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Abstract

This package deals with the estimation of dynamic factor models (DFM); for the
moment, three factor extraction techniques are available, but we plan to add more
in future versions. Further additions will include parameter restrictions.
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1 The model

The models that the DFM package can handle can be written in state-space represen-
tation as

xt
N×1

= Λ0 ft +Λ1 ft−1 +·· ·+Λs ft−s +et (1)

ft
q×1

= A1 ft−1 + A2 ft−2 +·· ·+ Ap ft−p +ut (2)

where xt is a vector of N standardised observable variables and ft is the q-element
vector of (unobserved) common dynamic factor; the shocks to the observation equa-
tion (1), et , are known as the idiosyncratic component, and are assumed to be uncor-
related with ft at all leads and lags. It is assumed that the elements of et are weakly
correlated weak either cross-sectionally and serially, so that the factors ft summa-
rize the important cross-covariance properties of the variables. Both processes ft

and et are assumed to be second-order stationary.
The key characteristic of this setup is that typically N can be rather large (up to

several hundreds) and q is much smaller. We use R to indicate the N ×N covariance
matrix of et and Q for the q×q covariance matrix of ut , the vector of dynamic factor
shocks; the two error vectors et ,ut are assumed independent.

A finite order VAR(p) model is used to approximate the dynamics of the latent
factors ft , with A1, . . . , Ap the q ×q matrices of autoregressive coefficients. Matrices
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Λ j for j = 0, . . . , s contain the dynamic factor loadings. The term

χt =Λ0 · ft + . . .+Λs · ft−s

is usually referred to as the “common component”, which reduces to Λ0 · ft in the
static case s = 0.

The dynamic factor model of (1) and (2) can be recast into a static state space
representation, that facilitates empirical estimation, by redefining the state vector.
Let k = max

{
s +1, p

}
and define the state vector as Ft = (

f ′
t , · · · , f ′

t−k+1

)′. When
k > p, set Ap+1 = ·· · = Ak = 0 in the companion matrix

A =



A1 · · · Ap · · · Ak

Iq 0q · · 0q

0q
. . .

. . . · ...
...

. . .
. . . · 0q

0q · 0q Iq 0q


When s + 1 < k, set Λs+1 = ·· · = Λk = 0 in the observation (loadings) matrix Λ =
(Λ0 Λ1 . . . Λk ). Then the static factor form of the state-space model is given by the
following pair of equations

xt
N×1

= ΛFt +et (3)

Ft
qk×1

= AFt−1 +u∗
t (4)

with u∗
t =

(
u′

t , 0′q×1 , · · · , 0′q×1

)′
.

2 The estimators

2.1 Principal components (PC)

This technique is well known and needs no detailed description. This estimator
makes most sense if the model (1) – (2) is in fact static, that is s = p = 0; the qk
factors are simply obtained by storing eigenvectors of the correlation matrix of xt

corresponding to the qk largest eigenvalues into a matrix Λ̂PC and then computing
the factors as F̂PC ,t = Λ̂′

PC xt . A full account can be found, for example, in Bai and Ng
(2008b).

PC estimation assumes p = 0 so that k = s + 1 and the dimension of F̂PC ,t (the
number of “static factors”) is q (s +1). If we impose s = 0, practically there are no dy-
namic factors or the number of static factors equals the number of dynamic factors.
If we allow s > 0 then the PC method delivers the q (s +1) static factors in F̂PC ,t as
linear combinations of current and lagged values of the dynamic factors ft .

Note that gretl natively provides the principal components technique, via the
pca command (along with the corresponding menu interface) and the princomp

function. See the Gretl Command Reference for further details. A more in-depth
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static factor analysis can be performed using the staticfactor package1. Note,
however, that staticfactor uses a different normalisation convention for the ex-
tracted factors; thus, if you compute principal components by the two packages,
you’ll obtain identical series up to a proportionality constant.

2.2 Two-step estimator (TS)

This estimator applies to dynamic models and was put forward in Doz, Giannone
and Reichlin (2011) who show consistency (for the factors) of the two-step estimator
in dynamic approximate2 factor models as the number of cross sections N and time
periods T go to infinity.

In the first step, Λ and Ft are estimated using principal components to obtain
Λ̂PC and F̂PC ,t . When s > 0, F̂PC ,t is composed by estimated linear transformations
of ft . Therefore, we proceed with an additional PC estimation to determine an ini-
tial estimate of the q linearly independent factors ft . Let V̂ denote the matrix of
eigenvectors corresponding to the q largest eigenvalues of the residual covariance
matrix obtained by regressing F̂PC ,t on its lag. Then, the initial estimate of the dy-
namic factors is obtained by V̂ ′F̂PC ,t . The remaining model parameters (R, A, Q) are
estimated using multivariate least squares formulas.

In the second step, let θ̂ = {
Λ̂PC , Â, R̂,Q̂

}∪ {
F̂1|0, P̂1|0

}
where the initial state vec-

tor value F̂1|0 is set equal to F̂PC ,1 and P̂1|0 is handled automatically by gretl using
standard state space initialisation formulas. Factor estimates F̂PC ,t are updated via
the smoothing algorithm of the Kalman filter implemented in the DFM in (3) – (4)
to produce F̂T S,t given θ̂. The first q−element sub-vector f̂T S,t of F̂T S,t is the TS es-
timate of the dynamic factors.

2.3 Quasi ML - EM estimator (ML)

The Quasi ML estimator was developed by Doz, Giannone and Reichlin (2012) by
iterating the two-step Doz et al. (2011) estimator described above; it can be proven
that iteration is equivalent to the application of the EM algorithm.3. Doz et al. (2012)
show that the QML-EM estimator of ft in (1)–(2) produces consistent factor esti-
mates converging to their true value at a rate equal to min

{p
T , N

ln N

}
. The compu-

tational complexity of the Kalman smoother depends essentially on the number of
common factors which is typically small. The benchmark PC method is used to ini-
tialise the numerical algorithm for maximum likelihood estimation.

1To access all the packages available from the gretl server via the gretl menu follow “File, Function
packages, On server.”

2The term “approximate” here is standard in this literature and refers to the possibility that the model
(1)– (2) may be just an approximation to a more general model in which ft and et are generic stationary
processes. See for example Doz et al. (2012), page 1015.

3The EM algorithm, introduced by Dempster et al. (1977), is a derivative-free method where each EM
iteration requires a Kalman filter and smoother pass (the E-step) followed by straightforward regression
calculations to update parameter estimates or compute the “sufficient statistics” (M-step). It is a fast
method - compared to “plain” QML - to locate a neighbourhood of the maximum. For an introductory
account, see Greene (2012), section E.3.7.
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We control convergence of the EM algorithm using a stopping rule based on ei-
ther a likelihood distance criterion cL and how small is the increase in log-likelihood
between two consecutive steps (Doz et al., 2012, p.1018) or a parameter distance cri-
terion, cP . In the first case,

cL
j =

∣∣L (
X ; θ̂( j )

)−L
(
X ; θ̂( j−1)

)∣∣(∣∣L (
X ; θ̂( j )

)∣∣+ ∣∣L (
X ; θ̂( j−1)

)∣∣+ε)/2
(5)

with ε= 2.2204460e −016 the machine epsilon for rounding errors while, in the sec-
ond case, the parameter distance criterion sums the absolute deviation across all
estimated parameters θ̂ between step j and j −1:

cP
j =

h∑
i=1

∣∣∣θ̂( j )
i − θ̂( j−1)

i

∣∣∣ , (6)

where h is the number of elements in θ̂.
The EM iterations j = 1, . . . , M continue until the chosen criterion is smaller than

a preset tolerance. Typically, we stop after M iterations if cL
M < 10−4 or cP

M < 10−2.
The first convergence criterion is fast and useful for forecasting purposes while the
second is safest to compute LR statistics on parameter restrictions.

2.4 Parameter restrictions

Future versions of the package will include parameter restrictions necessary for iden-
tification and structural interpretation of the dynamic factor model.

3 The DFM function package

3.1 Installation

TheDFM function package can be downloaded and installed like any other gretlpack-
age.

If you use the GUI, in the main window, go to File > Function packages

> On server... heading. Select and install DFM. Alternatively, in command-line
mode, installation is performed by invoking the command

pkg install DFM

You will get the option of inserting an item into the gretl menu, under Model >

Time series > Multivariate.

3.2 By scripting

The standard way to use DFM via scripting involves first setting up the model, then
proceeding to estimation; after that, the estimated factors can be retrieved. In order
to perform these three steps, DFM provides three functions (see section 6 for a full
description):

4



DFM_Setup() : this function takes as parameters the basic information on the model
and returns a bundle;

DFM_Estimate() : this function performs estimation with the chosen method and
fills the bundle with the results;

DFM_GetFactors() : this function extracts the factors from the bundle to a list.
The list arguments (factor estimates) are named after the estimation method:
PC_* (for PC factor estimates), TS_* (for TS factor estimates), ML_* (for PC
factor estimates)

Upon successful completion of the DFM_Estimate() function, the bundle cre-
ated by DFM_Setup() will contain the following items:

• X: a T ×N matrix with the data;

• valid: a series with 0 at observations for which at least one series in the data
processed list has a missing value, and 1 otherwise;

• cthres: convergence threshold (a scalar);

• dims: a bundle (see below);

• Xnames: variable names, as an array of strings;

• results: a bundle (see below);

• cConvCrit 1 or 2, choice for the convergence criterion;

• itermax: maximum number of iterations before aborting;

• cVerbose verbosity, scalar

The bundle dims contains several scalars holding the dimension of items in the
system:

• nDynFact: number of dynamic factors q ;

• StSpDim: k = max(s +1, p);

• FactLags: s, number of lags in the observation equation (1);

• FactVAROrder: p, number of lags in the state transition equation (2);

• nObs: number of observations;

• nStaFact: number of static factors q(s +1);

• nSeries: N , number of series;

The bundle results holds the results from estimation:

• method: estimation method;
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• PC_Fac, TS_Fac, ML_Fac: matrices holding the estimated factors (if avail-
able, given the method key). The convenience function DFM_GetFactors()

can be used for converting these into a list of series;

• Converged: Boolean;

• Lambda, A, M, P, Q, R: estimated system matrices (see equations (1) – (2));

• Resid: matrix holding the idiosyncratic residuals;

• SSIC: scalar, total residual sum of squares divided by N T ;

• conviter: scalars, iterations to convergence;

• loglik: scalar

The following is a minimal example:

set verbose off

include DFM.gfn

open AWM17.gdt --quiet

# create a list DXlist with a few macro

# series (transformed for stationarity)

list Xlist = PCR GCR ITR XTR MTR LFN LNN

list DXlist = ldiff(Xlist) diff(ldiff(YED)) diff(STN) diff(LTN)

# The important part

Mod = DFM_Setup(DXlist, 1, 2, 3) # set up the model, q=1 , s=2 , p=3

DFM_Estimate(&Mod, 3) # perform (QML-EM) estimation

list F = DFM_GetFactors(&Mod) # save the estimated factors

# now display a few results

DFM_Printout(&Mod, 2)

gnuplot PC_01 TS_01 ML_01 --time-series --with-lines --output=display

In this example, we specify a model with N = 10 series (transformed so as to
achieve stationarity) and q = 1 dynamic factor. The factor enters the observation
equation (1) with s = 2 lags and is modelled as a VAR(3) (in fact, an AR(3), being
scalar) process. The model is then estimated via QML (method = 3) and the factors
are extracted to the list F. The naming convention we adopt is prepend the string PC
to factors extracted by principal components and TS and ML to factors extracted by
the two-step and the EM procedures, respectively (if any).

The function DFM_Printout is used to display the results (reproduced in Table
1). Its second parameter controls the level of detail of the output.

Finally, a combined time series plot of the factors produced by all methods is
created. Note that PC returns three static factors since q(s +1) = 1(2+1) = 3 and we
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-----------------------------------------------------------

Number of series = 10, number of observations = 186

Number of factors = 1; factors are a VAR(3)

Number of lags in the observation equation = 2

-----------------------------------------------------------

method: ML via EM (26 iterations)

Log-likelihood = -2261.92

Total SSR/NT: 0.62980

Loadings

ld_PCR 2.668 -0.916 -0.183

ld_GCR 0.070 -0.746 0.935

ld_ITR 3.440 -0.337 -0.903

ld_XTR 3.458 -0.160 -2.113

ld_MTR 4.106 -0.268 -2.047

ld_LFN 0.524 0.590 0.926

ld_LNN 1.610 1.281 0.538

d_ld_YED 0.053 0.573 -0.216

d_STN 0.933 1.234 -0.430

d_LTN 0.437 0.474 0.031

Idiosyncratic s.e.

ld_PCR 0.81403

ld_GCR 0.97982

ld_ITR 0.62448

ld_XTR 0.70613

ld_MTR 0.52493

ld_LFN 0.83815

ld_LNN 0.39770

d_ld_YED 0.98783

d_STN 0.86330

d_LTN 0.96409

VAR parameters

0.587 0.471 -0.273

Eigenvalues of the companion matrix

-0.6841

0.7098

0.5618

Factor innovations covariance matrix

0.031

Table 1: Output of example script7
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Figure 1: Plot from example script

plot the first or dominant PC factor along with the single dynamic factor produced
by the two-step and QML-EM methods (see Figure 1).

For further experimentation, replace

Mod = DFM_Setup(DXlist, 1, 2, 3) # set up the model, q=1 , s=2 , p=3

with

Mod = DFM_Setup(DXlist, 1, 2, 3,,0.00001,1)

to decrease the convergence threshold of the ML distance criterion (1e-005 instead
of the default value of 1e-004; it will take 48 iterations to converge)

or with

Mod = DFM_Setup(DXlist, 1, 2, 3, ,0.01,2)

to change the ML distance criterion with the parameter distance criterion and in-
crease the convergence threshold to 0.01 (it will take 187 iterations to converge).

3.3 Using the GUI

By invokingDFM though the graphical interface (go toModel, Time series, Multivariate,
Dynamic Factor Models), a window similar to the one shown in Figure 2 will open.

The arguments to select involve:

Series to process (list) : a list with the series to be processed. Pre-processing for
stationarity is up to the user. Conversely, standardisation is performed inter-
nally by the function;

No. of dynamic factors : an integer larger or equal to 1 (default = 1). Set the number
of dynamic factors to q in equations (1)–(2);
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Figure 2: GUI interface to DFM

No. of lags of the dynamic factors : an integer larger or equal to 0 (default = 0). Set
the number of lags s for the dynamic factors in the observation equation (1);

length of VAR filter on common factors : an integer larger or equal to 1 (default =
1). Set the number of lags p in the dynamic factors VAR filter; equation (2);

method : an integer 1:3, (default = 3) to set the estimation method, 1: “Principal
components”, 2: “two-step” method, 3: “ML via EM”. Choosing the “two-step”
method also produces PC estimates of the factors. Choosing “ML via EM” also
produces PC and two-step estimates.

Verbose? : controls output verbosity

3.3.1 GUI output

Upon successful convergence, an output window should appear, showing the same
statistics as in Table 1, unless the “Verbose” flag is unticked, in which case output
just includes minimal information, like in Figure 3; a model bundle is also created
and can be saved to the session as and icon (for example under the name Mod). This
can be done by clicking on the leftmost icon on top of the output window.4 The
next icon will give you a drop-down list of items that you can save, including the
estimated factors.

In addition, two graphical tools are available, first, an estimated factors plot is
readily available and, second, a correlation heat map (contemporaneous correla-

4Note that the graphical aspect of the icon depends on a variety of factors (which operating system
you’re using, plus others), so that what you see in Figure 3 may not coincide exactly with what you get on
your computer.
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Figure 3: Minimal output from the GUI interface

tion between all series in xt and estimated dynamic factors, f̂t ) conveys information
helpful in some forms of identification.

4 A real-life example. Choosing the number of factors

The determination of the number of factors is crucial both for structural analysis
and for forecasting purposes. Bai and Ng (2002) provide information criteria meth-
ods that can consistently estimate the number of static factors, K = q(s +1), in ap-
proximate DFMs (assuming a large N ). Bai and Ng (2007) propose four criteria to
consistently estimate the number of dynamic factors q given a pre-selected or esti-
mated number of static factors K .

Gretl’s static factor package staticfactor can be employed to compute an es-
timate K̂ based on the minimization of a penalized sum of squares criterion

K̂ = argmin
K=1,...,K max

ICp2 (K )

while the DFM package contains the function DFM_BNCrit(), which provides the Bai
and Ng (2007) covariance and correlation based criteria to select the number of dy-
namic factors.

As an illustration, we employ the Stock and Watson (2005) dataset5 which con-
tains 132 monthly time series (mostly) available from 1959:1 to 2003:12. The ob-
jective is to determine the number of primitive, or dynamic, factors in this panel of
data.

Following the Stock and Watson (2005) proposed transformations; (i): levels or
logs, (ii): to achieve stationarity either no transformation, first or second differences
and (iii): an outlier “correction” on each series, we end up with a balanced panel of
monthly time series available from 1960:1 to 2003:12 for a total of 528 observations.
This is the dataset sometimes referred to as the Stock-Watson dataset, which has
been widely employed in the literature: see inter alia Bai and Ng (2008a, 2013) and
McCracken and Ng (2016).

5The original (raw) dataset sim.xls is contained in a replication material file of the working papers
section at http://www.princeton.edu/~mwatson
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The script BaiHg-example, included in the examples directory for the package,
was employed to estimate the number of dynamic factors using the Stock-Watson
dataset.

Note that exact replication of results entails a procedure for outlier removal,
which is shown in Table 2: datafile sw2005datat.gdtb is loaded that contains the
stationarity transformed series of the Stock-Watson raw data, spans the period 1960:1
to 2003:12 and preserves the original series names. As suggested by Stock and Wat-
son (2005), outliers are replaced by the one-sided median (5 preceding observa-
tions).

After this preliminary step, the number of static factors and the number of dy-
namic factors is estimated (see Table 3). The script ends by performing two-step
estimation using the DFM package. Part of the output (relevant to the estimation of
the number of factors) is shown below:

BaiNg (2002, ICp2) criterion selects: 7 static factors

---------------------------------------------------------

Number of static factors: 7. Number of dynamic factors: q

D(1,k) D(2,k) Dc(1,k) Dc(2,k)

k=0 : 0.7605 1 0.7049 1

k=1 : 0.4462 0.6493 0.4692 0.7093

k=2 : 0.3717 0.4718 0.3858 0.532

k=3 : 0.2456 0.2906 0.2969 0.3663

k=4 : 0.1179 0.1554 0.1577 0.2147

k=5 : 0.07767 0.1012 0.1231 0.1456

k=6 : 0.06494 0.06494 0.0778 0.0778

Suggested q value:

D(1,k) D(2,k) Dc(1,k) Dc(2,k)

4 5 4 4

Bai & Ng (2007). Determining the Number of Primitive Shocks

in Factor Models. JBES, Vol. 25, No. 1

-----------------------------------------------------------

BaiNg (2007) dynamic factors (maximal order): 5

5 Another real-life example

We follow the empirical application of Fiorentini, Galesi and Sentana (2018) to con-
struct a common component index that captures the aggregate dynamics of monthly
U.S sectoral employment growth rates and explains the bulk of the time variation
of the different sectors. The DFMdataset.gdt contains 82 series: total nonfarm
employment growth and the 81 sectoral growth rates employed by Fiorentini et al.
(2018) for the period 1990M2-2014M4.

In view of their empirical model specification (we do not allow for moving av-
erage terms in the state equation), we estimated model (1)–(2) with q = 1 (one dy-
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set verbose off

include staticfactor.gfn

include DFM.gfn

# Inputs

open sw2005datat.gdtb --frompkg=DFM --quiet

scalar thr = 6 # Threshold multiple for IQR

scalar lgth = 5 # replace outliers with one-sided median (5 preceding obs)

list xlist = dataset

strings names = strsplit(strsub(varname(xlist),","," "))

matrix mdata = {xlist}

### ----------------------------------------------------------------------

### Outlier detection and correction

### ----------------------------------------------------------------------

# Save variables after outlier correction in a list: xlistC

list xlistC = null

j = 1

matrix OutlierIndex = {} #Matrix to record outliers

loop foreach i xlist -q

qntls = quantile({$i},(0.25|0.5|0.75))

OutlierIndex ~= abs($i-qntls[2]) >= thr*(qntls[3]-qntls[1])

matrix xrolmed = zeros(rows(mdata),1)

loop i1=1..rows(mdata) -q

j1 = xmax(1,(i1-lgth+1))

j2 = i1

matrix tempv = mdata[j1:j2,j]

tempv = sort(tempv)

xrolmed[i1] = tempv[ceil(0.5*rows(tempv))]

endloop

series $ic = mdata[,j].*(OutlierIndex[,j].=0) + (xrolmed .* OutlierIndex[,j])

string S1 = sprintf("%s , Total number of outliers: %d",\

getinfo($i).description,sumc(OutlierIndex)[1,j++])

setinfo $ic --description="@S1"

xlistC += $ic

endloop

# Print outlier related summary

matrix NofOutliers = sumc(OutlierIndex)

printf "\nOutliers per series:\n\n"

loop i=1..cols(NofOutliers) -q

scalar x = NofOutliers[,i]

if x > 0

printf "%8s: %2d\n",names[i], x

endif

endloop

Table 2: Stock-Watson dataset: outlier detection and correction
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### ----------------------------------------------------------------------

### Choose number of static factors

### ----------------------------------------------------------------------

# use the "staticfactor" package

btmpINI = staticfactor(xlistC,,1,0,0)

K = btmpINI.numfac[3]

string critname = cnameget(btmpINI.numfac,3)

printf "\n%s (2002, ICp2) criterion selects %d static factors\n\n", critname, K

delete btmpINI

### ----------------------------------------------------------------------

### Choose number of dynamic factors

### ----------------------------------------------------------------------

VAR_order = 2

q = DFM_BNCrit(xlistC, K, VAR_order, 1)

scalar optimal = maxr(q) # We choose the maximal order

printf "\nBaiNg (2007) dynamic factors (maximal order): %d\n\n", optimal

### ----------------------------------------------------------------------

### Estimate the model

### ----------------------------------------------------------------------

Mod = DFM_Setup(xlistC, optimal, 1, VAR_order) # Set up the model

DFM_Estimate(&Mod, 2) # perform two-step estimation

list F = DFM_GetFactors(&Mod) # save the estimated factors

# Now display a few results

DFM_Printout(&Mod, 1)

matrix Lambda = Mod.results.Lambda

rnameset(Lambda, varnames(xlist))

print "Loadings:"

print Lambda

Table 3: Stock-Watson dataset: selecting the number of dynamic factors
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Figure 4: Total nonfarm employment and common component

namic factor), we set s = 2 so that ft , ft−1 and ft−2 heterogeneously affect each of
the sectoral growth rates while ft follows an AR(4).

Given our objective to capture sectoral variation, we focus on the common varia-
tion which accounts for the largest share of the variance of the sectoral growth rates.
So the smoothed component that appears in Fig 4 is constructed as the first prin-
cipal component of the projection of the sectoral growth rates onto the common
(contemporaneous and lagged) factors.

The script in Table 4 (also included in the examples directory for the package)
was used to estimate the dynamic factor model and to produce Figure 4. The output
is as follows:

-----------------------------------------------------------

Number of series = 81, number of observations = 291

Number of factors = 1; factors are a VAR(4)

Number of lags in the observation equation = 2

-----------------------------------------------------------

method: ML via EM (16 iterations)

Log-likelihood = -29778.7

Total SSR/NT: 0.75505
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set verbose off

include DFM.gfn

open Labor.gdt --frompkg=DFM --quiet

list xlist = dataset - CES0000000001

Mod = DFM_Setup(xlist, 1, 2, 4) # q=1 , s=2 , p=4

set stopwatch

DFM_Estimate(&Mod, 3)

printf "\n\nElapsed time: %g seconds\n", $stopwatch

DFM_Printout(&Mod, 1)

# Save estimation results in a bundle held in Mod

results = Mod.results

Lambda = results.Lambda # matrix: store factor loadings

ML_Fac = results.ML_Fac # matrix: store factors f(t),...,f(t-s)

# Create the smoothed common component CCt

matrix mVec = {}

matrix mVac = eigensym( qform( Lambda , mcov(ML_Fac) ) , &mVec )

matrix mFhat = ML_Fac*(Lambda')*mVec[,cols(mVec)]

m = mean(CES0000000001)

s = sd(CES0000000001)

series CCt = m + (cdemean(mFhat)/sdc(mFhat,rows(mFhat)-1)) * s

list plotList = CCt CES0000000001

setinfo CCt --graph-name="Smoothed employment component"

setinfo CES0000000001 --graph-name="Total nonfarm employment"

plot plotList

options time-series with-lines

literal unset xzeroaxis

literal set grid ytics back lt 1 dt 2 lw 0.5 lc rgb "#808080"

literal set key left bottom

literal set ylabel "Percent change"

end plot --output=display

Table 4: Example for the US labour market
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6 List of public functions (in alphabetical order)

DFM_BNCrit(list X, scalar K, scalar p, scalar bprnt)

Return type : matrix

xlist : a list with the observable variables;

K : number of assumed static factors;

p : length of VAR filter on common factors p;

bprnt : Boolean, print details (optional; default: no)

This function calculates the four information criteria for determining the num-
ber of dynamic factors put forward in Bai and Ng (2007) (see section 4). It returns
a 1× 4 matrix with the suggested numer of dynamic factors according to the four
criteria.

The argument K contains the (assumed) number of static factors, that has to be
determined beforehand.

DFM_GetFactors(bundle *mod)

Return type : list

*mod : pointer to the model bundle

Returns a list with the estimated factors. The list series are named PC_* (princi-
pal components), TS_* (two-step) and ML_* (QML-EM estimation)

DFM_Estimate(bundle *mod, int method)

Return type : scalar

*mod : pointer to the model bundle created by the DFM_Setup function;

method : an integer: 1 for principal components, 2 for Doz et al. (2011) two-step
estimator, 3 for Doz et al. (2012) QML via EM (optional: default = two-step)
estimator
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Returns the value of 0 upon successful completion. It adds a bundle named
results in the model bundle *Mod. See section 3.3.1 for details

DFM_Printout(bundle *mod, int verbose)

Return type : void

*mod : pointer to the model bundle;

verbose : an integer type. 0: just print the model dimensions; 1: also print the
log-likelihood, EM iterations to convergence and a total residual variance es-
timate; 2: in addition, print some estimated system matrices (optional; default
= 1)

Prints estimation related results.

DFM_Setup (list xlist, int cq, int cs, int cP, int itermax,

scalar cthres,int cConvCrit, bool cVerbose)

Return type : bundle

xlist : a list with the observable variables; note that the vector of observables xt in
equation (1) is a standardized version of the original data contained in xlist;

cq : number of dynamic factors q (optional; default: 1);

cs : number of lags of the dynamic factors, s in equation (1) (optional; default: 0);

cP : length of VAR filter on common factors p (optional; default: 1);

itermax : maximum number of EM iterations for QML estimation (optional; de-
fault: 5000);

cConvCrit : choice of convergence criterion, 1 for ML distance or 2 for parameter
distance as in equations (5) and (6) (optional; default: 1);

cthres : convergence threshold for QML estimation (optional; default: 0.0001 for
the ML distance criterion); Depending on the application (and identification
of the model that is not handled at the moment), if the parameter distance
criterion is employed then the threshold should be set at (or less than) 0.01;

cVerbose : a Boolean type controlling the degree of output verbosity. 0 = no output
is printed, 1 = the log-likelihood and parameter distance as in equation (6) are
printed at each EM iteration (optional; default: yes)

This function returns the initialised model bundle, for which the preliminary
steps are taken: sub-sampling the data as needed, building and standardising the
data matrix, handling the default settings.
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7 Changelog

v 0.1 Initial release

v 0.2 Bump version requirement; fix a few statements in the example scripts; add
some info to the printout of companion eigenvalues; make it possible to save
the factors from the GUI.
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