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Abstract

This paper presents a software package called BACE (Bayesian Averaging of Classi-
cal Estimates) which offers model-building strategy for various limited dependent
variable models, including logit and probit models, ordered logit and probit mod-
els, multinomial logistic regression, Poisson regression, Tobit model, and interval
regression. BACE strategy is a model selection method that incorporates both clas-
sical estimation and Bayesian techniques. It solves the problem of computation
speed and model uncertainty that arise when dealing with a large number of com-
peting advanced statistical models. Our BACE package is both fast and capable
of delivering consistent results. The package also provides implementation of the
latest proposals of BIC variants, and the latest measures of jointness. We use gretl,
a popular, free, and open-source software for econometric analysis that features an
easy-to-use graphical user interface.
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2 1 INTRODUCTION

1 Introduction

In articles Raftery (1995) and Sala-i-Martin et al. (2004), the authors suggest a tech-
nique for averaging parameter estimates called Bayesian Averaging of Classical
Estimates (BACE). This technique enables the measurement of the importance of
potential regressors and is an alternative to the familiar and previously applied
Bayesian Model Averaging (BMA) technique. It differs mainly in that it is based
on Ordinary Least Squares (OLS) or Maximum Likelihood estimation (MLE) esti-
mates1. The averaging of the parameter estimates is performed across all possible
combinations of regression models obtained by means of classical frequentist infer-
ence, and hence is known as Frequentist Model Averaging (FMA).

A key element in model averaging with Bayesian inference is calculating the
marginal data density. However, in many cases, the combination of the likelihood
function and a prior distribution leads to posterior distributions that are difficult to
integrate analytically. This difficulty arises even when integrating each component
is mathematically easy, such as in the case of a Normal likelihood with a Beta prior.
While obtaining the marginal data density in Bayesian linear regression is relatively
easy, models with the limited dependent variables, such as logit and probit, are
much more CPU time consuming, and require complex numerical techniques (see
Bollen et al., 2014; Pajor, 2017; Lucchetti and Pedini, 2022). It is a well-known fact
that as the number of explanatory variables grows, the number of possible mod-
els increases exponentially, which may pose problems for the Bayesian approach
in advanced statistical models. The BACE method solves this problem by requir-
ing significantly less computational time through the use of marginal data density
approximation, such as the Schwarz criterion (Schwarz, 1978). It also provides a
reliable results based on a weighted average over all individual models, and in
addition we can show that it is able to replicate the complex reduction strategy
(Błażejowski et al., 2020).

Our approach follows directly ideas presented in Kass and Raftery (1995); Sala-
i-Martin et al. (2004); Bollen et al. (2014), where authors use Schwarz criterion to
calculate approximation of the marginal data density and the odds ratio. An exam-
ple of the application of the BACE technique for forecasting macroeconomic indi-
cators can be found, among others, in the articles by van Dijk (2004); Moral-Benito
(2012); Albis and Mapa (2014) and Białowolski et al. (2014). A recent overview of
the applications of the BACE can be found in Steel (2020).

In this paper, we introduce Bayesian Averaging of Classical Estimates package
for gretl, named BACE. In our opinion, the presented package contains several in-
teresting features that are worth mentioning. Our BACE package is very fast and
accurate set of functions. We provide an averaging technique for several limited de-

1The technique of model averaging using Maximum Likelihood estimation is sometimes referred
to as Bayesian Averaging of Maximum Likelihood Estimates (BAMLE), as described in Moral-Benito
(2012). For simplicity in our notation, we use the term BACE to refer to both variants of Frequentist
Model Averaging, whether using OLS or MLE.
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pendent variable models, namely: logit and probit models, ordered logit and probit
models, multinomial logistic regression, Poisson regression, Tobit model, and inter-
val regression. To our knowledge, most of them at this moment are only available
in the BACE package. We use gretl, which is a popular, free, and open-source soft-
ware for econometric analysis with an easy-to-use graphical user interface (GUI)
for model averaging.

While there are many packages in the literature dedicated to model averaging
for standard regression (Amini and Parmeter, 2011; Clyde et al., 2012; Zeugner and
Feldkircher, 2015; Błażejowski and Kwiatkowski, 2015), to our knowledge, only a
few packages have considered discrete dependent variable models (Lucchetti and
Pedini, 2022; Raftery et al., 2022; Sevcikova and Raftery, 2022). In both recent cases,
the authors use generalized linear models to use limited dependent variable mod-
els, such as logit, probit, and Poisson specifications. In the first example, Lucchetti
and Pedini (2022) introduced the ParMA package for gretl, where the authors use
a Bayesian approach with a reversible jump Markov chain Monte Carlo scheme.
In the second case, Raftery et al. (2022) and Sevcikova and Raftery (2022) devel-
oped the BMA and mlogitBMA packages in R using a frequency approach based
on the Bayesian Information Criterion (BIC). In terms of models with a limited de-
pendent variable, our package can be considered an alternative to the previously
mentioned packages because it offers a large number of limited variable specifica-
tions, fast computational speed, good accuracy, the latest proposals of BIC variants,
and the latest jointness measures.

The remainder of this article is structured as follows: Section 2 briefly outlines
the model averaging and marginal data density approximation used in our pack-
age, as well as the implemented limited dependent variable models and measures
of jointness. Section 3 presents the basic idea of the BACE package, including its
code, the use of command line and GUI interfaces, and the outputs that are re-
turned. Section 4 includes a usage example for the ordered probit model. Section
5 presents an empirical illustration of logistic regression and Poisson regression,
as well as information about the speed of calculation of BACE package. The final
section concludes.

2 Methodological background

2.1 Model averaging and marginal data density approximation

As we know, probability can be used to describe the degree of belief associated
with different specifications when comparing them using the Bayesian approach.
For example, based on posterior probability, we can quickly compare two mutu-
ally exclusive (non-nested) and jointly exhaustive models with various subsets of
variables. Hence, the posterior odds ratio for a model Ml versus model Mn can be
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obtained using the following formula:

P(Ml | y)
P(Mn | y)

=
P(Ml)

P(Mn)

p(y | Ml)

p(y | Mn)
, (1)

where P(Ml)
P(Mn)

is the prior odds ratio, p(y|Ml)
p(y|Mn)

is the Bayes factor, p(y | Mj) and p(y |
Mn) are marginal data densities.

If the posterior ratio P(Ml |y)
P(Mn|y) is greater than one, it indicates that the data sup-

ports model Ml over model Mn.
As we can easily see, the key element needed to calculate the Bayes factor is the

normalizing constant, which is given by the equation:

p(y | Mr) =
∫

p(y | θr, Mr)p(θr | Mr)dθr, (2)

where θr is the vector of unknown parameters, p(y|θr, Mr) can be interpreted as
likelihood function under model Mr, and p(θr|Mr) is a prior distribution of the
parameters θr.

In some relatively simple models, such as linear regression, the marginal data
density can be represented by a closed-form analytic expression (Zellner, 1971; Fer-
nández et al., 2001; Koop, 2003). However, in many situations, even though it
is a simple concept, the marginal data density is difficult to calculate, especially
in high-dimensional models where numerical integration is more computation-
ally demanding (see Newton and Raftery, 1994; Gelman et al., 2013; Pajor, 2017).
This is particularly problematic in model averaging, where we can have a large
number of possible explanatory variables (K) and therefore many potential com-
binations (2K) to calculate in a relatively short time. For this reason, one possible
solution to overcome this problem is to use an approximation of the integral in
Equation 2 by Schwarz criterion (Schwarz, 1978). The BACE method with Schwarz
criterion refers to this solution by conducting a fast algorithm of model averaging
with a reasonably accurate marginal data density approximation. Additionally, it
is worth noting that the BACE method also provides a good approximation of esti-
mated characteristics and it is capable of replicating the complex reduction strategy
(Błażejowski et al., 2020).

In our BACE package, we use the latest approximations of p(y | Mr), which
are popular in the frequentist approach, and we briefly present them further in
this paper (Raftery, 1996; Bollen et al., 2012, 2014; Peterson and Cavanaugh, 2019;
Bayarri et al., 2019):

1. Standard Bayesian information criterion (BIC) introduced by Schwarz (1978),
one of the most popular model selection method, based on the following as-
sumption:

ln p(y | Mr) ≈ ln p(y | θ̂r, Mr)−
kr

2
ln N, (3)

where θ̂k is maximum likelihood estimator of parameters θk, kr is a number of
estimated parameters within the model Mr and N is the number of observa-
tions.
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2. Haughton’s BIC (HBIC) – variant with additional retained term of Taylor ex-
pansion of the ln p(y | Mk) around the MLE estimator (Haughton, 1988; Kass
and Raftery, 1995):

ln p(y | Mr) ≈ ln p(y | θ̂r, Mr)−
kr

2
ln N +

kr

2
ln(2π). (4)

3. The Information Matrix-Based BIC (IBIC) proposed by Bollen et al. (2012),
which includes another part of the Taylor expansion, this time Fisher infor-
mation matrix I(θ̂) evaluated at θ̂:

ln p(y | Mr) ≈ ln p(y | θ̂r, Mr)−
kr

2
ln N +

kr

2
ln(2π)− 1

2
ln
∣∣I(θ̂)∣∣ . (5)

4. Extended Bayesian Information Criteria (EBIC) introduced by Chen and Chen
(2008) – standard BIC with additional expression that penalizes a model based
on the number of candidate models of the same size:

EBIC = BIC − γ ln
(

K
kr

)
. (6)

Using BACE, we can also easily evaluate the mean and variance of the param-
eters θ across the entire model space (Leamer, 1978):

E(θ | y) ≈
2K

∑
r=1

Pr(Mr | y)E(θr | y, Mr), (7)

Var(θ | y) ≈
2K

∑
r=1

Pr(Mr | y)Var(θr | y, Mr)+

+
2K

∑
r=1

Pr(Mr | y) (E(θr | y, Mr)− E(θ | y))2 , (8)

where E(θr | y, Mr) and Var(θr | y, Mr) are the OLS (or MLE) estimates of θr from
model Mr and 2K denotes total model space.

Following Ley and Steel (2009) let us assume that each regressor enters a model
independently of the others with prior probability θ ∈ [0, 1] (the prior probability
of inclusion). In our BACE package we use two popular variants of prior model
size (W) distribution (see Ley and Steel, 2009; Steel, 2011):

• Binomial (Forsyth, 2018):

P(W = kr) =

(
K
kr

)
P(Mr), (9)

with corresponding prior model probabilities as

P(Mr) = θkr(1 − θ)K−kr , (10)

and expected model size E(W) = Kθ;



6 2 METHODOLOGICAL BACKGROUND

• Beta-binomial (Wakefield, 2013):

P(W = kr) =

(
K
kr

)
P(Mr), (11)

where we assume that θ follows a Beta distribution with hyperparameters
a and b, both of which are greater than zero. This results in the following
corresponding prior model probabilities2:

P(Mr) =
Γ(K + 1)

Γ(kr + 1)Γ(K − kr + 1)
· Γ(a + kr)Γ(K + b − kr)

Γ(a + b + kr)
· Γ(a + b)

Γ(a)Γ(b)
(12)

with expected model size E(W) = K a
a+b . Furthermore, following Ley and

Steel (2009), we use fixed value of a = 1.

We assume that the user can specify just one hyperparameter for the model
prior, i.e., the expected model size E(W) = W⋆ ∈ (0, K). Our BACE package will
automatically calculate the prior probabilities for all competitive models. This is a
very convenient and flexible solution, similar to approaches known from Fernán-
dez et al. (2001) and Sala-i-Martin et al. (2004).

In the case of a Binomial prior, if we specify W⋆ = K
2 , which is the average

number of potential independent variables, then we have θ = 0.5, and thus, the
prior model probability distribution is uniform. An example for K = 7 is shown in
Figure 1a, together with the corresponding prior model size distribution shown in
Figure 1b.

In the case of a Beta-binomial prior, if we specify W⋆ = K
2 , then we have b =

1, which results in a uniform prior distribution for the model size. An example
for K = 7 is shown in Figure 1d, together with the corresponding prior model
probabilities shown in Figure 1c.

(a) (b) (c) (d)

Figure 1: Prior model probabilities with associated prior model size for K = 7 and
W⋆ = K

2 , when model includes constant term

Sometimes, in a regression model, we do not include a constant term (see Krolzig
and Hendry, 2001; Błażejowski et al., 2020). This modelling strategy means that the

2The reason why we use the gamma function here instead of the beta function is that gretl provides
the former but not the latter.
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model space is reduced to 2K−1 possible combinations by excluding one specifica-
tion that consists of only a constant term, i.e., a model with no explanatory vari-
ables. As a consequence, we should reflect this in the BACE modeling by using a
truncated prior model size distribution.

From the definition of conditional probability, we can define the density of a
truncated random variable as (see Greene, 1999, pp 864):

f (x|x > a) =
f (x)

P(x > 0)
. (13)

Because in our package, we assume that the user defines only the expected model
size E(W) = W⋆, we have to rescale the prior model size distribution so that it
sums up to 1 and has an expected value equal to W⋆. To do this, we have to find
the root of the following equation (see Atwood, 1980; Tripathi et al., 1994):

E(W)

1 − P(W = 0)
− W⋆ = 0. (14)

We solve Equation (14) numerically using gretl’s built-in fzero function. Note that
for edge cases, i.e., when W⋆ ≈ 0 or W⋆ ≈ K, the solution to Equation (14) may not
exist. Examples for K = 7 are shown in Figures 2a-2d.

(a) (b) (c) (d)

Figure 2: Prior model probabilities with associated prior model size for K = 7 and
W⋆ = K

2 , when model does not include a constant term

On the basis of Bayes’ formula, the posterior probability of any model Mj can
be computed as follows:

Pr(Mj|y) =
Pr(Mj)p

(
y | Mj

)
∑2K

r=1 Pr(Mr)p (y | Mr)
(15)

It is easy to see that Equation 15 allows us to calculate the probability for each
model Mr using corresponding prior probabilities P (Mr) and the density of the
marginal distribution p(y | Mj), here approximated by expressions 3 – 5.

Another useful characteristic popular in the model averaging approach is the
Posterior Inclusion Probability (PIP), which is defined as the posterior probability
that the independent variable xi is relevant in explaining the dependent variable
(Leamer (1978); Mitchell and Beauchamp (1988)). In our case, the PIP is calculated
using Monte Carlo integration, as the sum of the posterior model probabilities for
all models that include the specific independent variable (Forte et al., 2018).
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Although posterior characteristics are often of interest, predicting future values
of the dependent variable can be valuable in many cases. With the BACE approach,
we can also perform predictive inference across the entire model space. If we have
the matrix X∗

r containing explanatory variables for each of the out-of-sample data
points, we can use a weighted average of the individual model forecasts to make
predictions about unobserved values of the dependent variable.

To determine the significance of determinants and the most likely models across
the model space, we utilize the MC3 sampling algorithm, which was originally de-
veloped by Madigan et al. (1995). The MC3 algorithm is one of the most widely
used MCMC algorithms in many statistical packages for model averaging, for ex-
ample: Lamnisos et al. (2013); Zeugner and Feldkircher (2015); Raftery et al. (2022);
Lucchetti and Pedini (2022).

2.2 The limited dependent variable models

In many practical applications, it is common to encounter phenomena with discrete
or censored dependent variables. Our BACE package includes several models that
can handle this issue, including the most popular ones such as logit and probit
models, as well as their ordered specifications and multinomial logistic regression.
Additionally, the package provides support for Poisson regression, Tobit model,
and interval regression3. In all of these cases, the dependent variable is either di-
chotomous (i.e., taking the values zero or one), categorical, a count, or censored.
In the remainder of this subsection, we present the standard and popular models
for limited dependent variable included in our BACE package, which are also dis-
cussed in Koop et al. (2007); Hosmer and Lemeshow (2000); Winkelmann (2008);
Verbeek (2018) and Cottrell and Lucchetti (2022c).

First, let us analyze the logit and probit models. The logit and probit models
are two types of regression models commonly used to predict a binary dependent
variable. Logit models are based on the logistic distribution, while probit models
are based on the normal distribution. Let us consider a model of the form:

zi =
kr

∑
j=1

xijβ j + ϵi, (16)

and

yi =

{
1 if zi > 0

0 if zi ≤ 0,

where zi, i = 1, . . . , N is an unobserved variable, while yi is binary, observed data.
xij and β j are explanatory variables and regression coefficients in model Mr for

j = 1, . . . , kr. If ϵi
iid∼ N(0, 1), then we have a probit model. Otherwise, we obtain a

logit regression.

3The BACE package also includes linear regression models. However, since the dependent vari-
able is not bounded in these models, linear regression is not the main focus of our interest.
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In the next step, let us specify logit and probit models, where we consider the
choice between L alternatives, numbered from 1 to L:

zi =
kr

∑
j=1

xijβ j + ϵi, (17)

and

yi =


1 if α0 < zi ≤ α1

2 if α1 < zi ≤ α2
...

...

L if αL−1 < zi ≤ αL,

where unknown αis are cutpoints with α0 = −∞, α1 = 0 and αL = ∞. Assuming
that ϵi is iid and standard normal, we obtain the ordered probit model, whereas the
logistic distribution gives the ordered logit model.

The latest considered model of this kind is multinomial logistic regression. It
s an extension of logistic regression modeling for cases where the dependent vari-
able is not binary but can take the values 0, 1, . . . , p and the categories are nominal,
meaning they do not have a natural order.

The model can be written in the following form:

Pr (yi = k | xi) =
exp (xiβk)

1 + ∑
p
j=1 xiβ j

, k > 0, (18)

Pr (yi = 0 | xi) =
1

1 + ∑
p
j=1 xiβ j

. (19)

Poisson regression is a model used to predict count data occurrences. That is,
a dependent variable y takes values k = 0, 1, 2 . . . from the Poisson distribution.
Under this assumption, the probability of the outcome variable y conditional upon
regressors is given by:

Pr (yi = k | xi) =
exp {−λi} λk

i
k!

, (20)

where λi = exp(∑kr
j=1 xijβ j) in model Mr.

The Tobit model is a type of regression model used to analyze censored data,
which refers to data with a lower or upper bound on the dependent variable. Con-
sider the following Tobit model (type I) with two thresholds (Cottrell and Lucchetti,
2022c):

zi =
kr

∑
j=1

xijβ j + ϵi, (21)

and

yi =


a for zi ≤ a

zi for a < zi < b

b for zi ≥ b,

(22)
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where ϵ ∼ N(0, σ2). Usually the most common specification is a = 0 and b =

∞.That is, at zero, observations are censored from below, which means that we do
not observe any zi values that are negative (Verbeek, 2018).

Another model that is available in the BACE package is the interval regression.
It is similar to the standard linear regression, but it allows for the possibility of
censoring some data points due to measurement limitations or other factors (Stew-
art, 1983; Bettin and Lucchetti, 2012; Cottrell and Lucchetti, 2022c). In this case,
we consider a data generating process with an unobserved dependent variable zi

(Equation 21) and an observed interval that contains this variable:

mi ≤ zi ≤ Mi. (23)

The interval can also be left-unbounded, i.e., mi = −∞ or right-unbounded, when
Mi = ∞. In the case of mi = Mi, all observations are point observations and
the model reduces to a standard regression model, which is also available in the
BACE package. Please note that due to the complexity of the censoring problem,
the interval regression model is only available in script form.

All of the mentioned models are available in the BACE package. Through the
use of model averaging analysis, it is possible to estimate parameters, identify the
key determinants, and make predictions.

2.3 Jointness measures

The main implementations of model averaging are concerned with the selection of
variables when model uncertainty is present. Another relevant issue which arises
in this framework is to identify whether different sets of two variables xi and xj

are substitutes, complements or neither over the model space. For that reason, Ley
and Steel (2007) and Doppelhofer and Weeks (2009) define ex-post jointness mea-
sures of dependence between different sets of explanatory variables. Following
Hofmarcher et al. (2018), we can use a general contingency Table 1 and easily cal-
culate a number of jointness measures considered in the literature. In BACE we
have:

Table 1: General contingency table for two binary variables.

B B Total

A a b a + b

A c d c + d

Total a + c b + d a + b + c + d = N

• The jointness measure JDW1, first proposed in the Doppelhofer and Weeks
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(2005):

JDW1(A, B) = ln
(

P(AB | y)
P(A | y)P(B | y)

)
= ln

(
aN

(a + b)(a + c)

)
.

(24)

• An alternative variant JDW2 also proposed by Doppelhofer and Weeks (2009):

JDW2(A, B) = ln

(
P(AB | y)P(AB | y)
P(AB | y)P(AB | y)

)

= ln
(

ad
bc

)
.

(25)

• The jointness statistics presented in Ley and Steel (2007):

JLS1(A, B) =
P(AB | y)

P(A | y) + P(B | y)− P(AB | y)

=
a

a + b + c
.

(26)

• An additional variant of an earlier measure:

JLS2(A, B) =
P(AB | y)

P(AB | y) + P(AB | y)

=
a

b + c
.

(27)

• The measure proposed in Strachan (2009):

JSt(A, B) = P(A | y)P(B | y) ln
(

P(AB | y)
P(AB | y)P(AB | y)

)
=

a + b
N

a + c
N

ln
(

aN
bc

)
.

(28)

• Yule’s Q measure:

JYQ(A, B) =
P(AB)P(AB)− P(AB)P(AB)
P(AB)P(AB) + P(AB)P(AB)

=
ad − bc
ad + bc

.

(29)

• The last measure and also the default one, modified Yule’s Q:

JYQ =

(
a + 1

2

) (
d + 1

2

)
−
(
b + 1

2

) (
c + 1

2

)(
a + 1

2

) (
d + 1

2

)
+
(
b + 1

2

) (
c + 1

2

)
− 1

2

. (30)

Information on the properties of these listed measures and their interpretations
can be found in the publication of Hofmarcher et al. (2018).
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3 Implementation in gretl

In this section, we will describe the basic idea of the BACE package. First, we will
characterize our code and explain the use of both the command line and the GUI
interfaces. Next, we will provide some examples of how to use the BACE. Finally,
we will show the outputs that are returned.

3.1 The core of the BACE code

The BACE package was written in the Hansl4 programming language and consists
of 4 public and 14 private functions5. The name of each function in the BACE
package starts with the prefix BACE_. The public functions are: BACE(), BACE_GUI(),
BACE_Print() and BACE_Plot().

In order to install BACE one should start gretl and go to File → Function pack-
ages → On server. . . and select BACE from a list. Another possible option is to use
either gretl’s console or script editor and type:

pkg install BACE

or – assuming installation from local file:

pkg install /path/to/BACE.zip --local --quiet

where /path/to/ is an absolute or relative path to the BACE.zip archive.

3.1.1 BACE()

This is a core function of the package that runs and controls the main loop. As
a result, it is a primary interface to the BACE package, although it may also be
called by BACE_GUI(). The BACE() function returns a gretl bundle6 containing pos-
terior results and all necessary information to print and/or plot results at any time.
To print the results, one can call BACE_Print(), and to plot graphs, one can call
BACE_Plot(). The signature of BACE() function is as follows:

function bundle BACE (list Y "Dependent variable",

list X_list "List of indenpendent variables (X)",

bundle Options[null])

4More information about BACE can be found in Cottrell and Lucchetti (2022a).
5One note should be added here: BACE provides analysis for ordered logit/probit models, in-

cluding prediction, and as such, depends on one external gretl package called oprobit_predict.
6A gretl bundle is a collection of gretl’s regular objects, including other bundles. For more infor-

mation, please refer to Cottrell and Lucchetti (2022c).
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The first two options are mandatory, while the last one is an optional set of addi-
tional arguments7. These arguments are defined with the following default values8:

string Options["model_type"] = "linear": the type of model that should be
applied to the data; possible options are: 1—linear, 2—logit, 3—probit, 4—poisson,
5–tobit, 6–intreg, 7–mlogit;

scalar Options["bic_type"] = 2: the version of Bayesian Information Criterion
that should be used; possible values are: 1—bic, 2—hbic, 3—ibic, 4—ebic (see Equa-
tions (3-6));

scalar Options["model_prior"] = 1: the prior model size distribution to use;
possible values are: 0—none, 1—Binomial, 2—Beta-Binomial (see Equations (9) and
(11));

scalar Options["with_const"] = 1: the inclusion of a constant term in each es-
timated model; possible values are: 0—Never (without constant), 1—Always (con-
stant is always included), 2—Can be dropped (constant may be dropped);

scalar Options["avg_model_size"] = avg_model_size_tmp: the expected prior
model size W⋆ as defined on page 6, where scalar avg_model_size_tmp is calcu-
lated according to the following formula:

avg_model_size_tmp =

{
K / 2 if with_const != 2,

(K + 1)/ 2 elsewhere,
(31)

and K stands for the number of independent variables9;

scalar Options["data_trans"] = 0: the transformation of explanatory variables;
possible options are: 0—none, 1—centering (i.e., subtracting the mean from each
value of a variable), 2—standarizing (centering a variable and additional dividing
by its standard deviation);

scalar Options["do_joint"] = 0: the type of jointness analysis; possible values
are: 0—none, 1—DW1 (Doppelhofer-Weeks Measure 1), 2—DW2 (Doppelhofer-
Weeks Measure 2), 3—LS1 (Ley-Steel Measure 1), 4—LS2 (Ley-Steel Measure 2),
5—SM (Strachan Measure), 6—YQ (Yule’s Q Measure), 7—YQM (Modified Yule’s
Q Measure) (see Section 2.3);

scalar Options["alpha"] = alpha_tmp: the significance level for the initial model,

7Note, that in case of intreg estimator the Y list must contain two series with minvar and maxvar
(left- and right- bounds respectively).

8Some of the above-mentioned parameters are over-loadable, which means that their value may
be passed either as an integer or as a string (case-insensitive). These parameters are: bic_type,
model_prior, with_const, do_joint, data_trans, and model_type.

9If model includes lagged depended variable then avg_model_size_tmp is increased by y_lag/2.
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where scalar alpha_tmp takes the following values:

alpha_tmp =

{
1.0 if model_type = "intreg",

0.6 elsewhere;
(32)

scalar Options["Nrank"] = 5: the number of top-ranked models to be printed,
as described on page 23;

scalar Options["Npredict"] = 0: the number of out-of-sample forecasts10;

scalar Options["y_lag"] = 0: defines the lag order of the dependent variable
used in dynamic models;

scalar Options["hyperparameter"] = 0.5: the hyperparameter for prior-based
Bayesian information criterion; for now, it is interpreted as γ for the extended
Bayesian information criterion (EBIC) (see Equation (6));

scalar Options["binary_threshold"] = 0.5: this hyper-parameter is applica-
ble only in models for binary-dependent variables; it indicates the lowest probabil-
ity for which ŷi should be considered as 1;

scalar Options["low"] = 0: this option is applicable only for the tobit model; it
controls the --llimit flag of the tobit model, which sets the left bound in censoring;

scalar Options["high"] = NA: applicable only for tobit model; this option con-
trols tobit’s --rlimit flag for setting right bound in truncation;

scalar Options["Nrep"] = Nrep: the total number of Monte Carlo iterations (model
draws) in MC3 algorithm, where scalar Nrep takes the following values:

Nrep =


104 if K ≤ 15,

105 if K ∈ [16; 19],

106 if K ≥ 20;

(33)

scalar Options["burn"] = 10: percentage of burn-in draws in MC3;

scalar Options["verbosity"] = 2: verbosity of the output: 1—basic results, 2—
full results; this option controls what is printed as output by BACE (see Section 4.1
for details): if set to 2, all possible results are printed, and if set to 1, printing of the
initial model and models in ranking is suppressed;

scalar Options["show_progress"] = do_show_progress: this controls whether
the overall progress is shown, where scalar do_show_progress takes the follow-

10Note, that using this option makes BACE to perform an analysis on subsample.
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ing values:

do_show_progress =

{
1 if $sysinfo["gui_mode"],

0 elsewhere;
(34)

scalar Options["do_plot"] = do_plot_tmp: this option controls whether to pro-
duce graphs as described on page 26, where scalar do_plot_tmp takes the follow-
ing values:

do_plot_tmp =

{
1 if $sysinfo["gui_mode"],

0 elsewhere;
(35)

scalar Options["_gui"] = 0: this parameter is for internal use only and must
not be modified by the user under any circumstances.

Most of the optional parameters listed above are of a numerical type and can be
grouped into the following categories based on the type of numbers they can take:

1. Integers: y_lag, with_const, model_prior, Nrank, do_joint, Npredict, Nrep,
burn, verbosity, data_trans, bic_type.

2. Booleans: show_progress, do_plot.

3. Scalars: avg_model_size, alpha, binary_threshold.

3.1.2 BACE_GUI()

Instead of using the script method, another option to utilize the BACE package is
through its GUI interface. Assuming that the package is already installed, to access
the GUI, one should navigate to File → Function packages → On local machine,
and select BACE. Figure 3 presents BACE GUI window with default settings.

The BACE_GUI() function is a wrapper for the BACE() function, and its signature
is as follows:

function bundle BACE_GUI (

int model_type [1:5:1] "Model type" {"logit", "probit",

"mlogit", "poisson", "tobit", "linear"},

series Y "Dependent variable",

list X_list[null] "List of independent variables (X)",

int with_const [0:2:1] "Constant in model" {"Never",

"Always", "Can be dropped"},

int model_prior [0:2:2] "Model prior" {"none",

"Binomial", "Beta -Binomial"},

int bic_type [1:4:2] "Bayesian information criterion"

{"BIC", "HBIC", "IBIC", "EBIC"},
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int do_joint [0:7:0] "Jointness analysis" {"None",

"Doppelhofer -Weeks Measure (DW1)",

"Doppelhofer -Weeks Measure (DW2)",

"Ley -Steel Measure (LS1)", "Ley -Steel

Measure (LS2)", "Strachan Measure (SM)",

"Yule ’s Q Measure (YQ)", "Modified Yule ’s Q

Measure (MYQ)"},

int verbosity [1:2:2] "Verbosity",

bool show_progress [1] "Show overall progress",

bool do_plot [1] "Plot graphs?")

Figure 3: The BACE GUI window interface.

Please note that, since BACE_GUI() is designed to be a wrapper to BACE(), it
does not offer an option to set all possible package parameters. This is partially
because some of them are mutually exclusive, and partially because we wanted to
design a GUI interface that is not too complicated.

3.1.3 BACE_Print()

BACE_Print() is a function for printing the results of the analysis performed by the
BACE package, and its signature is as follows:

function void BACE_Print (bundle *MODEL)
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This function takes as an argument a reference to the bundle MODEL with BACE
results and prints information according to the verbosity settings. A detailed de-
scription of what is printed as output can be found in Section 4.1.

3.1.4 BACE_Plot()

BACE_Plot() is a function for producing graphs, and its signature is as follows:

function void BACE_Plot (const bundle *MODEL)

This function takes as an argument a reference to the MODEL bundle with BACE
results and plots graphs according to the do_plot setting, which includes the Prior
model probabilities, model size distributions (Prior and Posterior), CDF of model
size, predictive results (if forecasts are generated), and two heatmaps with variables
inclusions and jointness results. In non-GUI mode (when $sysinfo["gui_mode"]

== 0), plots are generated as scripts for gnuplot11 program and saved on a disk
in path specified under $workdir entry. Names of generated files have their base
set to strftime($now[1], "%Y%m%d%H%M%S"). Example graphs are presented on
Figures 4b-6b.

4 Usage of the BACE package

The main interface to the BACE package is BACE() function described in 3.1.1. Call-
ing this function is available from both: script and command line window, just after
loading the package via include command. As an example we use so-called NELS
dataset used in Hill et al. (2017) which concerns longitudinal study on eight-grade
students in USA12. Table 2 includes basic characteristics of this dataset.

We assume analysis for ordered probit model for psechoice with default val-
ues of BACE parameters. The only non-default setting will be jointness analysis
by modified Yule’s Q Measure (Equation 30). A very minimal code would be as
follows13:

open nels.gdt --quiet

include BACE.gfn

set seed 1000000

list X = 2..14

11See http://www.gnuplot.info for additional information.
12This dataset is available at http://www.principlesofeconometrics.com/poe5/poe5data.html.

It is also available for gretl thanks to the work of Lee Adkins: http://www.learneconometrics.com/
gretl/index.html.

13The reported chain (10000 replications with 10% burn-in draws) took ≈ 8 sec. of CPU time on a
PC with 4 Intel Core i7-8550U CPU @1.80GHz and 16 GB RAM running under Debian bookworm/sid
GNU/Linux. We used gretl 2023a compiled by gcc 12.2.0 and linked against openblas 0.3.21. The
seed for RNG was set to 1000000.

http://www.gnuplot.info
http://www.principlesofeconometrics.com/poe5/poe5data.html
http://www.learneconometrics.com/gretl/index.html
http://www.learneconometrics.com/gretl/index.html
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Table 2: NELS dataset variables definition

psechoice =


1 if first postsecondary education was no college

2 if first postsecondary education was a 2-year college

3 if first postsecondary education was a 4-year college

hscath = 1 if catholic high school graduate

hsrural = 1 if high school rural

grades = average grade in math, english and social studies on 13 point scale
with 1 = highest

faminc = gross 1991 family income (in $1000)

famsiz = number of family members

parsome = 1 if most educated parent had some college, but not a 4-year degree

parcoll = 1 if most educated parent graduated from college or had an advanced
degree

female = 1 if female

asian = 1 if asian

hispan = 1 if hispan

black = 1 if black

grants = 1 if student had a grant/scholarship or fellowship when attending
college

loans = 1 if student received a loan while attending college
Source: http://www.principlesofeconometrics.com/poe5/data/def/nels.def

res = BACE(psechoice , X, _(model_type="probit",

do_joint="myq"))

The above example consists of 5 lines and is rather self-explained. In the first line
we call open command to load NELS dataset from nels.gdt file. In the second line
we load BACE package (using include command). The third line contains defi-
nition of seed for pseudo-random number generator. In the fourth line we define
gretl’s list X which includes independent variables with ID’s between 2 and 14.
Finally, the fifth line defines Bayesian Averaging of Classical Estimates analysis of
student’s college type choice in USA with two parameters set explicitly (i.e., val-
ues of rest of parameters are set to their defaults as described on page 13). Note,
that switching between binary and ordered probit is done by gretl automatically
according to type of the depended variable. The BACE results will be saved in res

bundle.
The above-mentioned way of calling BACE() function is not the only one possi-

ble in gretl. Alternatively, we can use an option bundle to define BACE parame-
ters14:

bundle opts

opts["model_type"] = "probit"

14We assume that the first four lines from the initial script remain unchanged in consecutive exam-
ples.

http://www.principlesofeconometrics.com/poe5/data/def/nels.def
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opts["do_joint"] = "myq"

res = BACE(psechoice , X, opts)

On contrary, the corresponding "big call", i.e. setting all possible parameters man-
ually, would be as follows:

bundle opts = defbundle("model_prior", 1, \

"avg_model_size", 6.5, "alpha", 0.6, "Nrank", 5, \

"do_joint", 7, "Npredict", 0, "Nrep", 10000, \

"burn", 10, "verbosity", 2, "show_progress", 1, \

"do_plot", 1, "model_type", 3, "with_const", 0, \

"bic_type", 2, "data_trans", 0, \

"hyperparameter", 0.5, "binary_threshold", 0.5, \

"low", NA, "high", 0)

res = BACE(psechoice , X, opts)

or alternatively with the new syntax for creating bundle on-the-fly:

res = BACE(psechoice , X, _(model_prior =1, \

avg_model_size =6.5, alpha =0.6, Nrank=5, \

do_joint=7, Npredict=0, Nrep =10^4, burn=10, \

verbosity=2, show_progress =1, do_plot =1,\

model_type =3, with_const =0, bic_type=2, \

data_trans =0, hyperparameter =0.5, \

binary_threshold =0.5, low=NA, high =0))

Since some parameters in option bundle are over-loadable (see information in 8),
the equivalent call looks like this:

res = BACE(psechoice , X, \

_(model_prior="binomial", avg_model_size =6.5, \

alpha =0.6, Nrank=5, do_joint="myq", Npredict=0, \

Nrep =10^4, burn=10, verbosity=2, show_progress =1, \

do_plot=1, model_type="probit", with_const="never", \

bic_type="hbic", data_trans="none", \

hyperparameter =0.5, binary_threshold =0.5, low=NA, \

high =0))

Note that since we are using an ordered probit model here, some of the options
mentioned above are redundant and as such are not even considered. Those are:

• hyperparameter, used only for EBIC (Equation 6),

• binary_threshold, used only for binary logit or probit models,

• low and high, used only for tobit model.
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Results from BACE are described in Section 4.1.
Suppose we want to calculate Ley-Steel’s LS2 Measure instead of already com-

puted Modified Yule’s Q Measure (MYQ). Since the type of jointness measure is
controlled by do_join field in the result bundle, the only thing we have to do is to
set the value of do_join to 4 (or "ls2") and produce BACE results again. The code
should be as follows:

res["do_joint"] = 4

BACE_Print (&res)

BACE_Plot (&res)

Note, that all above mentioned analysis may be performed via GUI interface.
But - since it is only an option method - it does not offer an option to set all possible
package parameters. See Section 3.1.2 for details.

4.1 Output

The output from the BACE package can be split into two parts: printed text pro-
duced by the BACE_Print() function, where summary and posterior results are
presented, and plotted graphs returned by the BACE_Plot() function. Both func-
tions are described in Sections 3.1.3 and 3.1.4. The printed output window consists
of several important sections, such as the initial settings and basic summary of ran-
dom sampling, an initial (starting) model estimates, posterior results—summary of
the most common model averaging metrics, jointness measures, and estimates for
the top models.

When you run the script with the initial set (a complete script is described on
page 18):

res = BACE(psechoice , X, _(model_type="probit",

do_joint="myq"))

one of the first pieces of information returned is a short summary of the BACE
settings, along with basic information about the results of the Monte Carlo experi-
ment. This information includes the number of visited and accepted models. The
first part of the printed results is as follows:

Model type: ordered probit

Constant type: Never (with cut points)

Prior: Binomial

Prior average model size: 6.500000

Significance level for the initial model: 0.600000

Bayesian information criterion used: HBIC

Data transformation: none

Total number of iterations: 10000

Number of burn-in draws: 1000

Total number of possible models: 8192
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Number of models visited: 114

Number of models accepted: 15

The results printed above are fairly self-explanatory, but a few additional com-
ments should be added:

• In case of tobit model two additional lines are printed below Model type:
left bound and right bound with values of low and high limits respectively.

• If we use EBIC as a model selection criterion, an additional line will be printed
below the Bayesian information criterion used, which is the Hyperpa-

rameter for EBIC (gamma) with the value of the γ parameter used in the
simulation.

• If we have binary logit or probit models, an additional line is printed be-
low the Data transformation, i.e. the Threshold for binary dependent

variable, with the minimum value for which the dependent variable takes a
value of 1.

• If we run BACE with either ,"random" or "without" a constant term, two addi-
tional lines may be printed below the Total number of iterations: Number
of rejected draws and Effective number of iterations. This is due to
the fact that, in these cases, an empty model does not exist, so if we have such
a specification drawn in an MC3 simulation, it must be rejected (we cannot
implicitly exclude empty specifications from the model space in our drawing
schema).

• If BACE encounters missing values in a dataset, a line Original number of

observations (with missing) is printed at the bottom of the summary.

If verbosity option is set to 2, the results of the initial model estimation are printed.
For the NELS example, the initial model looks as follows:

The initial model: ordered probit, dependent variable: psechoice

coefficient std. error z p-value

----------------------------------------------------------

hscath 0.348616 0.0664749 5.244 1.57e-07 ***

hsrural -0.187616 0.0352009 -5.330 9.83e-08 ***

grades -0.229958 0.00825797 -27.85 1.18e-170 ***

faminc 0.00782622 0.000519981 15.05 3.40e-51 ***

famsiz -0.0510152 0.0120154 -4.246 2.18e-05 ***

parsome 0.323895 0.0401926 8.059 7.72e-16 ***

parcoll 0.684446 0.0487883 14.03 1.04e-44 ***

asian 0.102519 0.0623079 1.645 0.0999 *

hispan 0.153188 0.0545347 2.809 0.0050 ***
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black 0.261885 0.0575335 4.552 5.32e-06 ***

grants 0.792064 0.0403978 19.61 1.36e-85 ***

loans 1.09411 0.0524522 20.86 1.26e-96 ***

cut1 -1.67948 0.0921330 -18.23 3.05e-74 ***

cut2 -0.523737 0.0902467 -5.803 6.50e-09 ***

The output contains typical information regarding model estimates, including
coefficient estimates, standard errors for the coefficient estimates, z-statistics that
test whether the coefficients are equal to zero, and corresponding p-values. In some
cases, the results for the initial model may be extended with additional information:

• If case of a tobit model, lines indicating the number of left– and/or right–
censored observations will be printed.

• If we have an intreg model, lines indicating the number of left– and right–
unbounded, bounded, and point observations will be printed.

• When it comes to models with a censored dependent variable, the results of
the normality test are displayed.

• Note that in case of a multinomial logit, the output in starting model is mul-
tiplied as many times as the number of cases of dependent variable minus
1.

One of the first pieces of information displayed about posterior results is prior
and posterior model size distributions, for NELS example that will be:

Prior:

average model size: 6.500000

standard deviation: 1.802776

Posterior:

average model size: 10.548111

standard deviation: 0.638328

Note that if we use EBIC, an additional lines labelled Effective Prior are dis-
played, showing the moments of the effective prior model size distribution calcu-
lated as a combination of the model_prior specified by the user and the model
prior implicitly included in EBIC (Equation 6).

The next step displays the basic characteristics associated with evaluating the
parameters and related variables in the model averaging approach.

Posterior moments (unconditional and conditional on inclusion):

PIP Mean Std.Dev. Cond.Mean Cond.Std.Dev.

loans 1.000000 1.089366 0.052477 1.089366 0.052477

grants 1.000000 0.796474 0.040560 0.796474 0.040560

parcoll 1.000000 0.689982 0.048644 0.689982 0.048644
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parsome 1.000000 0.326197 0.040197 0.326197 0.040197

faminc 1.000000 0.007738 0.000521 0.007738 0.000521

grades 1.000000 -0.229508 0.008326 -0.229508 0.008326

hsrural 1.000000 -0.199767 0.035077 -0.199767 0.035077

hscath 1.000000 0.341419 0.066410 0.341419 0.066410

black 0.990222 0.240438 0.062522 0.242812 0.058061

famsiz 0.980889 -0.047048 0.013558 -0.047965 0.011976

hispan 0.460667 0.066270 0.080632 0.143856 0.054333

asian 0.094000 0.008674 0.033129 0.092273 0.062943

female 0.022333 -0.000169 0.004942 -0.007560 0.032215

The main output of BACE includes typical model averaging metrics: PIP (Poste-
rior Inclusion Probabilities), Mean and Std.Dev. (the average of the posterior means
and standard deviations of parameters), Cond.Mean and Cond.Std.Dev. (the pos-
terior mean and standard deviation of each coefficient, conditional on the variable
being included in the model). And again, in case of a multinomial logit, the poste-
rior results are printed as many times as the number of cases of dependent variable
minus 1.

In ordered probit and logit models, the values of the cut points are used to mea-
sure the effects of the regressors on the dependent variable. In the BACE approach,
we have their average estimates based on the total model space.

Mean Std.Dev.

cut1 -1.682247 0.095886

cut2 -0.527395 0.093964

Next, we print a CDF-like table showing the probabilities associated with the
models.

Posterior probability of models:

Best 5 models account for 0.9630 of mass

Best 6 models account for 0.9732 of mass

Best 7 models account for 0.9828 of mass

Best 8 models account for 0.9916 of mass

Best 9 models account for 0.9963 of mass

Best 15 models account for 1.0000 of mass

Best 14 models account for 1.0000 of mass

We also print the rankings of the models, along with the Pearson coefficient
calculated for the list based on both the analytical and numerical probabilities of
the models. In the case of NELS, this would be:

Best models ranking:

Model 1: 0.459889

Model 2: 0.398444

Model 3: 0.046111
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Model 4: 0.045444

Model 5: 0.013111

Total probability of the models in ranking (numerical): 0.963000

Correlation coefficient between the analytical

and numerical probabilities of the above models: 0.917611

We return the importance of the "best models" in relation to the entire model
space by ranking them based on MCMC sampling. Additionally, the program pro-
vides information on Pearson’s correlation between the analytical and MC3 poste-
rior probabilities of the models. High correlation indicates the convergence of the
Monte Carlo chain (Koop, 2003; Fernández et al., 2001). The "exact" posterior model
probabilities are calculated from approximations 3–6.

Contingency table (actual in rows, predicted in columns):

1 2 3

1 876 404 115

2 355 660 786

3 123 534 2796

Number of cases ’correctly predicted’ = 4332 (accuracy 65.2%)

For a logit and probit models, we also obtain the so-called contingency matrix,
or more specifically, its variant – the confusion matrix. As we know, the confu-
sion matrix is a tool for evaluating the performance of a classification model. In
this case, it offers a concise summary, enabling us to evaluate the accuracy of our
model’s prediction of psechoice. We collect individual results and calculate all
combinations of predicted and actual values based on the total model space.

The joint probability and jointness analysis for the current example should ap-
pear as follows:

Posterior joint probability of variables:

hscath hsrural grades faminc

hscath 0.000000 1.000000 1.000000 1.000000 ...

hsrural 1.000000 0.000000 1.000000 1.000000 ...

grades 1.000000 1.000000 0.000000 1.000000 ...

faminc 1.000000 1.000000 1.000000 0.000000 ...

famsiz 0.980889 0.980889 0.980889 0.980889 ...

parsome 1.000000 1.000000 1.000000 1.000000 ...

parcoll 1.000000 1.000000 1.000000 1.000000 ...

female 0.022333 0.022333 0.022333 0.022333 ...

asian 0.094000 0.094000 0.094000 0.094000 ...

hispan 0.460667 0.460667 0.460667 0.460667 ...

black 0.990222 0.990222 0.990222 0.990222 ...
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grants 1.000000 1.000000 1.000000 1.000000 ...

loans 1.000000 1.000000 1.000000 1.000000 ...

Jointness statistics (Modified Yule’s Q Measure (MYQ)):

hscath hsrural grades faminc ...

hscath nan 1.000000 1.000000 1.000000 ...

hsrural 1.000000 nan 1.000000 1.000000 ...

grades 1.000000 1.000000 nan 1.000000 ...

faminc 1.000000 1.000000 1.000000 nan ...

famsiz 0.961778 0.961778 0.961778 0.961778 ...

parsome 1.000000 1.000000 1.000000 1.000000 ...

parcoll 1.000000 1.000000 1.000000 1.000000 ...

female -0.955333 -0.955333 -0.955333 -0.955333 ...

asian -0.812000 -0.812000 -0.812000 -0.812000 ...

hispan -0.078667 -0.078667 -0.078667 -0.078667 ...

black 0.980444 0.980444 0.980444 0.980444 ...

grants 1.000000 1.000000 1.000000 1.000000 ...

loans 1.000000 1.000000 1.000000 1.000000 ...

In the binary dependent variable models, by default, we use a threshold of 0.5.
It is also worth noting that this threshold value (binary_threshold = 0.5) can be
adjusted in BACE package to achieve a desired recall and precision in the model
setup.

In the final step, the output provides maximum likelihood estimates (MLE) for
the top estimated models. It provides inferences for the model coefficients in the
columns labeled coefficient, std. error, z statistics, and p-value. Addition-
ally, it provides the type of information criterion used (in this case, HBIC) and the
explanatory power (represented by the posterior probability). Note that in case
of a multinomial logit, the output of model estimates is multiplied as many times
as the number of cases of dependent variable minus 1.

Best specifications (MLE estimates for ordered probit model):

----------------------------------

Model 1: HBIC: 9951.131386, posterior probability: 0.459889

coefficient std. error z p-value

----------------------------------------------------------

hscath 0.339743 0.0663548 5.120 3.05e-07 ***

hsrural -0.204022 0.0346748 -5.884 4.01e-09 ***

grades -0.228665 0.00819836 -27.89 3.38e-171 ***

faminc 0.00769592 0.000517451 14.87 4.95e-50 ***

famsiz -0.0469671 0.0119120 -3.943 8.05e-05 ***

parsome 0.327804 0.0401469 8.165 3.21e-16 ***

parcoll 0.689699 0.0485704 14.20 9.16e-46 ***
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black 0.232157 0.0567165 4.093 4.25e-05 ***

grants 0.799516 0.0403133 19.83 1.56e-87 ***

loans 1.08691 0.0523804 20.75 1.22e-95 ***

cut1 -1.68606 0.0919803 -18.33 4.71e-75 ***

cut2 -0.531627 0.0900860 -5.901 3.61e-09 ***

The structure of the results shown may vary slightly depending on the type of
model and the settings of the parameters in BACE.

As stated at the beginning of this section, the BACE package not only provides
a printed summary of the results, but also includes graphs that serve as supplemen-
tary visual summaries of the results obtained. As the first step, we return the graph
of the prior model probabilities i.e. probabilities assigned to each of the candidate
models before the data is observed and the model size – prior and posterior num-
ber of independent variables in each candidate model being considered. Figure 4
shows prior model probabilities and model size distributions for NELS example.

(a) (b)

Figure 4: Model probabilities and model size distribution for NELS example.

In this case, we employed a Binomial distribution ("model_prior"=1) with a
default prior average model size (W⋆ = 13

2 = 6.5), which, as noted in Section 2.1,
leads to a Uniform distribution for all combinations of explanatory variables (graph
on the left panel (4a)). It is easy to see that the assumption of a Uniform distribution
focuses on combinations consisting of 6 or 7 explanatory variables as being the most
likely a priori (panel (4b)). The analysis also shows that, under these assumptions,
the data indicate that the most likely models consist of 10 and, further down, 11
independent variables, additionally, combinations consisting of 8 or less elements
are highly improbable.

The Figure 5 shows the Cumulative Model Probabilities (CMP) for a NELS ex-
ample, where the output represents the accumulated probability of all models up
to a certain point in the ranking. It is evident that the top 5 ranked models account
for over 90% of the total probability in the model space.

The final two figures depict a heatmap of jointness analysis and highlight the
explanatory variables identified in the top 5 most probable models. In the current
example, the jointness analysis employs the default measure, modified Yule’s Q
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Figure 5: Cumulative Model Probabilities.

(a) (b)

Figure 6: Jointness analysis and variables inclusions in the top models.

(Equation 30). It is easily observed that there is a high complementarity between
the most relevant variables. On the other hand, two variables (female and asian)
are strongly substitutable for the others and rarely appear in the most likely mod-
els.

5 Empirical illustration and speed of calculation

In this section, we will demonstrate the BACE package through two popular em-
pirical applications: logistic regression and Poisson regression. To compare the ac-
curacy and computational speed of the BACE results, we consider open and well-
known datasets. Additionally, as a benchmark, we investigate the results of two
model averaging packages, where some specifications with a limited dependent
variable are considered: ParMA by Lucchetti and Pedini (2022), BMA by Raftery
et al. (2022) and mlogitBMA by Sevcikova and Raftery (2022).

5.1 Logistic regression example

For the first case, we consider logistic regression for binary data. In this exam-
ple, we use the bithwt dataset presented in Hosmer and Lemeshow (2000), which
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consists of 189 births with eight risk factors associated with a dummy variable low
for low infant birth weight. We consider the following risk determinants: age –
mother’s age, lwt – mother’s weight, race – mother’s race, smoke – smoking sta-
tus, ptl – number of previous premature labours, ht – history of hypertension, ui –
presence of uterine irritability, ftv – number of physician visits15.

Suppose that we want to perform logit model analysis using BACE for bithwt
dataset. The gretl script is as follows16:

set verbose off

set seed 1000000

include BACE.gfn

open birthwt.gdt --quiet

# We specify list of explanatory variables

list X = age lwt Drace_2 Drace_3 smoke ptl ht ui ftv

We convert categorical variable race into dummy variables and drop Drace_1 i.e.
race = 1 due to the collinearity problems. That means we have nine determinants,
which leads to 29 = 512 possible model combinations. In the final step, we perform
model sampling via the main function BACE with hbic criterion and without any
explicit assumptions on the model prior:

BACE(low , X, _(model_type="logit", \

do_plot=0, model_prior="none", bic_type="hbic"))

The BACE gives a result as below.

Posterior moments (unconditional and conditional on inclusion):

PIP Mean Std.Dev. Cond.Mean Cond.Std.Dev.

const 1.000000 0.449658 1.327281 0.449658 1.327281

ht 0.842333 1.496410 0.921035 1.776505 0.713791

lwt 0.809222 -0.013590 0.009192 -0.016794 0.007114

smoke 0.632556 0.517846 0.513218 0.818657 0.412473

Drace_2 0.573889 0.612028 0.664410 1.066458 0.533460

ptl 0.545889 0.359846 0.415329 0.659193 0.344482

ui 0.485111 0.412825 0.529460 0.850990 0.452758

Drace_3 0.442667 0.345444 0.497936 0.780370 0.469791

age 0.232111 -0.008951 0.023739 -0.038562 0.035862

ftv 0.151333 -0.004575 0.067230 -0.030231 0.170562

Based on the presented results, the considered determinants can be divided into
three groups: high-probability factors (ht, lwt) with PIP ≥ 2/3, medium-probability
factors (smoke, Drace_2, ptl, ui, Drace_3) with 1/3 ≤ PIP < 2/3, and the remaining
variables (age, ftv) with low probability (PIP < 1/3).

15This dataset is available on the R data archive, https://rdrr.io/cran/MASS/man/birthwt.html.
16When typing open without full path, gretl searches the file in interest in some relevant paths

starting with what is defined under $workdir. See Cottrell and Lucchetti (2022b) for details.

https://rdrr.io/cran/MASS/man/birthwt.html
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The contingency table below indicates an estimation accuracy of 74.1%.

Contingency table (actual in rows, predicted in columns):

0 1

0 126 4

1 45 14

Number of cases ’correctly predicted’ = 140 (accuracy 74.1%)

In the last step, we compare the results obtained from BACE with those ob-
tained from the other two packages that also provide estimation of the logistic re-
gression model. The results are presented in Table 3, which reports the PIPs of the
regressors calculated in BACE, ParMA, and BMA packages17.

PIP

Variable BACE ParMA BMA

const 1.000 1.000 1.000

ht 0.842 0.746 0.675

lwt 0.809 0.789 0.694

smoke 0.633 0.721 0.369

Drace_2 0.574 0.569 0.245

ptl 0.546 0.555 0.423

ui 0.485 0.496 0.296

Drace_3 0.443 0.580 0.167

age 0.232 0.242 0.089

ftv 0.151 0.153 0.014

Table 3: Comparison of Posterior Inclusion Probabilities (PIPs) among BACE,
ParMA, and BMA packages for the logit regression model.

Based on the presented results, we can conclude that the top three most proba-
ble variables are the same as those selected by ParMA which are ht, lwt, and smoke.
The results obtained from BACE and ParMA are strongly similar despite being
based on different statistical frameworks and model assumptions. The situation
is slightly different in the BMA case, where the three most likely variables are ht,
lwt, and ptl. In this case, the results are more conservative, producing significantly
lower PIP values for all explanatory variables.

17We specify the following entries in the ParMA function: strings vname = varnames(X),

string modeltype = "logit", bundle param = null, param.mpi = 4, param.seed =

1000000, param.center = 0, n_iter = 9000, burn_in = 1000. In case of the BMA we have:
set.seed(1000000), strict=FALSE, OR=20, glm.family="binomial", factor.type=FALSE,
glm.family="binomial", factor.type=FALSE.
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5.2 Poisson regression example

In the second example, we consider the Poisson regression for the rac3d dataset,
originally used in Cameron and Trivedi (1986, 2013). We use the Poisson model to
predict the number of doctor visits (DVISITS) based on selected explanatory vari-
ables, which include: SEX (1 if female, 0 otherwise), AGE (in years divided by 100),
AGESQ (AGE squared), INCOME (annual, in tens of thousands of dollars), LEVY-
PLUS (1 if private insurance, 0 otherwise), FREEPOOR (1 if free government insur-
ance due to low income, 0 otherwise), FREEREPA (1 if free government insurance
due to old-age, etc., 0 otherwise), ILLNESS (number of illnesses), ACTDAYS (num-
ber of days of reduced activity), HSCORE (health questionnaire score, high score
means bad health), CHCOND1 (1 if chronic condition(s) but not limited in activity,
0 otherwise), CHCOND2 (1 if chronic condition(s) and limited in activity, 0 other-
wise). The rac3d dataset used in this example consists of n = 5190 observations and
12 explanatory variables, resulting in 212 = 4096 possible model combinations18. A
similar example was previously considered by Lucchetti and Pedini (2022) using
the ParMA package.

Here is the minimal code for performing a Poisson analysis using the BACE
package:

set verbose off

set seed 1000000

include BACE.gfn

open rac3d.gdt --quiet

list X = SEX AGE AGESQ INCOME LEVYPLUS FREEPOOR \

FREEREPA ILLNESS ACTDAYS HSCORE CHCOND1 CHCOND2

BACE(DVISITS , X, _(model_type="poisson", \

do_plot=0, model_prior="betabinomial", \

bic_type="hbic"))

The main output displays variable names and statistics.

----------------------------------

Posterior moments (unconditional and conditional on inclusion):

PIP Mean Std.Dev. Cond.Mean Cond.Std.Dev.

const 1.000000 -2.136763 0.130805 -2.136763 0.130805

ACTDAYS 1.000000 0.128816 0.005349 0.128816 0.005349

ILLNESS 1.000000 0.201279 0.018797 0.201279 0.018797

SEX 0.931222 0.183421 0.073598 0.196968 0.056111

HSCORE 0.818333 0.026606 0.015462 0.032513 0.010005

18The dataset and description are available on the gretl repository. To load it, go to File > Open
data > Sample file and choose "Gretl" tab.
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AGE 0.631667 0.349814 0.371404 0.553795 0.324672

FREEPOOR 0.614222 -0.284506 0.265396 -0.463198 0.178618

AGESQ 0.355222 0.142069 0.382779 0.399943 0.556183

INCOME 0.302000 -0.056792 0.099414 -0.188052 0.089677

LEVYPLUS 0.126000 0.012773 0.041862 0.101373 0.070188

CHCOND2 0.105444 0.012172 0.045303 0.115432 0.086857

CHCOND1 0.075000 0.006744 0.031455 0.089922 0.075582

FREEREPA 0.064000 0.005446 0.036704 0.085099 0.119463

According to the findings, the determinants of the number of doctor visits can be
classified into: high-probable factors (ACTDAYS, ILLNESS, SEX, HSCORE), medium-
probable (AGE, FREEPOOR, AGESQ) and the others (with low-probability). The
second column, Mean, and the third column, Std.Dev., display the estimates of the
Poisson regression coefficients averaged over all models. As we can see, all coef-
ficients of the most likely variables have a positive sign and relatively small error,
which indicates that their increase is significantly related to an increase in the num-
ber of doctor visits.

Table 4 displays the Posterior Inclusion Probabilities for the Poisson model es-
timated by BACE, ParMA, and BMA packages19.

The results from BACE in Table 4 align closely with those of ParMA. In all cases,
the PIPs are reasonably close, and the same variables have been identified as being
relevant. The BACE results also appear to be in line with the others. The ranking
of the most likely variables in BMA is almost identical to the previous two cases.
The only major difference is the stronger penalization of less significant variables.

5.3 Speed of calculation

In this section, we will briefly present the calculation speed of the BACE pack-
age and compare it with the computational speed of two other packages, namely
ParMA and BMA20, as all three packages support some models for a limited de-
pendent variable. We have implemented our experiment using the ParMA package
with parallelization across 4 threads, as we believe that this scenario can be imple-
mented on an average personal computer.

Table 5 provides information on the calculation speed of models available in
the BACE package. As we can see, the BACE package allows for the estimation of
various models, such as logit and probit regression, ordered logit and probit mod-
els, Poisson regression, Tobit model (Type I), and interval regression. Furthermore,
we also provide information about the computation speed for the standard (unre-
stricted) regression model. This study uses well-known and popular datasets in the

19The following settings are used in the ParMA package: strings vname = varnames(X),

string modeltype = "poisson", bundle param = null, param.mpi = 4, param.seed =

1000000, param.center = 0, n_iter = 9000, burn_in = 1000. In turn, for the BMA we have:
set.seed(1000000), strict=FALSE, OR=20, glm.family="poisson", factor.type=FALSE.

20The mlogitBMA package was used for multinomial logit regression.
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PIP

Variable BACE ParMA BMA

const 1.000 1.000 1.000

ILLNESS 1.000 1.000 1.000

ACTDAYS 1.000 1.000 1.000

SEX 0.931 0.912 1.000

HSCORE 0.818 0.763 0.723

AGE 0.632 0.688 0.642

FREEPOOR 0.614 0.616 0.350

AGESQ 0.355 0.316 0.358

INCOME 0.302 0.338 0.020

LEVYPLUS 0.126 0.078 <0.01

CHCOND2 0.105 0.042 <0.01

CHCOND1 0.075 0.054 <0.01

FREEREPA 0.064 0.030 <0.01

Table 4: Comparison of Posterior Inclusion Probabilities (PIPs) among BACE,
ParMA, and BMA packages for the Poisson regression model.

literature, some of which have already been used in previous sections of this paper.
The second column of Table 5 lists the names of the datasets underlying the calcu-
lations. These are: bithwt presented in Hosmer and Lemeshow (2000)21, nels used
in Hill et al. (2017)22, rac3d originally used in Cameron and Trivedi (1986, 2013) and
available directly in gretl repository, tobit example23, wtp – interval regression ex-
ample of "willingness to pay" in Verbeek (2018), also available in gretl repository
and FLS well–known dataset for model averaging used by Fernández et al. (2001)
for standard regression model24. The datasets listed differ in their number of ob-
servations, explanatory variables, and potential models. As we can see, the FLS
data case is the most demanding with over 2 trillion potential combinations, so we
can expect significant differences in the speed of computation among the compared
packages. According to the data presented in Table 5, it can be concluded that the
BACE package demonstrated the shortest computation time among the alterna-
tives. The biggest differences in the run time are seen for FLS data, where, due to
the number of explanatory variables, we consider a very large total model space.

21MASS: Birth Weights of Babies, https://rdrr.io/cran/MASS/man/birthwt.html.
22Data Sets for Econometrics, Fifth Edition, http://www.principlesofeconometrics.com/poe5/

poe5data.html.
23Tobit Models in R, https://stats.oarc.ucla.edu/r/dae/tobit-models/.
24Journal of Applied Econometrics Data Archive, http://qed.econ.queensu.ca/jae/2001-v16.

5/fernandez-ley-steel/.

https://rdrr.io/cran/MASS/man/birthwt.html
http://www.principlesofeconometrics.com/poe5/poe5data.html
http://www.principlesofeconometrics.com/poe5/poe5data.html
https://stats.oarc.ucla.edu/r/dae/tobit-models/
http://qed.econ.queensu.ca/jae/2001-v16.5/fernandez-ley-steel/
http://qed.econ.queensu.ca/jae/2001-v16.5/fernandez-ley-steel/
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Run time Dataset N 2K BACE ParMA BMA

Logit bithwt 189 512 0.17 2.04 0.42

Ordered logit nels 6649 8192 5.13 — —

Probit bithwt 189 512 0.22 2.47 2.56

Ordered probit nels 6649 8192 5.59 — —

Multinomial logit hsbdemo 200 1024 0.35 — 9.24

Poisson rac3d 5190 4096 4.14 8.88 4.30

Tobit (Type I) tobit 200 16 0.07 — —

Interval regression wtp 312 32 0.12 — —

Linear regression FLS 72 2,199,023,255,552 45.38 14041.1 11.18

Table 5: Run time in seconds of BACE, ParMA and BMA packages for selected
datasets, N – the number of observations, K – the total number of explanatory
variables in estimated model, and 2K – total model space.

6 Conclusions

In the article presented here, we propose the BACE package, whose main purpose
is to provide a model-building strategy for models with a limited dependent vari-
able. We use the BACE technique to obtain the average parameter estimates and the
significance of determinants in a regression analysis, considering estimates based
on Maximum Likelihood Estimation (MLE) across the entire model space.

Overall, we have provided solutions for nine different models, which include
logit and probit, ordered logit and probit, multinomial logit, Poisson regression,
Tobit, interval regression, and additionally linear regression. Our package utilizes
readily available open-source software gretl, which offers users the flexibility to
perform computations using scripted commands or through a simple and conve-
nient GUI.

The examples presented for the applications of logit and Poisson models con-
firm the accuracy of the BACE results and their consistency with the ParMA pack-
age. Furthermore, runtime tests have shown that BACE produces results in the
shortest amount of time, even when compared to the ParMA package, which used
parallelization across 4 threads in this simulation.

Although the BACE package is already fast, consistent, and offers a variety
of model types, there is still potential for further development and improvement to
expand its functionality. One promising direction for enhancing the package would
be to implement two-equation models, such as Heckman-type selection and Zero-
Inflated Poisson regression. Both models require a separate drawing schema for
each specific equation in the sampling algorithm, which means that they require
a different solution approach than the models already implemented in the current
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version of the package.
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