-383.45=55.1, where we obtain (383.45 - 144)*1.23*1.00+144=438.54 from Equation
(7), with 1.21 the estimated hazard ratio on the Flood before origination indicator (see column 5 in Table
7), and 144 is the average 3-month EURIBOR over the sample period. We set the ratio of LGDs to 1 as the
estimated coefficients on the Flood indicator in Table C.1 are not statistically different from zero.

29The simulated probabilities are reported in Table 3 of Antofie et al. (2020).
30We use the hazard ratio associated with the default that accounts for flood episodes in the 24-month

time span before loan delinquency (see the Flood dummy in column (6) of Table 7).
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Figure 4: Simulated interest rate values accounting for flood risk. The solid line
plots the hypothetical optimal interest rate (in bps) from equation 7, augmented for the probability of flood
occurrence, for projection periods ranging from 5 to 25 years (solid line). The dashed line is the average
interest rate in the sample.

Nonetheless, it allows us to make some important general considerations on flood risk, and its

pricing. First and foremost, climate risk is already compelling at longer horizons. This calls

for potentially marked adjustment in the price of longer-lived assets, all other things being

equal. Second, the increase in frequency and severity of flooding induced by climate change

implies that correspondingly higher risk levels are materialising also at shorter time horizons,

affecting the valuation of shorter-lived financial assets as well. Against this background,

adaptation measures that address SMEs’ financial fragility, besides reducing the direct cost

of water hazards, have also important implications in preventing a negative feedback loop

through increased financing costs. Moreover, SMEs’ ability to correctly evaluate and disclose

their climate risk exposure is crucial. At the same time, on the supply side of credit, climate-

related risks need to be integrated in banks’ overall risk management process.

6 Conclusion

Extreme weather events and climate-related natural hazards are becoming more frequent

and severe with the rise in global temperatures. While floods are already among the most

damaging hazards at the European scale and the increase in the associated risk is substantial,
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their financial implications are still far from being fully understood. In this paper, we use a

large cross-country data set of securitised loans to study the impact of flooding on credit to

European small and medium-sized businesses.

First, we document that banks charge higher interest rates on new loans originated in

counties that are at high risk of flooding. The risk premium is heterogeneous across borrower

types, and increases substantially in the case of credit facilities extended by cooperative and

savings banks. Moreover, severe events make flood risk more salient for lenders, arguably as

they unveil the full extent of its implications for credit risk when significant direct economic

losses are reported.

Second, we find that flood events are an important risk factor for loan performance. Using

survival analysis, we uncover two distinct channels through which realised risk affects loan

default. First, firms exposed to a flood are more likely to default on their loans than firms

in non-disaster areas. The effect is sizeable, and persists even in the second year after the

water hazard. Second, for given financial characteristics, loans originated in the aftermath

of flooding are also more likely to enter delinquency status than loans extended otherwise.

Both this intrinsic fragility and the deterioration in loan performance in the aftermath of

flooding needs to be adequately accounted for in the pricing of flood risk.

Taken together, our results suggest that the intensification of natural disasters due to

climate change may become an important source of financial vulnerability for European small

and medium-sized businesses, and for the banks that finance them. Climate risk is acting as

an amplifier of existing SME vulnerabilities, stemming from both the lack of preparation to

respond to change and limited resources to weather the effects of natural hazards. For banks,

climate risk compounds existing risk categories such as credit and market risks, and calls

for adequate and comprehensive risk management frameworks. More broadly, our findings

point to the importance of policies that mitigate the disruptive effects of climate change

on the real economy and the financial sector, and help identify, monitor and report on the

underlying risks.
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In this perspective, future research might investigate whether physical risk similarly im-

pacts other loan terms, such as collateral and covenants (Mabille and Wang, 2023). The

study of non-price terms could bring further insights on the financial implications of climate

change for bank finance to smaller businesses. Moreover, important policy indications may

be derived from research addressing the impacts of adaptation measures, including insurance,

to mitigate climate-related risks.
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Appendix

A Data

A.1 Loan data

A.1.1 The securitisation process

SME loan securitisation is a structured finance practice that allows banks to diversify and

transfer their SME credit risk exposures. Securitisation is administered through special

purpose entities (SPE) that are originated by banks (“originators”). These entities pool a

large portfolio of SME loans from banks’ balance sheets and use the derived cash flows (i.e.,

the principal and interest payments) as collateral to issue new debt (asset-backed securities or

ABS). These ABS are then sold to institutional investors or are purchased by the originator

and retained on its balance sheet to be used as repo collateral. The securitised SME loan

portfolio is static, thus the bank cannot change its structure over time. ABS tranches are

rated by credit rating agencies based on specific criteria, including notably diversification

of the pool and credit enhancements, which hedge ABS deals from borrowers’ idiosyncratic

credit risks. Consequently, the majority of ABS tranches have high ratings (i.e., usually

AAA or AA rated), reflecting higher credit quality that the average quality of the underlying

securitised loans. The originating bank is normally responsible for servicing and tracking

the performance of the securitised loan portfolio, including notably the reporting of relevant

portfolio-level information. Especially after the global financial crisis (GFC), many European

banks started retaining their ABS deals in order to place them as repo collateral. This

practice has also positive impacts on banks’ liquidity coverage ratio.

While remaining much smaller than its US peer, the European securitisation market has

grown steadily from the beginning of the previous decade until the outbreak of the GFC.

SME loan-backed ABS deals constitute the second largest securitisation market in Europe

(after residential mortgage-backed securities), in terms of both the amounts outstanding

and new issuances (Association for Financial Markets in Europe, 2023). During the fin-

ancial crisis, ABS issuance remained initially at high levels in Europe, but these volumes
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were almost exclusively driven by their eligibility as collateral for ECB liquidity operations.

Afterwards, while the overall market activity decreasing to the levels recorded in 2003/2004,

the composition of deals placed with institutional investors versus those retained changed

significantly. The share of SMEs ABS transactions retained by originators reached 100% in

2022, while constantly hovering above 90% in the post-crisis era, when the ECB has served

as the primary investor in the majority of ABS deals in the Eurozone (Kraemer-Eis et al.,

2023). Importantly, with very high amounts at below market level interest rates being avail-

able for repo backed by ABS, this facility became a very important source of liquidity for

Eurozone banks in the post-crisis era.

The GFC revealed structural inefficiencies in loan securitisations, stemming from the

lack of transparency about the quality of the underlying loans and banks’ loan screening

and monitoring activities. Agency problems in loan underwriting and monitoring were doc-

umented also by the economic literature. In the years preceding the crisis, in the US, loan

securitisations led to banks’ lowering their credit standards as well as their screening and

monitoring efforts (see e.g., Keys et al., 2010, 2012; Wang and Xia, 2014). There is also evid-

ence that securitisation caused the mispricing of credit risk (see e.g., Nadauld and Weisbach,

2012; Kara et al., 2016).

To correct for the perverse incentives from risk transfer and restore confidence in the

market, after the crisis there was a global call for greater transparency in loan securitisation

processes. In this context, in 2013 the ECB introduced the first ABS loan level reporting

standards in Europe, requiring comprehensive and recurring information collection and dis-

closure by banks about their ABS portfolio structure and performance. Ertan et al. (2017)

provide a thorough assessment of the implications of the ECB loan-level reporting initiative

for the SME securitisation market in Europe. They document that enhanced transparency

not only improved the quality of reporting, but had also real effects by incentivising banks

to improve their credit practices. Moreover, the greater information set available enabled

banks to make more informed credit decisions, resulting in stronger market discipline, and

strengthened screening efforts and underwriting standards, correcting for perverse incentives

in securitisation. Importantly for our purposes, they do not find evidence of strategic beha-

viour in securitisation. In other words, banks do not appear to have strategically selected
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better loans to securitise and retained worse quality loans on their balance sheets, which

would have led them to face increased riskiness in their operations.

A.1.2 Data representativeness

We draw our loan-level data from the European Data Warehouse (EDW), a third party

agency that administers the data collection, monitoring and control process under the re-

porting regime introduced by the ECB in 2013. In the light of the discussion in the previous

section, a relevant question to address is whether our data is representative of the population

of loans granted to European SMEs. Indeed, there could be concerns that the securitised

loans might not be representative of the underlying population. On the one hand, securitised

loans need to meet the credit quality standards, which might induce banks to include in the

pool high quality loans and retain lower quality ones on their balance sheet. This would

result in EDW containing loans of significantly higher credit quality and under-represent

low credit quality ones. While the results in Ertan et al. (2017) do not find of strategic se-

curitisation, we cannot rule out this hypothesis a priori for our sample. On the other hand,

by transferring risk, securitisation market might increase banks’ risk appetite and encourage

laxer lending standards. Also, lenders that are more active on the securitisation market

might be those with a more difficult access to capital markets. In this sense, the pool of

EDW loans might prove of lower quality relative to the population of SME credit. While

working in opposite directions, both of these effects could potentially bias our results.

When it comes to other securitised loans under the loan-level initiative, Barbaglia et al.

(2024) find that EDW data for residential mortgages reflect quite closely the underlying

population of mortgages along a number of dimensions. In evaluating the representative-

ness of our sample of SME loans we face important challenges stemming from the limited

availability of comparable data derived from national credit registries.

We first consider the cost of credit. We extract information from the OECD Financing

SMEs and Entrepreneurs scoreboard (OECD, 2024).31 Figure A.1 reports the evolution of

31The Scoreboard is a collection of indicators on SME access to finance derived from data supplied by
financial institutions, statistical offices and other government agencies. This is supplemented by national and
regional demand-side surveys in order to provide a more comprehensive view of the evolution of financing
trends and needs.
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Figure A.1: Interest rate. The solid line plots the average interest rate from EDW, with the
confidence bands corresponding to the observed inter-quartile range. The dashed line is the interest rate
reported by the OECD Financing SMEs and Entrepreneurs scoreboard.

the observed average interest rate in EDW by country and year, alongside the figure obtained

from the OECD Scoreboard. To gauge heterogeneity at the geographical and industrial levels

in our data, we also plot confidence bands representing the inter-quartile range calculated

from the loan-level information. The EDW and OECD series show a reasonably good match,

with similar dynamics over time, across the three countries in our sample. The series for

Belgium and Italy practically overlap in the most recent years of our sample period. Some

differences are apparent for Spain. The two series follow a similar pattern, with the gap

seemingly widening in the latest sample years. Nevertheless, the OECD interest rate is still

comprised within the inter-quartile range from our microdata. Importantly, consistent with

the findings in Kara et al. (2016) for syndicated loans, we do not find evidence of securitised

loans being priced more aggressively compared to the rest of SME loans in a systematic way.

We also evaluate the representativeness of EDW data with respect to loan performance

comparing the default rates in our sample to official data on non-performing loans (NPLs)

as a share of gross loans.32 The OECD Scoreboard provides data on the SME NPLs ratio

32As a caveat to bear in mind, the definition of NPL closely follows, but does not perfectly match the
definition of default adopted in the paper. The regulatory categorisation of non-performing loans (NPLs)
varies across jurisdictions. The 90-day past due criterion is most widely used by countries, and in line
with the Basel criteria for problem asset or establishing default, and the European Banking Authority’s
(EBA) criteria for non-performing exposures (European Central Bank, 2017). The Basel and EBA criteria
also include loans that are less than 90 day overdue but are deemed unlikely to be repaid. Guidelines on

50



only for Belgium. For Spain and Italy, we obtain the share of NPLs loans to total gross

loans from the World Bank Group (WBG).33 An important caveat to bear in mind in the

comparison is that a composition effect is at play for these two countries, where NPLs ratios

are calculated on total outstanding loans for the entire baking sectors, without differentiating

borrowers by size. Figure A.2 plots the evolution of the observed percentage default rate in

EDW by country and year, alongside the figures obtained from the OECD and the WBG.

The evolution of the default rate in the EDW data matches well the dynamics of NPLs

reported by the OECD and the WBG. When looking at the levels, the series are rather

close for Belgium. By contrast, some discrepancies emerge for Spain and, especially, Italy,

although the gap is widening in the more recent years. Overall, the default rate in EDW is

lower than the NPL ratios reported by OECD and WBG. Given the methodological caveats

spelled out above, including the different categorisation underlying the different aggregates,

we cannot draw strong conclusions from the comparison about the EDW loans being of

higher quality than the whole population of SME loans. In fact, even if that were the case,

our results from the analysis of loan performance would be rather conservative, and we would

be underestimating the actual impact of flooding on loan default.

A.1.3 Data cleaning

This section illustrates the cleaning steps performed on the loan-level information to obtain

the estimating sample. (i) For consistency with the time period covered by the data on flood

episodes, we retain only loans originated between January 1st 2008 and December 31st 2019.

(ii) We drop all observations with no geographic indication at NUTS3 level, and convert

all entries following the 2013 NUTS classification34. (iii) We exclude all loans with non-

positive values for the relevant loan characteristics. (iv) To ensure that only loans to profit-

maximizing entities are included in our sample, we drop all credit lines extended to borrowers

with a Nomenclature of Economic Activities (NACE) in sectors beginning with “S” (Other

services activities, including of membership organization), “T” (Activities of households as

statistical data reporting on NPLs suggest similar criteria.
33The WBG indicators are available at https://data.worldbank.org/indicator/FB.AST.NPER.ZS.
34Conversion tables are available at https://ec.europa.eu/eurostat/web/nuts/

correspondence-tables/postcodes-and-nuts.
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Figure A.2: Default rate. Plot of the percentage observed default rate in EDW (solid) and the ratio
of non-performing loans (NPLs) to gross loans reported from official sources (dashed): for Belgium, we plot
the NPL ratio from the OECD Financing SMEs and Entrepreneurs scoreboard; for Spain and Italy, we plot
the NPL ratio from the WBG, which refers to the aggregate volumes of NPLs for the whole banking sector.

employers; undifferentiated goods - and services - producing activities of households for own

use) or “U” (Activities of extraterritorial organisations and bodies). Moreover, we do not

consider interbank financing operations, thus we exclude borrowers in the NACE 2-digit

sector “64” (Financial service activities).

A.2 The flood risk indicator

The RDH risk indicator gauges the potential impact of flooding for a specific area in a given

period of time. It compounds two different metrics associated to the occurrence of a flood:

exposure and vulnerability. Exposure is assessed by combining geolocalised information on

relevant flood metrics, such as frequencies and intensities, and on layers for different types of

physical assets (i.e., residential buildings, industrial and commercial buildings, and land). To

obtain a measure of the areal extent of the flooded areas, European inundation maps derived

from the two-dimensional high-resolution hydrological model LISFLOOD (Bates et al., 2010;

Alfieri et al., 2016) are used.35 The presence of the assets in the ‘footprint’ of the hazard, as in

35LISFLOOD is a grid-based hydrological rainfall-runoff-routing model that simulates the full water cycle,
including transport of water in horizontal and vertical directions through the landscape and soil, from rainfall
to water in rivers, lakes and groundwater. Hydrological processes simulated under the combined effects of
weather and climate changes, land use, socio-economic changes on water demand, as well as policy measures
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Figure A.3: Hazards and assets at risk in RDH exposure component.
Source: JRC Risk Data Hub.

Figure A.3, is considered exposure. For tractability, the exposure is then aggregated within

administrative units, according to European administrative boundaries (Eurostat/GISCO),

at the level of country (NUTS 0), regions (NUTS 2), provinces (NUTS3) and LAU (Local

Administrative Units).

The hazard layers are probabilistic, with flood intensities assessed at different return

periods, as follows (Antofie et al., 2020):

1. Calculation of the probability of exceedance Pe,Tn in a given year, which indicates

the probability that a flood with a given return period Tn (in years) takes place,

Pe,Tn = 1/Tn. The return periods are Tn, with n = {10, 50, 100, 200, 500}.

2. Calculation of the probability of occurrence of an event with a return period Tn in one

year, Pn:

Pn = 1 +
Pe,Tn − 1∏Tn−1
n=T1

(1− pn)
. (8)

3. Calculation of the probabilities of occurrence for each event over a selected time interval

of m years:

pn(m) = 1− (1− Pn)
m, (9)

where n = {500, 200, 100, 50, 10} are the returning periods in years, andm = {2, 5, 10, 15, 25}

are the projection horizons, in years.

Finally, the calculation of the overall average loss expected for all events in different time

for water savings or flood control.
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periods is:

Um =
Tn∑

i=T1

pi,mLi, (10)

where Li is the expected loss associated to a single event. The expected loss for a given event

combines the exposure component and the vulnerability component. The potential impacts

are not expressed in monetary values, but are normalised on a 0-to-10 scale.

Overall, the composite vulnerability component encompasses 43 unique indicators split

across three geographic levels: country, NUTS2 and NUTS3 (see Table A.1). The vulnerab-

ility index is calculated by aggregating all unique indicators for the dimensions considered,

i.e. social, economic, political, environmental and physical, at each geographic level. Hence,

sub-indices for all areas and levels are created. Subsequently, the sub-indices are aggregated

at the relevant geographic level. Eklund et al. (2023) develops the RDH vulnerability frame-

work and describes the underlying methodology. In general, several data cleaning steps may

be needed for the sub-indicators, in line with the standard approach for composite indicat-

ors, for instance treatment of missing data, e.g. by linear regression for indicators in which

a clear pattern can be detected; winsorisation, and potential log-transformation to reduce

excess skeweness and kurtosis of the distribution. Finally, values are finally normalised in a

scale from 0 to 10 to make them comparable across different indicators.
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Table A.1: Variables used to compute the vulnerability component of the flood
risk indicator.

Level Dimension Hazard-independent Indicator Vulnerability Data Provider

Country Social Projected population change (increase) (+) Eurostat
Country Social Children at-risk-of-poverty (+) Eurostat
Country Social Disabled people with need for assistance (+) Eurostat
Country Social Long-term care (health) expenditure (-) Eurostat
Country Social Change in Age-dependency (+) Eurostat
Country Social Self-reported unmet need for medical care (+) Eurostat
Country Social Perceived Good Health (-) Eurostat
Country Economic Gross National Saving (-) WBG
Country Economic GDP per capita (-) Eurostat
Country Economic Income Inequality (+) Eurostat
Country Economic Cultural heritage (+) UNESCO
Country Political Governmental efficiency (-) WGI
Country Political Political Stability (-) WGI
Country Political National Adaptation Strategies (-) Climate-Adapt
Country Environment Environmental protection expenditure (-) Eurostat
Country Environment Climate related economic losses (+) Eurostat
Country Environment Common farmland bird index (-) Eurostat
Country Environment Natura 2000 protected areas (-) Eurostat
NUTS2 Social Life expectancy (-) Eurostat
NUTS2 Social Hospital beds per 100’000 population (-) Eurostat
NUTS2 Social Participation in Social Networks (-) Eurostat
NUTS2 Social Information (Frequency of internet access: once a week (including every day)) (-) Eurostat
NUTS2 Social People at risk of poverty or social exclusion (+) Eurostat
NUTS2 Social People with tertiary education (-) Eurostat
NUTS2 Economic Severe material deprivation rate (+) Eurostat
NUTS2 Economic Household income (-) Eurostat
NUTS2 Economic Motorways (-) Eurostat
NUTS2 Economic Railways (-) Eurostat
NUTS2 Economic Employment rate (-) Eurostat
NUTS2 Political Regional Quality of Government index (-) GU
NUTS2 Environment Urban area classified as green space (-) CORINE
NUTS2 Environment Urban land cover (+) CORINE
NUTS3 Social Population density (+) Eurostat
NUTS3 Social Net migration (+) Eurostat
NUTS3 Social Young dependency (+) Eurostat
NUTS3 Social Old dependency (+) Eurostat
NUTS3 Economic NUTS3 GDP per capita vs country average (-) Eurostat
NUTS3 Economic Gross Value Added (at basic prices) (-) Eurostat
NUTS3 Economic Power plants per 100’000 inhabitants (-) WRI
NUTS3 Economic Patent applications to the EPO (-) Eurostat
NUTS3 Environment Soil erosion (+) Eurostat

B Flooding and loan arrears

Section 4 in the paper documents a significant and persistent effect of flooding on loan default

probabilities. Here we complement that evidence by considering more broadly arrears on loan

payments as a first indication of the deterioration of firms’ ability to servicing their debt. We

estimate the Cox’s proportional hazard model in Section 4 using an alternative definition of

the dependent variable that captures the occurrence of loan entering into arrears for either

interest payments or principal repayment. As before, we investigate both the direct and the

indirect effect of flooding on loan performance. In other words, we consider the impact of
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flood events occurring during the lifetime of the loan as well as that of flooding occurring

before loan origination.

The results are reported in Table B.1. Columns (1)-(3) focus on the direct impact of

flooding on loan default using the occurrence of flood events during the loan lifetime. The

hazard ratios associated with recent flooding indicate a sizeable and statistically significant

effect of realised flood risk on SMEs’ late payments on their debt obligations. Firms in

flooded areas are more likely to experience delays in loan payments even two years after the

disaster: the relevant hazard ratios are estimated at 1.13 for the 6-month period (column (1)),

at 1.06 after 1 year (column (2)) and increase to 1.15 in the second year (column (3)). The

indirect effect of flooding, while still highly statistically significant at the shorter horizons, is

milder. Origination in the immediate aftermath of flood events is itself a risk factor for loan

repayment. The estimated hazard ratios in columns (4) and (5) imply that loans granted 6

or 12 months after a flood are almost 1.1 times more likely to experience late payments than

other loans. The effect fades away at the longer time horizon, when the estimated hazard

loses statistical significance. All in all, these results are not surprising since temporary late

payments are relatively more frequent than episodes of prolonged delinquency, and hence

potentially less influenced by flooding. As for the analysis of loan default, the estimated

hazard for the flood risk variable is not estimated with precision.
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Table B.1: Flooding and loan arrears.
The table reports the hazard ratios from a Cox’s proportional hazard model for loan survival. The dependent
variable is the number of months in arrears. Flood is an indicator variable equal to one if there has been at
least one flood episode in the months before the date the loan first enters into arrears, and zero otherwise.
Highrisk is an indicator variable equal to one for counties belonging to the top two quartiles of the country-
specific distributions of the flood risk measure, and zero otherwise. Flood before origination is an indicator
variable equal to one if there has been at least one flood episode in the months before loan origination, and
zero otherwise. Columns (1)-(3) focus on the direct impact of flooding on loan entering into arrears using the
occurrence of flood events before the observation date. Columns (4)-(6) focus on the impact of flooding on
loan entering into arrears using flood events occurred before the origination date of the loan. All regressions
control for industry, lender, region (NUTS2) and business type fixed effects, as well as growth rates of GDP
and employment. ***, **, and * indicate that the hazard estimate is significantly different from zero at the
1%, 5%, and 10% level, respectively.

(1) (2) (3) (4) (5) (6)
Realised flood risk before arrears Realised flood risk at loan origination

6 months 12 months 24 months 6 months 12 months 24 months

High risk 0.9873 0.9872 0.9887 0.9990 0.9991 0.9998
(0.0152) (0.0152) (0.0152) (0.0156) (0.0156) (0.0156)

Flood 1.1307*** 1.0613*** 1.1515*** 1.0838*** 1.0479*** 1.1446***
(0.0286) (0.0204) (0.0194) (0.0277) (0.0169) (0.0207)

Flood before origination 1.0576*** 1.0479*** 1.0128
(0.0216) (0.0169) (0.0145)

Interest rate 1.1741*** 1.1742*** 1.1758*** 1.1839*** 1.1836*** 1.1853***
(0.0051) (0.0051) (0.0051) (0.0056) (0.0056) (0.0056)

Loan balance 1.0608*** 1.0611*** 1.0614*** 1.0395*** 1.0399*** 1.0406***
(0.0069) (0.0069) (0.0069) (0.0069) (0.0069) (0.0069)

Residual loan term 0.9620*** 0.9617*** 0.9611*** 0.9649*** 0.9645*** 0.9637***
(0.0072) (0.0072) (0.0072) (0.0073) (0.0073) (0.0072)

Collateralised 0.9978*** 0.9978*** 0.9977*** 0.9993** 0.9993** 0.9992**
(0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003)

Macroeconomic controls Yes Yes Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes Yes Yes
Business type FE Yes Yes Yes Yes Yes Yes
Lender FE Yes Yes Yes Yes Yes Yes
Region (NUTS2) FE Yes Yes Yes Yes Yes Yes
Observations 3,584,382 3,584,382 3,584,382 3,584,382 3,584,382 3,584,382
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C Banks’ expected losses from loan default

Section 4 in the paper documents a significant and persistent effect of flooding on loan

default probabilities. On average, flooded firms are more likely to default on their loans in

the aftermath of the disaster. The higher default probabilities recorded after flooding open

the way for a negative supply channel, as banks facing higher credit risk need to write off

impaired loan facilities. This entails that banks are incurring losses on their loan portfolios,

which, in turn, could hamper their capacity to expand lending to meet demand for recovery

financing in flooded areas. In this section, we study the implications of loan default for

banks’ balance sheets. In particular, we model the linear relationship between risk, flooding

and the estimated loss given default reported by banks on their credit lines, as follows:

lgdibj,t = α + βHighRiskj + γF loodj,t−q + δXij,t + µbrsl,y + εibj,t. (11)

The dependent variable, lgdibj ,t , is the loss given default, that is the fraction of loan i that

the bank estimates will not be recovered if borrower b defaults on the loan, expressed as

a percentage of the current loan balance. As before, High riskj is an indicator variable

that takes value one if the normalised flood risk indicator for the county where the loan is

extended is above the median of the empirical distribution of risk scores, and zero otherwise.

Floodj,t−q is a dummy variable equal to one if there has been at least one flood episode in

county j in the q months before the time of observation t, and zero otherwise. The time

variable t is defined at the year-quarter level. As before, we also augment this baseline

equation with an additional variable for realised flood risk, Flood before origination, which

equals one if there has been at least one flood episode in the 6, 12, or 24 months before loan

origination, and zero otherwise. Xij,t is a vector that includes loan-level variables, i.e., the

loan term, expressed in (log) months, the (log) loan balance, and the share of collateralised

loan, and county-level controls, such as the growth rates of GDP and employment. Further,

µbrsl,y denotes sets of fixed effects. We use business type and interacted industry, region

and time fixed effects to control for unobserved heterogeneity in the demand for credit. In

addition, we interact lender fixed effects with the year-quarter dummies to take care of time-

varying supply factors that may be correlated with the banks’ valuations of the loss given
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default on their loans. Finally, εibj,t is the remainder stochastic disturbance term. In the

estimation, we cluster standard errors at the county level.

The results are reported in Table C.1. The coefficient on the high risk dummy are positive

and significant at 10% statistical level throughout the different model specifications. Hence,

seemingly banks account for prospective physical risks in the estimation of the losses they

may incur on loans to borrowers more exposed to such risks. The economic magnitudes

are negligible, though. The point estimate implies that the recent occurrence of flooding

increases the estimated loss given default of loans in the flooded counties by around 0.23

percentage points, that is approximately 1% of the sample average value of the loss given

default (22.5% of the current loan balance). The coefficients on the variables that capture

recent realised flood risk are statistically insignificant. Hence, the occurrence of flooding does

not significantly alter banks’ valuation of the potential losses on their loan portfolios. The

same holds for the indicator of flooding before loan origination. The estimated coefficients

in all model specifications in columns (4)-(6) are positive, but not estimated with precision.
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Table C.1: Floods and bank losses from loan default.
The table reports the hazard ratios from a Cox’s proportional hazard model for loan survival. The dependent
variable is the loss given default, expressed as a percentage of the current loan balance. Flood is an indicator
variable equal to one if there has been at least one flood episode in the months before the date the loan first
enters into arrears, and zero otherwise. Highrisk is an indicator variable equal to one for counties belonging
to the top two quartiles of the country-specific distributions of the flood risk measure, and zero otherwise.
Flood before origination is an indicator variable equal to one if there has been at least one flood episode
in the months before loan origination, and zero otherwise. Columns (1)-(3) focus on the direct impact of
flooding on loan default using the occurrence of flood events before the observation date. Columns (4)-(6)
focus on the impact of flooding on loan default using flood events occurred before the origination date of the
loan. The regressions include loan-level variables - the interest rate, residual loan term, loan balance and a
dummy for highly collateralised loans -, macroeconomic controls, and borrower and reporting quarter fixed
effects interacted with lender fixed effects. Standard errors, robust for heteroskedasticity and clustered at the
county level, are reported in parentheses. ***, **, and * indicate that the coefficient estimate is significantly
different from zero at the 1%, 5%, and 10% level, respectively.

(1) (2) (3) (4) (5) (6)
Realised flood risk before default Realised flood risk at loan origination

6 months 12 months 24 months 6 months 12 months 24 months

High risk 0.2324* 0.2326* 0.2327* 0.2334* 0.2344* 0.2386*
(0.1262) (0.1262) (0.1254) (0.1261) (0.1261) (0.1257)

Flood -0.1243 -0.0510 0.0004 -0.1261 0.0690 -0.0533
(0.1820) (0.1514) (0.1891) (0.1816) (0.1499) (0.1777)

Flood before origination 0.2308 0.2592 0.3195
(0.2186) (0.2635) (0.3181)

Interest rate 0.1231 0.1231 0.1231 0.1221 0.1204 0.1215
(0.1366) (0.1366) (0.1367) (0.1363) (0.1357) (0.1363)

Residual loan term -0.9962*** -0.9962*** -0.9962*** -0.9951*** -0.9945*** -0.9967***
(0.1992) (0.1992) (0.1992) (0.1986) (0.1983) (0.1992)

Loan balance -2.0360*** -2.0360*** -2.0361*** -2.0364*** -2.0364*** -2.0359***
(0.1726) (0.1727) (0.1726) (0.1726) (0.1728) (0.1730)

Collateralised 0.0581*** 0.0581*** 0.0581*** 0.0579*** 0.0578*** 0.0580***
(0.0045) (0.0045) (0.0045) (0.0046) (0.0047) (0.0046)

Macroeconomic controls Yes Yes Yes Yes Yes Yes
Industry × Region × Time FE Yes Yes Yes Yes Yes Yes
Business type FE Yes Yes Yes Yes Yes Yes
Lender × Time FE Yes Yes Yes Yes Yes Yes
Adjusted R-squared 0.603 0.603 0.603 0.603 0.603 0.603
Observations 6,543,723 6,543,723 6,543,723 6,543,723 6,543,723 6,543,723
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