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Abstract

This paper presents a software package that implements Bayesian Averaging of Classical
Estimates BACE ver. 1.1 for gretl (the GNU regression, econometrics and time-series li-
brary).
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1 Introduction

The article Xavier Sala-i-Martin and Gernot Doppelhofer and Ronald I. Miller (2004) sug-
gests a technique for averaging the parameter estimates – Bayesian Averaging of Classi-
cal Estimates, which enables to measure the importance of particular potential regressors.
This approach is alternative to the familiar and earlier-applied Bayesian Model Averaging
(BMA) technique, from which it differs mainly because of its less restrictive a priori assump-
tions. The authors showed that a weighting method may be understood as a limiting case
of Bayesian analysis when the prior information is dominated by the data. Averaging of
the parameter estimates is performed across all possible combinations of models obtained
by means of Classical Ordinary Least Squares (OLS) estimation.

The BACE approach has several interesting features in relation to the techniques such as
BMA or robustness-checking methods. First of all, it is not necessary to make assumptions
concerning the a priori distribution for parameters, and only one simple assumption, on the
expected model size.

By applying diffuse priors we obtain the posterior odds ratio for two regression models:

P(M0|y)
P(M1|y)

≈ P(M0)

P(M1)

(
|A0|/|A0 + X

′
0X0|

|A1|/|A1 + X′1X1|

)−1/2 (
SSE0 + Q0

SSE1 + Q1

)−T/2
, (1)

where

• P(Mi) and P(Mi|y) are the prior and posterior probabilities, respectively, for model
Mi;

• X0 and X1 are matrices with the observations for the independent variables for M0
and M1; SSEi is the OLS sum of squared errors for model i;

• T is the sample size;

• A−1
0 and A−1

1 are covariance matrices;

• Qi is a quadratic form of estimated parameters.

If we use Zellner’s g-prior Zellner (1986) for A0 = gX0
′
X0 and A1 = gX1

′
X1 and assume

that g→ 0 and XTX → ∞ we will finally obtain the following posterior odds ratio:
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P(M1|y)

=
P(M0)

P(M1)
T(k1−k0)/2

(
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SSE1

)−T/2
, (2)

where ki is the number of parameters in model Mi. We can calculate posterior probability
of P(Mj|y) via the following formula:

P(Mj|y) =
P(Mj)T

−kj/2SSE−T/2
j

∑2K
i=1 P(Mi)T−ki/2SSE−T/2

i

. (3)

where 2K denotes the total number of potential combinations of the K independent vari-
ables.

Using BACE we can also easily evaluate the mean and variance of the posterior distri-
bution of slope parameters (see Leamer (1978)):

E(β|y) =
2K

∑
i=1

P(Mj|y)E(β|y, Mj) (4)



2 USAGE OF THE BACE PACKAGE 3

Equation (4) can be rewritten as:

E(β|y) =
2K

∑
i=1

P(Mj|y)β̂ (5)

where β̂ = E(β|y, Mj) is the OLS estimate of β from model Mj. The posterior variance of β

is given by:

Var(β|y) =
2K

∑
i=1

P(Mj|y)Var(β|y, Mj) +
2K

∑
i=1

P(Mj|y)
(

β̂ j −
2K

∑
i=1

P(Mj|y)β̂ j

)2

. (6)

An example of the application of the BACE technique for forecasting macroeconomic
indicators can be found, among others, in the articles van Dijk (2004); Białowolski et al.
(2014); Albis and Mapa (2014).

2 Usage of the BACE package

2.1 BACE main function

The BACE package defines two public functions: BACE GUI() and BACE Print(). The
BACE GUI() takes following parameters:

• Dependent variable as series [required].

• Y lags as integer with zero (only for time-series).

• List of independent variables (X) as list [may be null].

• Constant in model as integer [required]:

1. Never – all models without constant,

2. Always – all models with constant,

3. Can be dropped – constant may be removed from or added to any model.

• Model prior as integer [required]:

1. Binomial – binomial distribution,

2. Binomial-Beta – binomial-beta distribution1.

• Prior average model size as scalar with zero [required].

• Significance level for the initial model as scalar from (0, 1) [required].

• Number of the top ranked models as integer [required].

• Jointness analysis as integer with zero [required]2:

1. None – we do not perform any jointness analysis,

2. Ley-Steel Measure – we perform jointness analysis with Ley-Steel measure,

1Note: this option may generate errors as this distribution follows Occam’s razor principle in a very aggressive
way.

2Values ±999.000000 should be interpreted as ±∞.
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3. Doppelhofer-Weeks Measure – we perform jointness analysis with Doppelhofer-
Weeks measure.

• Number of out-of-sample forecasts as integer with zero [required].

• Total number of replications as integer [required].

• Percentage of burn-in draws as integer from (0, 99) [required].

• Verbosity as integer [required].

• Show overall progress as Boolean.

The BACE GUI() function returns a bundle with all information needed to print results
anytime. One can print the results by calling BACE Print(&RES), where RES is the bundle
returned by the BACE GUI() function.

2.2 The GUI way

Once you start gretl, you must open a data file and then you can load the relevant BACE
package from the gretl server. In the main window, go to File > Function packages > On
server heading. By selecting BACE, you will download the package on your local machine.
Next, go to File > Function packages > On local machine and by selecting BACE from the
list open a window similar to the one shown in Figure 1:

Figure 1: Main window for BACE.

According to Figure 1, we can specify the following entries in the GUI BACE window
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• Dependent variable – The dependent variable.

• Y lags – number of lags for dependent variable (for time-series only).

• List of independent variables – Loading variables from the database, which must
have been opened previously. Note that by default we assume that you want to es-
timate an intercept; therefore, a constant is implicitly included in the list of the vari-
ables.

• Constant in model – Do we include intercept? It can be: always, never or can be
dropped.

• Model prior – Indicates the choice of model prior. One can employ the binomial
model prior or the binomial-beta model prior. Note that the uniform model prior is
a special case of the binomial model prior. Therefore, in fact, our package allows for
three types of priors.

• Prior average model size – Specifies the prior expected model size E(Ξ). The ex-
pected model size may range from 0 to K. The default value equals 1. It is the smallest
reasonable prior expected model size. It means that we penalize large models and we
assign high probability to small ones following Occam’s razor principle.

Note that for the binomial model prior and with E(Ξ) = 0.5K one can define the
uniform prior on the model space. For example, for K = 10 regressors we can define
the uniform prior with E(Ξ) = 5. For E(Ξ) < 5 we assign high probability to small
models. The smaller the prior expected model size E(Ξ), the less probable are larger
models.

• Significance level for the initial model – Defines the significance level which is used
to build the initial model. An explanatory variable enters the initial model if its
p value is less than the significance level. If the significance level equals 1, the initial
model will be randomly chosen (with equal probability) from all available models.
Note that if all available explanatory variables enter the initial model, you will get
the following gretl error message “No independent variables were omitted”.

• Number of top ranked models – Specifies the number of best models for which de-
tailed information is stored.

• Jointness analysis – If None (the default), the jointness analysis is omitted. Alterna-
tively, one can choose the jointness measures of Ley and Steel (2007) or Doppelhofer
and Weeks (2009).

• Number of out-of-sample forecasts – Defines the total number of out-of-sample fore-
casts of the dependent variable.

• Total number of replications – Defines the total number of iteration draws to be
sampled.

• Percentage of burn-in draws – Specifies the number of burn-in replications, calcu-
lated as the percentage of the total number of iteration draws.

• Verbosity – An integer value of 1 or 2; the default is 1, which allows to see the ba-
sic Bayesian Averaging of Classical Estimates results. If Verbosity equals 2, a more
detailed description of the analysis is provided (initial model, speed of convergence,
estimation results for top ranked models).
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• Show overall progress – The output is flushed every 10% of MC3 and the progress is
printed. Note: this consumes a lot of CPU time.

2.3 The script way

2.3.1 General remarks

The BACE package can also be used inside Hansl scripts.

open greene9_1.gdt

include BACE.gfn

set seed 1000000

list greene = capital labor nfirm

scalar y_lags = 0

scalar with_const = 1

scalar model_prior = 1

scalar prior_avg_model_size = 1.5

scalar alpha = 0.6

scalar top_ranked_model = 4

scalar joint = 1

scalar forecasts = 0

scalar Nrep = 2000

scalar Nburn = 10

scalar verbosity = 1

scalar progress = 1

BACE_GUI(valadd, y_lags, greene, with_const, model_prior, prior_avg_model_size,

alpha, top_ranked_model, joint, forecasts, Nrep, Nburn, verbosity, progress)

The above example consists of three blocks. The first block is just opening of the so
called greene9 1 dataset, which is bundled in every standard gretl installation. This dataset
contains cross-sectional data on manufacturing of transportation equipment presented as
Table 9.1 in Greene (1999)3. We also set the seed in order to exact reproduction of the results.

The second block is the definition of the greene list which contains three independent
variables available in the greene9 1 dataset.

The third block contains the definition for Bayesian Averaging of Classical Estimates
analysis: no lags for Y variable (not applicable since we have cross-sectional data), con-
stant always included, binomial model prior, prior average model size set to 1.5 (which
means that we have uniform model prior), significance level for the initial model set to 0.6,
4 top ranked models, jointness analysis with Ley-Steel Measure, without out-of-sample
predictions, 10000 replications with 10% burn-in draws, basic output (verbosity set to 1)
and progress overall progress is printed.

Suppose we want to run the same analysis but following Occam’s razor principle. The
simplest way is setting the prior average model size to 1. We also want to have ”random”
constant, i.e. intercept can be dropped in any model. We also want to save results of the
BACE analysis in the bundle results b, the code should be as follows:

prior_avg_model_size = 1

with_const = 2

3This dataset is also available at link http://people.stern.nyu.edu/wgreene/Text/Edition7/TableF7-2.

txt.

http://people.stern.nyu.edu/wgreene/Text/Edition7/TableF7-2.txt
http://people.stern.nyu.edu/wgreene/Text/Edition7/TableF7-2.txt
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results_b = BACE_GUI(valadd, y_lags, greene, with_const, model_prior,

prior_avg_model_size, alpha, top_ranked_model, joint, forecasts,

Nrep, Nburn, verbosity, progress)

Suppose we want to calculate Doppelhofer-Weeks Measure instead of already com-
puted Ley-Steel Measure. Since the type of jointness measure is controlled by do join

field in the result bundle, the only thing we have to do is to set the value of do join to 2
and print BACE results again. The code should be as follows:

results_b.do_joint = 2

BACE_Print(&results_b)

2.4 Output

If you select the appropriate entries in the GUI BACE window, our package returns: Pos-
terior Inclusion Probabilities (PIP), the averages of the posterior means and standard de-
viations of parameters (“Mean” and “Std.Dev.”, respectively) and the posterior mean and
standard deviation of each coefficient conditional on the variable being included in the
model (“Cond.Mean” and “Cond.Std.Dev.”). Furthermore, the package also returns the
predictive results for the dependent variable (“Mean” and “Std.Dev.”).

Let us consider the data used in previous example (australia.gdt). This dataset con-
tains the Australian macro data used in Johansen (1995) and originally supplied by Tony
Hall. The variables used in the text are:

• lpau – log of Australian CPI (dependent variable),

• lpus – log of US CPI,

• le – log of exchange rate (price of US dollars in Aus. dollars),

• iau2 – 5-year Treasury bond rate, Australia,

• ius2 – 5-year Treasury bond rate, USA.

Suppose we want to perform BACE analysis up to ADL(2, 2) specification, i.e. all possible
combinations from ADL(0, 0) to ADL(2, 2). The example script would be as follows:

set verbose off

include BACE.gfn

open australia.gdt

genr time

# We create lagged values

adl_lags = 2

lags(adl_lags, ius2)

lags(adl_lags, iau2)

lags(adl_lags, e2)

lags(adl_lags, lpus)

lags(adl_lags, le)

# We define list with all X-es (including lags)

list X_list = time ius2 ius2_* iau2 iau2_* e2 e2_* lpus lpus_* le le_*
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set seed 1000000

scalar y_lags = 2

scalar with_const = 2

scalar model_prior = 1

scalar prior_avg_model_size = (nelem(X_list) + y_lags + (with_const > 0)) / 2

scalar alpha = 0.6

scalar top_ranked_model = 4

scalar joint = 0

scalar forecasts = 4

scalar Nrep = 20000

scalar Nburn = 10

scalar verbosity = 2

scalar progress = 0

RES = BACE_GUI(lpau, y_lags, X_list, with_const, model_prior, prior_avg_model_size,

alpha, top_ranked_model, joint, forecasts, Nrep, Nburn, verbosity, progress)

In the above analysis all variables (including dependent variable lpaut) are lagged by 2
periods. Additionally we compute 4 forecasts:

Posterior moments (unconditional and conditional on inclusion):

PIP Mean Std.Dev. Cond.Mean Cond.Std.Dev

lpau_1 1.000000 0.898422 0.088271 0.898422 0.088271

ius2 0.997000 -0.416877 0.099906 -0.418132 0.097400

lpus_2 0.809944 -0.314702 0.206717 -0.388548 0.155135

lpus_1 0.809722 0.375109 0.250558 0.463256 0.191565

iau2 0.734667 0.220749 0.163020 0.300475 0.110535

le_2 0.486278 -0.025183 0.043186 -0.051788 0.049573

const 0.380944 -0.070362 0.121555 -0.184705 0.132918

e2_2 0.313611 0.000893 0.031421 0.002848 0.056059

le_1 0.289333 -0.023608 0.062658 -0.081595 0.094008

e2_1 0.259778 0.015060 0.051931 0.057971 0.088847

lpus 0.259333 0.030558 0.100080 0.117835 0.168338

le 0.232389 0.010776 0.043065 0.046368 0.079563

iau2_1 0.231833 0.038012 0.094594 0.163963 0.133962

lpau_2 0.228389 0.034060 0.083090 0.149130 0.114319

time 0.227500 0.000056 0.000259 0.000245 0.000498

ius2_1 0.177833 0.022368 0.075481 0.125778 0.137952

e2 0.176944 -0.005384 0.035227 -0.030426 0.079064

ius2_2 0.140056 -0.010130 0.049214 -0.072329 0.113114

iau2_2 0.130111 0.005367 0.040834 0.041247 0.106466

----------------------------------

Posterior probability of models:

Model 1: 0.018944

Model 2: 0.016278

Model 3: 0.015056

Model 4: 0.011889

Total probability of the models in ranking (numerical): 0.062167
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Correlation coefficient between the analytical

and numerical probabilities of the above models: 0.997955

----------------------------------

Predictive results:

lpau Mean Std.Dev.

1990:2 5.334649 5.340560 0.007958

1990:3 5.341856 5.356856 0.008412

1990:4 5.368310 5.378740 0.010150

1991:1 5.366443 5.395888 0.013844
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