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1 Introduction

In a well known paper Elliott, Rothenberg and Scott (1996) (hereinafter, ERS) advocated a
modification of the then-standard method of computing unit root tests of the Dickey–Fuller
type. They argued that power could be increased by using a GLS procedure for removing
the mean (and deterministic trend, if applicable) from the data to be tested; such tests are
known as DF-GLS tests.

From the practitioner’s point of view, one drawback with using these tests is that p-values
are hard to come by. James MacKinnon (1996) produced an apparatus for calculating p-
values for a wide variety of unit-root and cointegration tests, but his response surfaces have
limited applicability to the DF-GLS tests: all they offer is asymptotic p-values for the case
with a constant but no trend.1 As regards the DF-GLS test with trend, the only generally
available means of evaluating the test statistic is the table of critical values provided by ERS
(their Table I, which gives simulated critical values at the 1%, 2.5%, 5% and 10% levels for
sample sizes of 50, 100 and 200 as well as an asymptotic value).

This note applies MacKinnon’s methodology—strictly speaking, a simplified version thereof—
to DF-GLS, with the aim of providing reliable sample size-dependent p-values. Specifically,
we aim to provide functions for computing p-values for the constant-only and constant-
plus-trend cases of the test statistic of the Dickey–Fuller type, τ in MacKinnon’s terminol-
ogy; that is, the t statistic for a0 in the regression

∆yd
t = a0yd

t−1 + a1∆yd
t−1 + · · · + ap∆yd

t−p + error

where yd
t is the series of interest with mean (and possibly trend) removed via GLS.

2 Methodology

As in MacKinnon (1996), we carried out N = 100 trials for each of a set of sample sizes; after
some experimentation we chose samples sizes of T = 20, 25, 35, 50, 75, 100, 200, 500 and
800. MacKinnon ran M = 200,000 replications per trial; taking advantage of Moore’s Law,
we raised this to M = 106.

At each replication, artificial data were generated in conformity with the given null: cumu-
lated standard normal variates plus either a constant or a deterministic trend. Specifically,
we used gretl version 1.10.90cvs of April 2015 to generate the pseudo-random normal vari-
ates. The PRNG is the DCMT implementation (Matsumoto and Nishimura (2000)) of the
Mersenne Twister, with conversion to normality via the Marsaglia and Tsang (2000) “zig-
gurat” method, amended along the lines proposed by Doornik (2005).

For each of the N trials, a set of empirical quantiles was determined, based on the M repli-
cations, using α levels of 0.001, 0.0025, 0.005, 0.01, 0.02, 0.025, 0.03, 0.04, 0.05, 0.06, 0.07,
0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.9 and 0.99. This α-grid is a
good deal coarser than that used by MacKinnon, but as we argue below it seems to be fine
enough for practical purposes.2

1As noted by ERS (p. 824), in this case “critical values and asymptotic power are those of the conventional
Dickey–Fuller t statistic when there is no intercept.”

2The α value of 0.025 was included specifically to allow comparison with the ERS table of critical values for
DF-GLS with trend. In the constant-only case it was omitted.
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Let nT = 9 denote the number of sample sizes considered, and nα = 26 denote the number
of α levels used. The output from the simulations then consists of an array of N × nT = 900
values of the τ statistic for each of the nα quantiles. The next step is to estimate a response
surface for each of the quantiles or significance levels.

MacKinnon’s method was to average the critical τ values for each T across the N trials
and then apply a GMM procedure, equivalent to weighted least squares, to these sample
means: the sample means are regressed on a constant and up to three powers of 1/T. A
simpler procedure is to run a set of OLS regressions (of the same form) each one using all
N × nT data points for a given α. We didn’t see compelling evidence of heteroskedasticity
in the data, and decided to use OLS.3 In our estimation we found that the cubic term in
1/T was strongly significant for all α, so our model for the trend case is

τα(T) = β0 + β1T−1 + β2T−2 + β3T−3 + εα (1)

where eqn. (1) is estimated separately for each α. In the constant-only case, however, we
found that T−4 was strongly significant at all α values, so we included that too.

3 Critical values: the trend case

A subset of results from this stage of the procedure is shown in Table 1, covering the signif-
icance levels that appear in ERS Table I for the trend case.

Table 1: Response surface estimates, trend case; n = 900 for each regression

α 1% 2.5% 5% 10%

β0 −3.4069 −3.1029 −2.8471 −2.5593

(0.00030) (0.00022) (0.00017) (0.00014)

β1 −20.025 −18.778 −18.184 −18.038

(0.06458) (0.04634) (0.03687) (0.02892)

β2 22.426 50.000 74.291 104.71

(3.2296) (2.3175) (1.8441) (1.4463)

β3 −942.71 −810.49 −750.39 −728.64

(42.834) (30.737) (24.458) (19.181)

SSR 0.0114 0.0058 0.0037 0.0023

R2 0.9999 0.9999 0.9999 0.9999

Table 2 compares the critical values given by ERS with fitted values calculated using the
coefficients in Table 1 (labeled “AC”), rounded to three significant figures for comparison.
The values are mostly quite close, although note that the AC values resolve an anomaly in
ERS, whereby in the 1% column the critical value for T = 200 is less extreme than that for
infinite T.

A further perspective on the results is given by Figure 1, which shows OLS fitted curves
based on Table 1, average critical values (per sample size) obtained in the present study,

3Our choice of OLS over WLS was not based solely on simplicity; we return to this point in section 3 below.
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Table 2: Comparison of critical values

1% 2.5% 5% 10%

T ERS AC ERS AC ERS AC ERS AC

50 −3.77 −3.81 −3.46 −3.46 −3.19 −3.19 −2.89 −2.88

100 −3.58 −3.61 −3.29 −3.29 −3.03 −3.02 −2.74 −2.73

200 −3.46 −3.51 −3.18 −3.20 −2.93 −2.94 −2.64 −2.65

∞ −3.48 −3.41 −3.15 −3.10 −2.89 −2.85 −2.57 −2.56

and the critical values from ERS. These plots show two things: first, the very close fit to the
AC sample average critical values inspires confidence in using the coefficients to compute
critical values for intermediate sample sizes;4 second, while the ERS values are mostly “in
the ballpark” their 1 percent critical values in particular appear to be somewhat out of line
(and there may be something awry with their values for T = 200).

The information in Figure 1 is relevant to our choice of OLS estimation as opposed to the
WLS approach in MacKinnon. The general argument for WLS is that data-points with a
higher error variance are less informative about the parameters of interest, so it makes
sense to down-weight them. If we were quite confident that eqn. (1)—that is, a low-order
polynomial in T−1—is a correct specification of the dependence of DF-GLS critical values
on T, and if it were also clear that the variance of critical values across trials is a function of
T, this argument would have some force in the present context. As we show in section 5,
there is some ground for saying that the variance of critical values is smaller for larger T,
but the difference in variance is neither very great nor consistent across cases. And as the
plots in Figure 1 show, the main point of interest is the curvature with respect to T at small
to medium sample sizes. In this regard the results from trials with relatively small T may
be more informative, allowing for the possibility of specification error; so it is not at all clear
that it makes sense to down-weight them.

4 Critical values: constant only

Repeating the procedure described above for the constant-only case, we obtain a second set
of response surface coefficients; the estimates for the most commonly used critical values
are shown in Table 3.

As mentioned above, p-values obtained via MacKinnon’s urcdist code (for the no-constant
Dickey–Fuller case) are asymptotically valid for the DF-GLS case with no trend. It is of
interest to see how useful these p-values are for finite samples. Table 4 is constructed as
follows: the τ̄ values for each α and T are the sample means of empirical quantiles based,
as before, on 100 trials of 106 replications each; and the P∞(τ̄) figures are p-values obtained
using urcdist, passing τ̄ as parameter. It is hardly surprising to see that the asymptotic
p-values are a poor approximation at small to moderate T.

4The points for T = 800 were omitted from the plots to avoid compressing the T axis unduly; however, these
points fell almost exactly on the curves shown.
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Table 3: Response surface estimates, constant-only case; n = 900

α 1% 5% 10%

β0 −2.5666 −1.942 −1.6179

(0.00039) (0.00020) (0.00015)

β1 −20.186 −21.858 −23.817

(0.13744) (0.072541) (0.054962)

β2 272.12 378.58 449.01

(12.294) (6.4892) (4.9166)

β3 −4843.5 −6349.9 −7447.5

(380.61) (200.89) (152.21)

β4 30613. 41599. 49745.

(3762.5) (1985.9) (1504.7)

SSR 0.0117 0.0033 0.0019

R2 0.9998 0.9999 0.9999

Table 4: Asymptotic p-values, constant only

α T τ̄ P∞(τ̄)

0.01 50 −2.8952 0.0037

75 −2.7975 0.0050

100 −2.7458 0.0059

200 −2.6620 0.0075

800 −2.5910 0.0093

0.05 50 −2.2718 0.0223

75 −2.1795 0.0282

100 −2.1285 0.0320

200 −2.0432 0.0394

800 −1.9683 0.0469

0.1 50 −1.9661 0.0472

75 −1.8713 0.0585

100 −1.8181 0.0658

200 −1.7273 0.0798

800 −1.6466 0.0942
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Figure 1: Selected critical values as function of T

5 P-value functions

The response surfaces for critical values at a given set of significance levels are of some in-
terest in their own right, but our goal is to create a means of producing reliable p-values for
finite-sample DF-GLS tests. This requires implementing the second stage of MacKinnon’s
procedure. For a given test statistic, τ, obtained from a sample of size T the general idea is:

1. Calculate the critical values for all nα cases covered by the analysis, at sample size
T. This requires prior storage of the nα sets of response-surface coefficients (a small
subset of which we have shown above).

2. Determine which of these critical values is closest to the given τ, and in addition
choose a suitable number of critical values in the “neighborhood” of τ.

3. Run a regression to gauge the shape of the relevant surface (α as a function of critical
value) in the chosen vicinity.

4. Obtain an estimated p-value for the input τ based on a fitted value from this regres-
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sion.

Theory does not dictate the form of the regression to be run at step 3, but MacKinnon
suggests using a normal approximation:

Φ−1(α) = γ0 + γ1q̂(α) + γ2q̂2(α) + γ3q̂3(α) + εα (2)

where the q̂ values represent estimated quantiles and Φ−1(·) is the inverse of the standard
normal CDF. This means that the dependent variable is the vector of significance levels
associated with the selected critical values, run through Φ−1(·), and the independent vari-
ables are the levels, squares and (possibly) cubes of the selected critical values themselves.5

Let ŷ denote the fitted value obtained via (2), by applying the γ estimates to the input τ;
then the estimated p-value is found as Φ(ŷ).

As mentioned above, our grid of significance levels is much coarser than MacKinnon’s.
This means that we’re not able to include as many local data points in estimating eqn. (2):
we use 5 as against MacKinnon’s 9.6 Can we still produce p-values that are good enough
for practical purposes?

There is no definitive metric for “good enough,” but we have made this notion operational
as follows. Taking our empirical quantiles as a basis, we try “round-tripping” by means of
our p-value code. For instance, if τ̄0.01(50) is our empirical estimate of the 0.01 quantile of
the τ distribution for T = 50 (the mean of 100 trials), we pass this τ̄ to our p-value code and
see if it produces something close to 0.01. Allowing for sampling variation in the empirical
quantiles, we also show the standard deviation of the quantiles across the trials, σ̂τ , and
compute p-values for τ̄ ± σ̂τ ; these are labeled P̂T(τ−) and P̂T(τ+).

The full set of results of this sort contains nα ×nT elements; we show a representative subset
in Tables 5 (test with trend) and 6 (constant only). Table 7 is based on the same general
idea, but uses a random selection of quantiles and sample sizes that were not included in
the response-surface estimation.

It appears that there’s an acceptable measure of agreement between the calculated p-values
and the empirical quantiles. In all cases there is agreement to at least two significant figures,
and in all but a few cases (of the trend test, for α = 0.9) the P̂T(τ−) and P̂T(τ+) values (where
shown) bracket the nominal α. We submit, therefore, that p-values produced in this way
are in fact good enough for practical inference.

A further test of the generated p-values may be of interest: how self-consistent are they?
This can be checked for a given test and sample size as follows.7 First we fix on certain
minimum and maximum values of τ—for example, the means of the simulated critical
values associated with the smallest and largest values of α used in the analysis. We then
run a loop from minimum to maximum, incrementing τ by a small step at each iteration.
Computing the p-value at each iteration will give us an estimate of the CDF of τ; and
theoretically this should, of course, be monotonically increasing.

However, the MacKinnon-type procedure carries no a priori guarantee of monotonicity.
There’s a potential discontinuity whenever the window of local points used in estimating

5MacKinnon drops the cubic term if its t-ratio turns out to be less than 2 in absolute value; we follow him in
this.

6With only 1 degree of freedom (or 2 if the cubic term is dropped) this is a minimal piece of curve-fitting;
the proof of the pudding is in the quality of the generated p-values. Note that by reducing the number of critical
values, nα, we get a basic results matrix of a size that can readily be stored within the code for generating p-values,
rather than requiring that this matrix be read from file as in MacKinnon’s urcdist.

7I have to thank Oleh Kamashko for suggesting this experiment.

6



Table 5: Interpolated p-values: trend case

α T τ̄ σ̂τ P̂T(τ̄) P̂T(τ−) P̂T(τ+)

0.001 25 −5.2075 0.0134 0.0010 0.00097 0.00103

50 −4.5819 0.0110 0.0010 0.00097 0.00104

200 −4.1840 0.0077 0.0010 0.00097 0.00103

0.01 25 −4.2332 0.0042 0.0100 0.00989 0.01008

50 −3.8053 0.0033 0.0100 0.00993 0.01011

200 −3.5075 0.0031 0.0100 0.00988 0.01007

0.05 25 −3.5045 0.0021 0.0499 0.04968 0.05011

50 −3.1859 0.0017 0.0501 0.04993 0.05034

200 −2.9370 0.0018 0.0499 0.04967 0.05012

0.1 25 −3.1608 0.0015 0.0998 0.09952 0.10011

50 −2.8829 0.0013 0.1002 0.09996 0.10051

200 −2.6478 0.0014 0.0998 0.09949 0.10011

0.4 25 −2.3256 0.0011 0.3998 0.39922 0.40040

50 −2.1229 0.0008 0.4004 0.39998 0.40084

200 −1.8930 0.0008 0.3996 0.39909 0.40005

0.9 25 −1.3292 0.0012 0.8996 0.89929 0.89997

50 −1.1945 0.0009 0.9000 0.89969 0.90024

200 −0.9257 0.0010 0.9005 0.90021 0.90077

eqn. (2) moves a notch to the right (adding a rightward point and dropping a leftward
one). If the approximation is insufficiently accurate, some τ values may have an estimated
p-value less than that of their neighbor to the left. It is straightforward to write a program
to detect such cases.

To establish a baseline we applied this check to MacKinnon’s urcdist, in cases nc (no con-
stant), c (constant only) and ct (constant plus trend) of the regular Dickey–Fuller test statis-
tic, for an arbitrarily chosen sample size of 50. We ran the loop for p̂ (estimated p-value)
from 0.001 to 0.999 with a step size for τ of 0.0001: the results (anomalous cases only) are
shown in Table 8. It turns out that there are a few instances of non-monotonicity: a negative
∆ p̂ means that the estimated p-value decreased from τ − 0.0001 to τ. While this is not nice
from a theoretical point of view it is hardly a real concern for the practitioner: a handful
of cases in tens of thousands of computations, with a maximum “reversal” of 0.000003. If
we increase the step size for τ to 0.0005 the anomalous cases drop to 1 (in the nc model);
and if we raise the step size to 0.0006 they disappear altogether. Moreover, 5 out of the
9 anomalous cases with the τ step of 0.0001 are in the range of p̂ > 0.99, which is of no
interest for hypothesis testing.

Table 9 shows the results of the same experiment (with a τ-step of 0.0001) as applied to our
variant of MacKinnon’s procedure for the DF-GLS tests. There were just two anomalous
cases in the contant-only test and none in the case with trend. The maximal reversal of
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Table 6: Interpolated p-values: constant-only case

α T τ̄ σ̂τ P̂T(τ̄) P̂T(τ−) P̂T(τ+)

0.001 25 −4.0505 0.0117 0.0010 0.00097 0.00103

50 −3.6704 0.0101 0.0010 0.00097 0.00103

200 −3.3892 0.0077 0.0010 0.00097 0.00103

0.01 25 −3.1701 0.0038 0.0100 0.00991 0.01010

50 −2.8952 0.0036 0.0100 0.00990 0.01010

200 −2.6620 0.0033 0.0100 0.00989 0.01008

0.05 25 −2.5103 0.0021 0.0500 0.04978 0.05027

50 −2.2718 0.0018 0.0500 0.04980 0.05022

200 −2.0432 0.0019 0.0499 0.04970 0.05015

0.1 25 −2.2012 0.0014 0.1000 0.09974 0.10035

50 −1.9661 0.0014 0.1000 0.09973 0.10034

200 −1.7273 0.0016 0.0999 0.09956 0.10019

0.4 25 −1.4639 0.0008 0.4004 0.39993 0.40090

50 −1.2030 0.0009 0.4008 0.40034 0.40131

200 −0.8855 0.0012 0.3997 0.39917 0.40031

0.9 25 −0.2749 0.0014 0.8998 0.89950 0.90006

50 0.0936 0.0019 0.8997 0.89937 0.90001

200 0.6543 0.0020 0.9002 0.89993 0.90056

the CDF is somewhat greater than with urcdist, though still too small to be of practical
importance. Increasing the τ-step to 0.0004, the anomalies disappear.

Having computed CDFs, it may be of interest to show them: see Figures 2 and 3.

6 Augmented DF-GLS tests

The apparatus discussed above rests on simulations of Gaussian random walks with added
deterministic terms. The practical question arises: how useful are p-values thus derived, in
the common case where one or more lagged differences have to be added to the Dickey–
Fuller regression to ensure a reasonable approximation to a white-noise error? There’s no
definitive, general answer to this question, but it may be worthwhile to consider a couple
of examples.

We took two annual time series for the US—the log of real GDP and consumer price
inflation—from 1947 to 2014 and conducted ADF-GLS tests, including a trend for log GDP
and just a constant for inflation.8 For the lag order, we tested down from a maximum of
10 using the modified AIC method of Ng and Perron (2001) as revised by Perron and Qu

8To be specific, the GDP series was the log of GDPCA, and inflation was the percentage change in the annual
average of CPIAUCSL, both series taken from the FRED database at the St. Louis Fed.
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Figure 2: CDFs for τ, DF-GLS test with trend

(2007): this gave an order of 1 for GDP and 4 for inflation. We then simulated I(1) data
with the lag structure estimated for these two series via the Dickey–Fuller regression plus
the deterministic components estimated via GLS, as follows:

constant trend lagged differences

log GDP 7.60 0.033 0.179

inflation 5.62 – 0.174, −0.364, −0.116, −0.194

In each case we performed 100 trials with 250,000 replications per trial, for sample sizes of
50, 100 and 200, calculated the ADF-GLS test statistic (imposing the “known” lag order) on
each replication, and computed quantiles for α = 0.01, 0.025, 0.05 and 0.1. Tables 10 and
11 show the means and standard deviations of critical values across the trials, τ̄ and σ̂τ

respectively, along with estimated p-values calculated as described above, for both finite T
and the limit distribution. For series with the characteristics described above, at any rate,
the general picture is that one would over-reject the unit-root null by using asymptotic
values, but somewhat under-reject by using finite-sample values based on the assumption
of no autocorrelation of first differences. For T = 100 or less, one would be closer to correct
inference by using finite-sample p-values.

7 Conclusion

We have presented a simplified variant of MacKinnon’s (1996) approach to computing re-
sponse surfaces for p-values for unit root tests, with application to the DF-GLS tests of
Elliott et al. (1996). We have also provided evidence that the computed p-values are suf-
ficiently accurate for practical purposes—that is, valid to 2 or 3 significant figures over a
range that is of interest for hypothesis testing.

While we hope that this apparatus will be useful to practitioners, a word to the wise may
be in order. Our claim of 2- or 3-digit accuracy does not extend to τ values in the far left
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Figure 3: CDFs for τ, DF-GLS test with constant

tail. If you run a large sample of a perfectly stationary series through one of the DF-GLS
tests you may get a test statistic on the order of −10 or −15. All we can really say about
the probability of getting such a statistic under the null is that it’s exceedingly small; the
functions shown in the Appendix will print a numerical value, but in that range it may well
be out by several orders of magnitude.
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Table 7: Interpolated p-values: “out of sample” values

with trend constant only

α T τ̄ σ̂τ P̂T(τ̄) τ̄ σ̂τ P̂T(τ̄)

0.007 40 −4.0396 0.0044 0.0070 −3.0955 0.0044 0.0070

60 −3.8620 0.0042 0.0070 −2.9724 0.0041 0.0070

90 −3.7473 0.0043 0.0070 −2.8872 0.0041 0.0070

120 −3.6895 0.0036 0.0070 −2.8410 0.0040 0.0070

0.034 40 −3.4274 0.0026 0.0341 −2.4947 0.0022 0.0340

60 −3.2869 0.0022 0.0340 −2.3856 0.0024 0.0340

90 −3.1921 0.0019 0.0339 −2.3055 0.0021 0.0340

120 −3.1439 0.0019 0.0339 −2.2606 0.0021 0.0340

0.048 40 −3.2830 0.0020 0.0482 −2.3525 0.0018 0.0479

60 −3.1492 0.0018 0.0481 −2.2444 0.0019 0.0480

90 −3.0577 0.0018 0.0479 −2.1639 0.0019 0.0479

120 −3.0111 0.0018 0.0479 −2.1189 0.0017 0.0480

0.083 40 −3.0413 0.0016 0.0832 −2.1149 0.0014 0.0829

60 −2.9172 0.0015 0.0831 −2.0062 0.0014 0.0830

90 −2.8303 0.0016 0.0829 −1.9236 0.0014 0.0830

120 −2.7855 0.0015 0.0828 −1.8773 0.0015 0.0830

0.102 40 −2.9455 0.0014 0.1023 −2.0208 0.0012 0.1019

60 −2.8246 0.0013 0.1021 −1.9113 0.0014 0.1020

90 −2.7392 0.0014 0.1019 −1.8274 0.0014 0.1020

120 −2.6949 0.0014 0.1018 −1.7800 0.0015 0.1020

0.351 40 −2.2720 0.0010 0.3513 −1.3666 0.0008 0.3513

60 −2.1663 0.0009 0.3513 −1.2357 0.0009 0.3516

90 −2.0849 0.0009 0.3508 −1.1308 0.0009 0.3512

120 −2.0403 0.0009 0.3506 −1.0704 0.0010 0.3510
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Table 8: Non-montonicity: Dickey–Fuller test using MacKinnon’s urcdist code

τ p̂ ∆ p̂

nc −2.77342 0.006482 −6.78e−07

2.40148 0.995524 −4.45e−07

2.63248 0.997545 −3.14e−06

c −4.06768 0.002452 −3.52e−07

−3.94858 0.003466 −3.89e−07

−3.49158 0.012265 −8.91e−07

0.72192 0.991517 −9.57e−07

1.16802 0.997546 −2.84e−06

ct 0.21560 0.997547 −1.09e−07

Note: evaluated from p = 0.001 to 0.999, with T = 50. Num-
ber of p-values: nc, 63777; c, 58320; ct, 54495.

Table 9: Non-montonicity: DF-GLS test using the author’s code

τ p̂ ∆ p̂

c −1.1177 0.44981 −9.59e−05

−0.7355 0.65226 −2.74e−05

Note: evaluated from p = 0.001 to 0.999, with T = 50. Num-
ber of p-values: 53603.
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Table 10: ADF-GLS p-values: mimicking US real GDP

α T τ̄ σ̂τ P̂T(τ̄) P̂∞(τ̄)

0.01 50 −3.8036 0.0067 0.0100 0.0026

100 −3.6059 0.0057 0.0099 0.0053

200 −3.5076 0.0057 0.0099 0.0071

0.025 50 −3.4616 0.0046 0.0306 0.0083

100 −3.2874 0.0038 0.0300 0.0145

200 −3.1969 0.0043 0.0299 0.0206

0.05 50 −3.1832 0.0033 0.0605 0.0217

100 −3.0236 0.0032 0.0598 0.0412

200 −2.9379 0.0032 0.0598 0.0507

0.1 50 −2.8798 0.0025 0.1109 0.0564

100 −2.7317 0.0027 0.1096 0.0773

200 −2.6492 0.0027 0.1095 0.0920

DGP: y0 = 7.60; yt = yt−1 + 0.033 + 0.179∆yt−1 + ut

Table 11: ADF-GLS p-values: mimicking US inflation

α T τ̄ σ̂τ P̂T(τ̄) P̂∞(τ̄)

0.01 50 −2.7700 0.0072 0.0141 0.0055

100 −2.6896 0.0069 0.0117 0.0071

200 −2.6336 0.0069 0.0108 0.0083

0.025 50 −2.4347 0.0052 0.0336 0.0146

100 −2.3572 0.0051 0.0285 0.0181

200 −2.3011 0.0053 0.0266 0.0209

0.05 50 −2.1613 0.0035 0.0648 0.0299

100 −2.0815 0.0041 0.0558 0.0364

200 −2.0214 0.0032 0.0525 0.0420

0.1 50 −1.8633 0.0025 0.1243 0.0603

100 −1.7757 0.0030 0.1092 0.0729

200 −1.7086 0.0030 0.1038 0.0840

DGP: y0 = 5.62; yt = yt−1 + ∑4
i=1 ρi∆yt−i + ut
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Appendix

The functions below are written in hansl, the scripting language of gretl, which is free, open-
source software.9 It should be straightforward to translate the code for, e.g., Matlab or R if
anyone is so inclined.10

The first code block shows the main function, which is passed a τ value and sample size, T,
along with two data matrices: beta (nα × 4) holds the coefficients from estimation of eqn.
(1) in the text and P (1 × nα) holds the array of α values used.

# the main p-value function

function scalar dfgls_pval (scalar tau, int T,

const matrix *beta,

matrix P)

scalar nalpha = rows(beta)

scalar npow = cols(beta) - 1

# compute all critical values for T and find

# the index of the one closest to tau

matrix C = beta * ((1/T) .^ seq(0, npow))’

scalar imin = iminc(abs(C - tau))

# get a suitable subset of points

scalar npoints = 5

scalar np2 = int(npoints/2)

scalar i1 i2

if imin > np2 && imin <= nalpha - np2

i1 = imin - np2

elif imin <= np2

i1 = 1

else

i1 = nalpha - npoints + 1

endif

i2 = i1 + npoints - 1

C = C[i1:i2]

P = P[i1:i2]

set svd on # hush collinearity warnings

matrix V

# run second-state regression via OLS

matrix g = mols(qnorm(P)’, C .^ seq(0, 3), null, &V)

scalar tcube = g[4]/sqrt(V[4,4])

if abs(tcube) < 2

# drop the cubic term

matrix g = mols(qnorm(P)’, C .^ seq(0, 2))

matrix tt = tau .^ seq(0, 2)

else

matrix tt = tau .^ seq(0, 3)

9See http://gretl.sourceforge.net/.
10Some of the idioms in the script are due to Jack Lucchetti, a master of the terse hansl statement. The expression

“A .^ seq(0,3)” is a concise way of defining a matrix with as many rows as A, each of the form
(
1 ai a2

i a3
i
)
.
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endif

return cnorm(tt*g)

end function

The next code block contains two “driver” functions, which just load the appropriate matri-
ces (for the trend or constant-only case, as required) then call the main function. As stated
in the text these data matrices are not very big and could easily be “inlined” rather then
being read from file.

# the trend case

function scalar dfgls_ct_pvalue (scalar tau, int T)

matrix beta = mread("beta-dfgls-ct.mat")

matrix alpha = mread("alpha-ct.mat")

return dfgls_pval(tau, T, &beta, alpha)

end function

# the constant only case

function scalar dfgls_c_pvalue (scalar tau, int T)

matrix beta = mread("beta-dfgls-c.mat")

matrix alpha = mread("alpha-c.mat")

return dfgls_pval(tau, T, &beta, alpha)

end function
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