
working papers

The SVAR addon for gretl

Riccardo (Jack) Lucchetti

Università Politecnica delle Marche and MoFiR
r.lucchetti@univpm.it

Sven Schreiber

Macroeconomic Policy Institute (IMK), Hans Böckler Foundation and Free University Berlin
svetosch@gmx.net

working paper #5

March 16, 2018

Abstract

The SVAR addon is a collection of gretl functions to estimate Structural Vector Autoregres-
sions (SVARs) and to conduct inference on the resulting magnitudes such as the impulse
response functions and short-run or long-run impact matrices. For the purpose of identify-
ing the structural shocks short-run as well as long-run restrictions are supported, including
those related to the cointegration properties in the case of non-stationary systems. For the
stationary case a dialog-driven graphical interface is also offered. Inference can be based
on the bootstrap, optionally using a bias correction as suggested in the literature.

This documentation explains the addon’s usage, capabilites and limitations, and pro-
vides some necessary econometric methodological background (version 1.32).

Keywords: Structural VARs, bootstrap.

JEL codes: C32, C87

Contents

1 Introduction 2

2 C models 3
A simple example . 3
Base estimation via the SVAR package . 5
Algorithm choice . 8
Displaying the Impulse Responses . 8
Bootstrapping . 10
A shortcut . 12

3 More on plotting 12
Plotting the FEVD . 12
Historical decomposition . 14

4 C-models with long-run restrictions (Blanchard-Quah style) 16
A modicum of theory . 16
Example . 18
Combining short- and long-run restrictions . 20

5 AB models 21
A simple example . 21

6 Checking for identification 23

7 Structural VEC Models 26
Syntax . 27
A hands-on example . 30

8 The GUI interface 32
Identifying constraints . 32
Bootstrap parameters and cumulation . 33
The output window . 34
An example . 34

A Alphabetical list of functions 37

B Contents of the model bundle 43

C Changelog (after v1.2) 44
Version 1.31 and 1.32, January 2018 . 44
Version 1.3, December 2017 . 44

1

1 Introduction

The SVAR package is a collection of gretl functions to estimate Structural VARs, or SVARs
for short.

In the remainder of this guide, the emphasis will be put on the scripting interface, which
is the recommended way of using the package. However, most, if not all, of its features are
also accessible via the “Structural VAR” menu entry (go to Model > Time Series > Multi-
variate) and the corresponding menu-driven interface. The impatient reader, who already
has some understanding of what a SVAR is and is looking for a step-by-step guide on how
to get her work done quickly via point-and click methods, can consult section 8 in the
Appendix.

In order to establish notation and define a few concepts, allow us to inflict on you a
2-page crash course on SVARs. In this context,1 we call “structural” a model in which we
assume that the one-step-ahead prediction errors εt from a statistical model can be thought
of as linear functions of the structural shocks ut. In its most general form, a structural model
is the pair of equations

εt = yt − E(yt|Ft−1) (1)

Aεt = But (2)

where Ft−1 is the information set at t− 1.
In practically all cases, the statistical model is a a finite-order VAR and equation (1)

specialises to

yt = µ′xt +
p

∑
i=1

Φiyt−i + εt or Φ(L)yt = µ′xt + εt (3)

where the VAR may include an exogenous component xt, which typically contains at least
a constant term. The above model is referred to as the AB-model in Amisano-Giannini
(1997).

The object of estimation are the square matrices A and B; estimation is carried out by
maximum likelihood. After defining C as A−1B, the relationship between prediction errors
and structural shocks becomes

εt = Cut (4)

and under the assumption of normality the average log-likelihood can be written as

L = const− ln |C| − 0.5 · tr(Σ̂(CC′)−1)

As is well known, the above model is under-identified and in order for the log-likelihood
to have a (locally) unique maximum, it is necessary to impose some restrictions on the ma-
trices A and B. This issue will be more thoroughly discussed in section 6; for the moment,
let’s just say that some the elements in A and B have to be fixed to pre-specified values.
The minimum number of restrictions is n2 + n2−n

2 . This, however, is a necessary condition,
but not sufficient by itself.

The popular case in which A = I is called a C-model. Further, a special case of the
C-model occurs when B is assumed to be lower-triangular. This was Sims’s (1980) original
proposal, and is sometimes called a “recursive” identification scheme. It has a number of

1The adjective “structural” is possibly one of the most widely used and abused in econometrics. In other
contexts, it takes a totally different, and unrelated, meaning.

2

interesting properties, among which the fact that the ML estimator of C is just the Cholesky
decomposition of Σ̂, the sample covariance matrix of VAR residuals. This is why many
practitioners often use the “recursive model” and “Cholesky model” phrases interchange-
ably. This has been the most frequently used variant of a SVAR model, partly for its ease
of interpretation, partly for its ease of estimation.2 In the remainder of this document, a
lower-triangular C model will be called a “plain” SVAR model.

If the model is just-identified, Σ̂(CC′)−1 will be the identity matrix and the log-likelihood
simplifies to

L = const− 0.5 ln |Σ̂| − 0.5n

Of course, it is possible to estimate constrained models by imposing some extra restrictions;
this makes it possible to test the over-identifying restrictions easily by means of a LR test.

Except for trivial cases, like the Cholesky decomposition, maximisation of the likeli-
hood involves numerical iterations. Fortunately, analytical expressions for the score, the
Hessian and the information matrix are available, which helps a lot;3 once convergence has
occurred, the covariance matrix for the unrestricted elements of A and B is easily computed
via the information matrix.

Once estimation is completed, Â and B̂ can be used to compute the structural VMA
representation of the VAR, which is the base ingredient for most of the subsequent analysis,
such as Impulse Response Analysis and so forth. If the matrix polynomial Φ(L) in equation
(3) is invertible, then (assuming xt = 0 for ease of notation), yt can be written as

yt = Φ(L)−1εt = Θ(L)εt = εt + Θ1εt−1 + · · · (5)

which is known as the VMA representation of the VAR. Note that in general the matrix
polynomial Θ(L) is of infinite order.

From the above expression, one can write the structural VMA representation as

yt = Cut + Θ1Cut−1 + · · · = M0ut + M1ut−1 + · · · (6)

From equation (6) it is immediate to compute the impulse response functions:

Ii,j,h =
∂yi,t

∂uj,t−h
=

∂yi,t+h

∂uj,t
(7)

which in this case equal simply
Ii,j,h = [Mh]ij

The computation of confidence intervals for impulse responses could, in principle, be per-
formed analytically by the delta method (see Lütkepohl (1990)). However, this has two
disadvantages: for a start, it is quite involved to code. Moreover, the limit distribution has
been shown to be a very poor approximation in finite samples (see for example Fachin and
Bravetti (1996) or Kilian (1998)), so the bootstrap is almost universally adopted, although
in some cases it may be quite CPU-heavy.

2 C models

A simple example

2Some may say “partly for the unimaginative nature of applied economists, who prefer to play safe and max-
imise the chances their paper isn’t rejected rather than risk and be daring and creative”. But who are we to judge?

3As advocated in Amisano and Giannini, the scoring algorithm is used by default, but several alternatives are
available. See subsection 2 below.

3

turn extra output off

set verbose off

open the data and do some preliminary transformations

open sw_ch14.gdt

genr infl = 400*ldiff(PUNEW)

rename LHUR unemp

list X = unemp infl

var 3 unemp infl

Sigma = $sigma

C = cholesky(Sigma)

print Sigma C

Table 1: Cholesky example via gretl’s internal var command

As a trivial example, we will estimate a plain Cholesky model. The data are taken
from Stock and Watson’s sample data sw ch14.gdt, and our VAR will include inflation and
unemployment, with a constant and 3 lags. Then, we will compute the IRFs and their 90%
bootstrap confidence interval.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 5 10 15 20 25 30 35 40

periods

u -> u

-0.1
-0.05

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0 5 10 15 20 25 30 35 40

periods

infl -> u

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0 5 10 15 20 25 30 35 40

periods

u -> infl

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 0 5 10 15 20 25 30 35 40

periods

infl -> infl

Figure 1: Impulse response functions for the simple Cholesky model (native)

In order to accomplish the above, note that we don’t need to use the SVAR package, as a
Cholesky SVAR can be handled by gretl natively. In fact, the script shown in Table 1 does
just that: runs a VAR, collects Σ̂ and estimates C as its Cholesky decomposition. Part of its

4Why not 95%? Well, keeping the number of bootstrap replications low is one reason. Anyway, it must be said
that in the SVAR literature few people use 95%. 90%, 84% or even 66% are common choices.

4

VAR system, lag order 3

OLS estimates, observations 1960:1-1999:4 (T = 160)

Log-likelihood = -267.76524

Determinant of covariance matrix = 0.097423416

AIC = 3.5221

BIC = 3.7911

HQC = 3.6313

Portmanteau test: LB(40) = 162.946, df = 148 [0.1896]

Equation 1: u

coefficient std. error t-ratio p-value

--

const 0.137300 0.0846842 1.621 0.1070

u_1 1.56139 0.0792473 19.70 8.07e-44 ***

u_2 -0.672638 0.140545 -4.786 3.98e-06 ***

...

Sigma (2 x 2)

0.055341 -0.028325

-0.028325 1.7749

C (2 x 2)

0.23525 0.0000

-0.12041 1.3268

Table 2: Cholesky example via gretl’s internal var command — Output

output is in Table 2. The impulse responses as computed by gretl’s internal command can
be see in figure 1. See the Gretl User’s Guide for more details.

Base estimation via the SVAR package

We will now replicate the above example via the SVAR package; in order to do so, we need
to treat this model as a special case of the C-model, where εt = Cut and identification is
attained by stipulating that C is lower-triangular, that is

C =

[
c11 0

c12 c22

]
. (8)

Table 3 shows a sample script to estimate the example Cholesky model: the basic idea
is that the model is contained in a gretl bundle.5 In this example, the bundle is called Mod,
but it can of course take any valid gretl identifier.

After performing the same preliminary steps as in the example in Table 1, we load the
package and use the SVAR setup function, which initialises the model and sets up a few

5Bundles are a gretl data type: they may be briefly described as containers in which a certain object (a scalar, a
matrix and so on) is associated to a “key” (a string). Technically speaking, a bundle is an associative array: these
data structures are called “hashes” in Perl or “dictionaries” in Python. Fore more info, you’ll want to take a look
at the Gretl User’s Guide, section 10.7.

5

turn extra output off

set verbose off

open the data and do some preliminary transformations

open sw_ch14.gdt

genr infl = 400*ldiff(PUNEW)

rename LHUR unemp

list X = unemp infl

list Z = const

load the SVAR package

include SVAR.gfn

set up the SVAR

Mod = SVAR_setup("C", X, Z, 3)

Specify the constraints on C

SVAR_restrict(&Mod, "C", 1, 2, 0)

Estimate

SVAR_estimate(&Mod)

Table 3: Simple C-model

things. This function takes 4 arguments:

• a string, with the model type ("C" in this example);

• a list containing the endogenous variables yt;

• a list containing the exogenous variables xt (may be null);

• the VAR order p.

Once the model is set up, you can specify which elements you want to constrain to
achieve identification: in fact, the key ingredient in a SVAR is the set of constraints we put
on the structural matrices. SVAR handles these restrictions via their implicit form represen-
tation Rθ = d. As an example, the constraints for the simple case we’re considering here
can be written in implicit form as

R vec C = d

where R = [0, 0, 1, 0] and d = 0.
There are several ways to constrain a model: for a C model, the R∗ = [R|d] matrix is

stored as the bundle element Rd1 and the number of its rows is kept as bundle element nc1.
If you feel like building the matrix R∗ via gretl’s ordinary matrix functions, all you have to
do is to fill up the bundle elements Rd1 and nc1 properly before calling SVAR estimate().

In most cases, however, you’ll want to use the SVAR restrict function, which gives
you a much more straightforward tool. A complete description can be found in appendix
A; suffice it to say here that the result of the function

SVAR_restrict(&Mod, "C", 1, 2, 0)

is to ensure that C1,2 = 0 (see eq. 8). The SVAR restrict function does nothing but add rows
to R∗. The function also contains a check so that redundant or inconsistent restrictions will
not be allowed.

6

The next step is estimation, which is accomplished via the SVAR estimate function,
which just takes one argument, the model to estimate. The output of the SVAR estimate

function is shown below:6 note that, as an added benefit, we get asymptotic standard errors
for the estimated parameters (estimated via the information matrix).

Unconstrained Sigma:

0.05676 -0.02905

-0.02905 1.82044

coefficient std. error z-stat p-value

--

C[1; 1] 0.238243 0.0131548 18.11 2.62e-73 ***

C[2; 1] -0.121939 0.105142 -1.160 0.2461

C[1; 2] 0.00000 0.00000 NA NA

C[2; 2] 1.34371 0.0741942 18.11 2.62e-73 ***

At this point, the model bundle contains all the quantities that will need to be accessed
later on, including the structural VMA representation (6), which is stored in a matrix called
IRFs which has h rows and n2 columns. Each row i of this matrix is vec(Mi)

′, so if you
wanted to retrieve the IRF for variable m with respect to the shock k, you’d have to pick its
[(k− 1) · n + m]-th column.

The number of rows h is called the “horizon”. The function SVAR setup initialises auto-
matically the horizon to 24 for monthly data and to 20 for quarterly data. To change it, you
just assign the desired value to the horizon element of the bundle, as in

Mod.horizon = 40

Clearly, this adjustment has to be done before the SVAR estimate function is called.
More details on the internal organisation of the bundle can be found in section B in

the appendix. Its contents can be accessed via the ordinary gretl syntactic constructs for
dealing with bundles. For example, the number of observations used in estimating the
model is stored as the bundle member T, so if you ever need it you can just use the syntax
Mod.T.

Once the model has been estimated, it becomes possible to retrieve estimates of the
structural shocks, via the function GetShocks, as in:

series foo = GetShock(&Mod, 1)

series bar = GetShock(&Mod, 2)

If we append the two lines above to example 3, two new series will be obtained. The
formula used is nothing but equation (4) in which the VAR residuals are used in place of εt.

Warning: If you are working on a subsample of your dataset, keep in mind that the
SVAR package follows a different convention than gretl for handling the actual start of your
sample. Ordinary gretl commands, such as var, will use data prior to your subsampling
choice for lags, if present. The SVAR package, on the contrary, will not. An example should
make this clear: suppose your dataset starts at 1970Q1, but you restrict your sample range
only to start at 1980Q1. The gretl commands

6For compatibility with other packages, Σ̂ is estimated by dividing the cross-products of the VAR residuals by
T − k instead of T; this means that the actual figures will be slightly different from what you would obtain by
running var and then cholesky($sigma).

7

smpl 1980:1 ;

list X = x y z

var 6 X

will estimate a VAR with 6 lags, in which the first datapoint for the dependent variable will
be 1980Q1 and data from 1978Q3 to 1979Q4 will be used for initialising the VAR. However,

smpl 1980:1 ;

list X = x y z

Mod = SVAR_setup("C", X, const, 6)

will estimate the same model on a different dataset: that is, the first available datapoint for
estimation will be 1981Q3 because data from 1980Q1 to 1981Q2 will be needed for lagged
values of the yt variables.

Algorithm choice

Another thing you may want to toggle before calling SVAR estimate is the optimisation
method: you do this by setting the bundle element optmeth to some number between 0
and 4; its meaning is shown below:

optmeth Algorithm

0 BFGS (numerical score)

1 BFGS (analytical score)

2 Newton-Raphson (numerical score)

3 Newton-Raphson (analytical score)

4 Scoring algorithm (default)

So in practice the following code snippet

Mod.optmeth = 3

SVAR_estimate(&Mod)

would estimate the model by using the Newton-Raphson method, computing the Hessian
by numerically differentiating the analytical score. In most cases, the default choice will be
the most efficient; however, it may happen (especially with heavily over-identified mod-
els) that the scoring algorithm fails to converge. In those cases, there’s no general rule.
Experiment!

Displaying the Impulse Responses

The SVAR package provides a function called IRFplot for plotting the impulse response
function on your screen, with a little help from our friend gnuplot; its syntax is relatively
simple. IRFplot requires three arguments:

1. The model bundle (as a pointer);

2. the number of the structural shock we want the IRF to;

3. the number of the variable we want the IRF for.

For example,

IRFplot(&Mod, 1, 1)

8

The function can be used in a more sophisticated way than this (see later). Its output
is presented in Figure 2. As can be seen, it’s very similar to the one obtained by gretl’s
native command (Figure 1).7

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 5 10 15 20 25 30 35

IRF: unemp shock -> unemployment

Figure 2: Impulse response functions for unemployment

By the way: you can attach labels to the structural shocks if you want. Just store an
array of strings with the appropriate number of elements into the model bundle, under the
snames key. For example,

Mod.snames = strsplit("foo bar baz")

If you omit this step, the structural shocks will be labelled with names corresponding to
the observable variables in your VAR. This doesn’t make particular sense in general, but it
does in a triangular model, in which there is a one-to-one correspondence, so we decided
to make this the default choice.

A word on the unit of measurement of IRFs: by their definition (see equation (7)), and
the fact the structural shocks are assumed to have unit variance, clearly their unit of mea-
surement is the same as the one for the corresponding observable variable yi,t. Sometimes,
however, a different convention is adopted, and people want to display IRFs graphically
by normalizing Ii,i,0 = 1. This can be achieved by setting the bundle member normalize
to 1, as in

Mod.normalize = 1

before calling IRFplot. Setting ot back to its default value of 0 will restore standard behav-
ior.

7Warning: using the built-in GUI graph editor that gretl provides may produce ‘wrong’ results on the figures
generated by the IRFplot function. All gretl’s graphics are handled by creating a gnuplot script, executing it
and then sending the result to the display. All this is done transparently. When you edit a graph, you modify
the underlying gnuplot script via some GUI elements, so when you click “Apply” the graphic gets re-generated.
However, gretl’s GUI interface for modifying graphics can’t handle arbitrary gnuplot scripts, but only those gen-
erated internally.

The figures generated by IRFplot contain a few extra features that the GUI editor doesn’t handle, so invoking
the GUI controls may mess up the graph. As an alternative, you can customise the graph by editing the gnuplot
script directly: right-click on it and “Save [it] to session as icon”. Then, in the icon view, right click on the graph
icon and choose “Edit plot commands”: you’ll have the gnuplot source to the graph, that you can modify as
needed.

9

Bootstrapping

bfail = SVAR_boot(&Mod, 1024, 0.90)

loop i=1..2 --quiet

loop j=1..2 --quiet

sprintf fnam "simpleC_%d%d.pdf", i, j

IRFsave(fnam, &Mod, i, j)

end loop

end loop

Table 4: Simple C-model (continued)

The next step is computing bootstrap-based confidence intervals for the estimated co-
efficients and, more interestingly, for the impulse responses: as can be seen in Table 4, this
task is given to the SVAR boot function, which takes as arguments

1. The model bundle pointer;

2. the required number of bootstrap replications (1024 here);8

3. the desired size of the confidence interval α.

The function outputs a scalar, which keeps track of how many bootstrap replications
failed to converge (none here). Note that this procedure may be quite CPU-intensive.

The function can also return in output a table similar to the output to Cmodel, which is
used to display the bootstrap means and standard errors of the parameters:

Bootstrap results (1024 replications)

coefficient std. error z p-value

C[1; 1] 0.232146 0.0183337 12.66 9.57e-37 ***

C[2; 1] -0.114610 0.143686 -0.7976 0.4251

C[1; 2] 0.00000 0.00000 NA NA

C[2; 2] 1.30234 0.0853908 15.25 1.61e-52 ***

Failed = 0, Time (bootstrap) = 20.24

This can be achieved by supplying a zero fourth argument to the SVAR boot function, as in

bfail = SVAR_boot(&Mod, 1024, 0.90, 0)

Once the bootstrap is done, its results are stored into the bundle for later use: upon
successful completion, the model bundle will contain another bundle called bootdata. This
contains some information on the bootstrap details, such as the confidence interval α and
others; in addition, it will contain three matrices in which each column is one of the n2 IRFs,
and the rows contain

1. the lower limit of the confidence interval in the lo cb matrix;

2. the upper limit of the confidence interval in the hi cb matrix;

8There’s a hard limit at 16384 at the moment; probably, it will be raised in the future. However, unless your
model is very simple, anything more than that is likely to take forever and melt your CPU.

10

3. the medians in the mdns matrix.

where h is the IRF horizon.
In practice, the bootstrap results may be retrieved as follows (the medians in this exam-

ple):

bfail = SVAR_boot(&Mod, 1024, 0.90)

scalar h = Mod.horizon

bundle m = Mod.bootdata

matrix medians = m.mdns

However, if you invoke IRFplot() after the bootstrap, the above information will be
automatically used for generating the graph. In this case, you may supply IRFplot() with
a fourth argument, an integer from 0 to 2, to place the legend to the right of the plot (value:
1), below it (value: 2) or omit it altogether (value: 0). The default, which applies if you omit
the parameter, is 1.

Another SVAR function, IRFsave(), is used to store plots the impulse responses into
graphic files files for later use;9 its arguments are the same as IRFplot(), except that the
first argument must contain a valid filename to save the plot into. In the above example,
this function is used within a loop to save all impulse responses in one go. The output is
shown in Figure 3.

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 5 10 15 20 25 30 35

IRF: shock 1 -> unemp

Bstrap 90% CI
Bstrap median

IRF

-0.8

-0.6

-0.4

-0.2

 0

 0 5 10 15 20 25 30 35

IRF: shock 1 -> infl

Bstrap 90% CI
Bstrap median

IRF

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 5 10 15 20 25 30 35

IRF: shock 2 -> unemp

Bstrap 90% CI
Bstrap median

IRF

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 5 10 15 20 25 30 35

IRF: shock 2 -> infl

Bstrap 90% CI
Bstrap median

IRF

Figure 3: Impulse response functions for the simple Cholesky model

The default method for performing the bootstrap is the the most straightforward residual-
based bootstrap, that is the one put forward by Runkle (1987).

As an alternative, one may use bias-correction, which comes in two flavors, both in-
spired by the procedure known as “bootstrap-after-bootstrap” (Kilian, 1998).

9The format is dictated by the extension you use for the output file name: since this job is delegated to gnuplot,
all graphical formats that gnuplot supports are available, including pdf, PostScript (via the extension ps), PNG
(via the extension png) or Scalable Vector Graphics (via the extension svg).

11

The one which corresponds more closely to Kilian’s procedure is what what we call the
“Full” variant; The “Partial” variant applies the bias correction only for adjusting the VAR
coefficients used for generating the bootstrap replications, but not for computing the VMA
representation. The interested user may want to experiment with both.

The “Partial” and “Full” variant may be enabled by setting the bundle member biascorr
to 1 and 2, respectively, before calling SVAR boot. For an example, look at the example file
bias correction.inp.

Finally: if you change the optmeth bundle element before SVAR boot is called, the choice
affects the estimation of the bootstrap artificial models. Hence, you may use one method
for the real data and another method for the bootstrap, if you so desire.

A shortcut

In many cases, a triangular, Cholesky-style specification for the C matrix like the one anal-
ysed in this section is all that is needed. When many variables are involved, the setting
of the n×(n−1)

2 restrictions via the SVAR restrict function could be quite boring, although
easily done via a loop.

For these cases, the SVAR package provides an alternative way: if the string "plain"

is the first argument to the SVAR setup function, then the necessary restrictions are set
up automatically. Thus, the example considered above in Table 3 could by modified by
replacing the lines

Mod = SVAR_setup("C", X, Z, 3)

SVAR_restrict(&Mod, "C", 1, 2, 0)

with the one-liner

Mod = SVAR_setup("plain", X, Z, 3)

and leaving the rest unchanged. Of course, when you have two variables, such as in this
case, there’s not much difference, but for larger systems the latter syntax is much more
convenient.

Another advantage is that, in this case, the solution to the likelihood maximisation prob-
lem is known analytically, so no numerical optimisation technique is used at all. This makes
computations much faster, and for example allows you to make extravagant choices on, for
example, the number of bootstrap replications. Hence, if your C model can be rearranged
as a plain triangular model, it is highly advisable to do so.

3 More on plotting

Traditionally, analysis of the Impulse Response Functions has been the main object of inter-
est in the applied SVAR literature, but is by no means the only one. After estimation, two
more techniques are readily available for inspecting the results: the Forecast Error Vari-
ance Decomposition and the Historical Decomposition. Since the results from these two
procedures are often visualised as graphs, I will describe them here.

Plotting the FEVD

Another quantity of interest that may be computed from the structural VMA representa-
tion is the Forecast Error Variance Decomposition (FEVD). Suppose we want to predict the

12

future path of the observable variables h steps ahead, on the basis of the information set
Ft−1. From equations (5) and (6) one obtains that

yt+h − ŷt+h =
h

∑
k=0

ΘkE(εt+h−k) =
h

∑
k=0

MkE(ut+h−k)

Since E(ut+h−k) = I by definition, the forecast error variance after h steps is given by

Ωh =
h

∑
k=0

Mk M′k

hence the variance for variable i is

ω2
i = [Ωh]i,i =

h

∑
k=0

e′i Mk M′kei =
h

∑
k=0

n

∑
l=1

(kmi.l)
2

where ei is the i-th selection vector,10 so kmi.l is, trivially, the i, l element of Mk. As a conse-
quence, the share of uncertainty on variable i that can be attributed to the j-th shock after h
periods equals

VDi,j,h =
∑h

k=0(kmi.j)
2

∑h
k=0 ∑n

l=1(kmi.l)2
.

fevdmat = FEVD(&Mod)

print fevdmat

FEVDplot(&Mod, 1)

FEVDplot(&Mod, 2)

Table 5: FEVD: computation and output

As shown in Table 5, after the model has been estimated, it can be passed to another
function called FEVD to compute the Forecast Error Variance Decomposition, which is sub-
sequently printed. Its usage is very simple, since it only needs one input (a pointer to the
model bundle); like the IRFplot function, you can also attach an extra optional parameter
at the end to control the position of the legend.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

FEVD for unemp

unemp
infl

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

FEVD for infl

unemp
infl

Figure 4: FEVD for the simple Cholesky model

10That is, a vector with zeros everywhere except for a 1 at the i-th element.

13

Since the FEVD for a particular variable is expressed in terms of shares, it is quite com-
mon to depict it graphically as a histogram, with the horizon on the x-axis. This can be
accomplished rather simply in SVAR by using the specialised function FEVDplot(), which
needs two arguments: a pointer to the model bundle and the number of the variable you
want the FEVD for. Running the code in Table 5 you should see two graphs similar to
Figure 4.

For saving the output to a file, its variant FEVDsave() works the same, except you need
an extra argument (which goes first) with the filename you choose for the output.11

Historical decomposition

turn extra output off

set verbose off

open the data and do some preliminary transformations

open sw_ch14.gdt

genr infl = 400*ldiff(PUNEW)

rename LHUR unemp

list X = unemp infl

list Z = const

load the SVAR package

include SVAR.gfn

set up the SVAR

Mod = SVAR_setup("C", X, Z, 3)

Specify the constraints on C

SVAR_restrict(&Mod, "C", 1, 2, 0)

Estimate

SVAR_estimate(&Mod)

Save the historical decomposition as a list of series

list HD_infl = SVAR_hd(&Mod, 2)

Just plot the historical decomposition for unemployment

HDplot(&Mod, 2)

Table 6: Simple C-model with historical decomposition

A natural extension of the FEVD concept (see sections 1 and 2) is the so-called historical
decomposition of observed time series, which can be briefly described as follows.

Consider the representations (3) and (6); clearly, if one could observe the parameters
of the system (the coefficients of the Φ(·) polynomial and the matrix µ) plus the sequence
of structural shocks ut, it would be possible to decompose the observed path of the yt
variables into n + 1 distinct components: first, a purely exogenous one, incorporating the
term µ′xt plus all the feedback effects given by the lag structure Φ(L); this is commonly
termed the “deterministic component” (call it dt). The remainder yt − dt can be therefore
thought of as the superimposition of separate contributions, given by each structural shock

11See also the illustration of the IRFsave function at Section 2.

14

hitting the system at a given time. In practice, we’d think of each individual series in the
system as

yit − di,t = Mi,1(L)u1,t + · · ·+ Mi,n(L)un,t

using representation (6).
Note that each element of the sum on the right-hand side of the above equation is uncor-

related (by hypothesis) of all the other ones at all leads and lags. Therefore, the contribution
of each shock to the visible path of the variable yit is distinct from the others. In a way, his-
torical decomposition could be considered as a particular form of counterfactual analysis:
each component Mi,j(L)uj,t shows what the history of yi,t would have been if the j-th shock
had been the only one affecting the system.

From a technical point of view, the decomposition is computed via a “rotated” version
of the system:12 pre-multiplying equation (3) by C−1 gives

y∗t = µ∗′xt +
p

∑
i=1

Φ∗i y∗t−i + ut

where y∗t ≡ C−1yt and Φ∗i ≡ C−1ΦiC. This makes it trivial to compute the historical contri-
butions of the structural shocks ut to the rotated variables y∗t , which are then transformed
back into the original series yt.

The decomposition above can be performed in the SVAR package using the estimated
quantities by the SVAR hd function, which takes two arguments: a pointer to the SVAR
model and an integer, indicating which variable you want the decomposition for. Upon
successful completion, it will return a list of n + 1 series, containing the deterministic com-
ponent and the n separate contributions by each structural shock to the observed trajectory
of the chosen variable. The name of each variable so created will be given by the hd_ prefix,
plus the names of the variable and of the shock (det for the deterministic component).

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 12

 1960 1965 1970 1975 1980 1985 1990 1995 2000

unemp
infl

infl (stoch. component)

Figure 5: Simple C-model example: historical decomposition plot

A traditional way to represent the outcome of historical decomposition is, again, graph-
ical. The most common variant depicts the single contributions as histograms against time
and their sum (the stochastic component yt − dt) as a continuous line. The SVAR pack-
age provides a pair of functions for plotting such a graph on screen or saving it to a file,

12Yeah, we know: strictly speaking, it’s not a rotation; for it to be a rotation, you ought to force C to be orthogonal
somehow; but let’s not be pedantic, OK?

15

and the go by the name of HDplot() and HDsave(), respectively. See their description in
Section A in the appendix and Figure 5, which shows the historical decomposition for the
unemployment series we’ve been using as an example in this section.

4 C-models with long-run restrictions (Blanchard-Quah style)

An alternative way to impose restrictions on C is to use long-run restrictions, as pio-
neered by Blanchard and Quah (1989). The economic rationale of imposing restrictions on
the elements of C is that C is equal to M0, the instantaneous IRF. For example, Cholesky-
style restrictions mean that the j-th shock has no instantaneous impact on the i-th variable
if i < j. Assumptions of this kind are normally motivated by institutional factors such as
sluggish adjustments, information asymmetries, technical constraints and so on.

Long-run restrictions, instead, stem from more theoretically-inclined reasoning: in Blan-
chard and Quah (1989), for example, it is argued that in the long run the level of GDP is
ultimately determined by aggregate supply only. Fluctuations in aggregate demand, such
as those induced by fiscal or monetary policy, should affect the level of GDP only in the
short term. As a consequence, the impulse response of GDP with respect to demand shocks
should go to 0 asymptotically, whereas the response of GDP to a supply shock should settle
to some positive value.

A modicum of theory

To translate this intuition into formulae, assume that the bivariate process GDP growth-
unemployment

xt =

[
∆Yt

Ut

]
is I(0) (which implies that Yt is I(1)), and that it admits a finite-order VAR representation

Φ(L)xt = εt

where the prediction errors are assumed to be a linear combination of demand and supply
shocks [

ε∆Y
t

εU
t

]
= C

[
ud

t

us
t

]
,

Considering the structural VMA representation[
∆Yt

Ut

]
= Θ(L)εt = εt + Θ1εt−1 + · · · =

= Cut + Θ1Cut−1 + · · · = M0ut + M1ut−1 + · · · ,

it should be clear that the impact of demand shocks on ∆Yt after h periods is given by the
north-west element of Mh. Since xt is assumed to be stationary, limh→∞ Θh = 0 and the
same holds for Mk, so obviously the impact of either shock on ∆Yt goes to 0. However,
the impact of ut on the level of Yt is given by the sum of the corresponding elements of Mh,
since

Yt+h = Yt−1 +
h

∑
i=0

∆Yt+i,

16

set verbose off

include SVAR.gfn

open BlQuah.gdt --frompkg=SVAR

set seed 1234 # make results reproducible

list X = DY U

list exog = const time

maxlag = 8

set up the model

BQModel = SVAR_setup("C", X, exog, maxlag)

BQModel.horizon = 40

set up the long-run restriction

SVAR_restrict(&BQModel, "lrC", 1, 2, 0)

cumulate the IRFs for variable 1

SVAR_cumulate(&BQModel, 1)

set up names for the shocks

BQModel.snames = defarray("Supply", "Demand")

do estimation

SVAR_estimate(&BQModel)

retrieve the demand shocks

dShock = GetShock(&BQModel, 2)

bootstrap (set ’quiet’ off with trailing zero arg)

bfail = SVAR_boot(&BQModel, 1024, 0.9, 0)

page 662

IRFsave("bq_Ys.pdf", &BQModel, 1, 1)

IRFsave("bq_us.pdf", &BQModel, 1, 2)

IRFsave("bq_Yd.pdf", &BQModel, -2, 1)

IRFsave("bq_ud.pdf", &BQModel, -2, 2)

now perform historical decomposition

list HDDY = SVAR_hd(&BQModel, 1)

list HDU = SVAR_hd(&BQModel, 2)

cumulate the effect of the demand shock on DY

series hd_Y_Demand = cum(hd_DY_Demand)

reproduce Figure 8

gnuplot hd_Y_Demand --time-series --with-lines --output=display

reproduce Figure 10

gnuplot hd_U_Demand --time-series --with-lines --output=display

Table 7: Blanchard-Quah example

17

so
∂Yt+h

∂ud
t

=
h

∑
i=0

∂∆Yt+i

∂ud
t

=
h

∑
i=0

[Mi]11

and in the limit

lim
h→∞

∂Yt+h

∂ud
t

=
∞

∑
i=0

∂∆Yt+i

∂ud
t

=
∞

∑
i=0

[Mi]11 ,

In general, if xt is stationary, the above limit is finite, but needn’t go to 0; however, if we
assume that the long-run impact of ud

t on Yt is null, then

lim
k→∞

∂Yt+k

∂ud
t

= 0

and this is the restriction we want. In practice, instead of constraining elements of M0, we
impose an implicit constraint on the whole sequence Mi.

How do we impose such a constraint? First, write ∑∞
i=0 Θi as Θ(1); then, observe that

Θ(1)C =
∞

∑
i=0

Mi;

the constraint we seek is that the north-west element of Θ(1)C equals 0. The matrix Θ(1) is
easy to compute after the VAR coefficients have been estimated: since Θ(L) = Φ(L)−1, an
estimate of Θ(1) is simply

Θ̂(1) = Φ̂(1)
−1

Of course, for this to work Φ(1) needs to be invertible. This rules out processes with one
or more unit roots. The cointegrated case, however, is an interesting related case and will
be analysed in section 7.

The long-run constraint can then be written as

R vec[Θ(1)C] = 0, (9)

where R = [1, 0, 0, 0]; since

vec[Θ(1)C] = [I ⊗Θ(1)] vec(C),

the constraint can be equivalently expressed as

[Θ(1)11, Θ(1)12, 0, 0] vec(C) = Θ(1)11 · c11 + Θ(1)12 · c21 = 0. (10)

Note that we include in R elements that, strictly speaking, are not constant, but rather
functions of the estimated VAR parameters. Bizarre as this may seem, this poses no major
inferential problems under a suitable set of conditions (see Amisano and Giannini (1997),
section 6.1).

Example

The way all this is handled in SVAR is hopefully quite intuitive: an example script is re-
ported in Table 7. After reading the data in, the function SVAR setup is invoked in pretty
much the same way as in section 2.

Then, the SVAR restrict is used to specify the identifying restriction. Note that in this
case the code for the restriction type is "lrC", which indicates that the restriction applies

18

coefficient std. error z p-value

C[1; 1] 0.0575357 0.0717934 0.8014 0.4229

C[2; 1] 0.217542 0.0199133 10.92 8.80e-28 ***

C[1; 2] -0.907210 0.0507146 -17.89 1.45e-71 ***

C[2; 2] 0.199459 0.0111501 17.89 1.45e-71 ***

Estimated long-run matrix (restricted)

longrun (2 x 2)

0.50080 0.0000

0.088690 3.9133

Log-likelihood = -202.193

Bootstrap results (1024 replications, 0 failed)

coefficient std. error z p-value

--

C[1; 1] 0.0563995 0.340707 0.1655 0.8685

C[2; 1] 0.184285 0.0814261 2.263 0.0236 **

C[1; 2] -0.769799 0.109725 -7.016 2.29e-12 ***

C[2; 2] 0.171516 0.0830117 2.066 0.0388 **

coefficient std. error z p-value

LongRun[1; 1] 0.544885 0.168701 3.230 0.0012 ***

LongRun[2; 1] 0.0285569 2.89306 0.009871 0.9921

LongRun[1; 2] 0.00000 0.00000 NA NA

LongRun[2; 2] 4.09942 2.08718 1.964 0.0495 **

Table 8: Output for the Blanchard-Quah model

to the long-run matrix, so the formula (10) is employed. Next, we insert into the model the
information that we will want IRFs for yt, so those for ∆yt will have to be cumulated. This
is done via the function SVAR cumulate(), in what should be a rather self-explanatory way
(the number 1 refers in this case to the position of ∆Yt in the list X). Finally, a cosmetic touch:
we overwrite the model’s default shock labels with a string array containing "Supply" and
"Demand". The shock labels are always stored in the array snames.

When a model with long-run restrictions is estimated, the resulting long-run matrix is
stored in the model bundle as member lrmat, and is also printed out by default.

The bootstrap is invoked by SVAR boot, which however by default does not produce any
additional printout. To display the results straight away set the optional fourth (trailing)
argument to 0.

In Table 8 We reported the output to the example code in Table 7, while the pretty
pictures are in Figure 6.13 Note that in the two calls to IRFplot which are used to plot the
responses to a demand shock, the number to identify the shock is not 2, but rather -2. This
is a little trick the plotting functions use to flip the sign of the impulse responses, which
may be necessary to ease their interpretation (since the shocks are identified only up to

13We found it impossible to reproduce Blanchard and Quah’s results exactly. Possibly, this is due to different
vintages of the data. Qualitatively, however, results are very much the same.

19

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35 40

IRF: Demand -> DY; bias-correction = full (cumulated)

Bstrap 90% CI
Bstrap median

IRF

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0 5 10 15 20 25 30 35 40

IRF: Demand -> U; bias-correction = full

Bstrap 90% CI
Bstrap median

IRF

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35 40

IRF: Supply -> DY; bias-correction = full (cumulated)

Bstrap 90% CI
Bstrap median

IRF

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 5 10 15 20 25 30 35 40

IRF: Supply -> U; bias-correction = full

Bstrap 90% CI
Bstrap median

IRF

Figure 6: Impulse response functions for the Blanchard-Quah model

their sign).
Note that the bottom part of the scripts uses the functions described in section 3 so to

replicate figures 8 (p. 664) and 10 (p. 665) in the original AER article, where the historical
contribution of demand shocks to output and unemployment is reconstructed. The output
on your screen should be roughly similar to figure 7.

-10

-8

-6

-4

-2

 0

 2

 4

 6

 1950 1955 1960 1965 1970 1975 1980 1985

h
d

_Y
_2

-2

-1

 0

 1

 2

 3

 4

 1950 1955 1960 1965 1970 1975 1980 1985

h
d

_U
_2

Output Unemployment

Figure 7: Effects of a demand shock in the Blanchard-Quah model

Combining short- and long-run restrictions

In the previous example, it turned out that the estimated coefficient for c1,1 was seemingly
insignificant; if true, this would mean that the supply shock has no instantaneous effect
on ∆Yt; in other words, the IRF of output to supply starts from 0. Leaving the economic
implications aside, from a statistical viewpoint this could have suggested an alternative
identification strategy or, more interestingly, to combine the two hypotheses into one.

SVAR allows the combination of short- and long-run restrictions in C models (but not in

20

AB models, which are very rarely used in this context). The script presented in Table 7 is
very easy to modify to this effect: in this case, we simply need to insert the line

SVAR_restrict(&BQModel, "C", 1, 1, 0)

somewhere between the SVAR setup and the SVAR estimate function. The rest is unchanged,
and below is the output.

coefficient std. error z p-value

--

C[1; 1] 0.00000 0.00000 NA NA

C[2; 1] -0.230192 0.0128681 -17.89 1.45e-71 ***

C[1; 2] -0.909033 0.0508165 -17.89 1.45e-71 ***

C[2; 2] 0.199859 0.0111725 17.89 1.45e-71 ***

Overidentification LR test = 0.642254 (1 df, pval = 0.422896)

Note that, since this model is over-identified, SVAR automatically computes a LR test of
the overidentifying restrictions. Of course, all the subsequent steps (bootstrapping and IRF
plotting) can be performed just like in the previous example if so desired.

5 AB models

A simple example

set verbose off

include SVAR.gfn

open IS-LM.gdt --frompkg=SVAR

list X = q i m

list Z = const time

ISLM = SVAR_setup("AB", X, Z, 4)

ISLM.horizon = 48

SVAR_restrict(&ISLM, "Adiag", 1)

SVAR_restrict(&ISLM, "A", 1, 3, 0)

SVAR_restrict(&ISLM, "A", 3, 1, 0)

SVAR_restrict(&ISLM, "A", 3, 2, 0)

SVAR_restrict(&ISLM, "Bdiag", NA)

ISLM.snames = defarray("uIS", "uLM", "uMS")

SVAR_estimate(&ISLM)

Amat = ISLM.S1

Bmat = ISLM.S2

printf "Estimated contemporaneous impact matrix (x100) =\n%10.6f", \

100*inv(Amat)*Bmat

rej = SVAR_boot(&ISLM, 2000, 0.95)

IRFplot(&ISLM, 1, 2)

Table 9: Estimation of an AB model — example from Lütkepohl and Krätzig (2004)

21

AB models are more general than the C model, but more rarely used in practice. In order
to exemplify the way in which they are handled in the SVAR package, we will replicate the
example given in section 4.7.1 of Lütkepohl and Krätzig (2004). See Table 9.

This is an empirical implementation of a standard Keynesian IS-LM model in the for-
mulation by Pagan (1995). The vector of endogenous variables includes output qt, interest
rate it and real money mt; the matrices A and B are

A =

1 a12 0

a21 1 a31

0 0 1

 B =

b11 0 0

0 b22 0

0 0 b33

so for example the first structural relationship is

ε
q
t = −a12εi

t + uIS
t (11)

which can be read as an IS curve. The LM curve is the second relationship, while money
supply is exogenous.

The model is set up via the function SVAR setup, like in the previous section. Note,
however, that in this case the model code is "AB" rather than "C". The base VAR has 4 lags,
with the constant and a linear time trend as exogenous variables. The horizon of impulse
response analysis is set to 48 quarters.

The constraints on the matrices A and B can be set up quite simply by using the function
SVAR restrict via a special syntax construct: the line

SVAR_restrict(&ISLM, "Adiag", 1)

sets up a system of constraints such that all elements on the diagonal of A are set to 1.
More precisely, SVAR restrict(&Model, "Adiag", x) sets all diagonal elements of A to
the value x, unless x is NA. In that case, all non-diagonal elements are constrained to 0, while
diagonal elements are left unrestricted; in other words, the syntax

SVAR_restrict(&ISLM, "Bdiag", NA)

is a compact form for saying “B is diagonal”. The other three constraints are set up as usual.
Estimation is then carried out via the SVAR estimate function; as an example, Figure 8

shows the effect on the interest rate of a shock on the IS curve. This example also shows
how to retrieve estimated quantities from the model: after estimation, the bundle elements
S1 and S2 contain the estimated A and B matrices; the C matrix is then computed and
printed out.

The output is shown below:

coefficient std. error z p-value

A[1; 1] 1.00000 0.00000 NA NA

A[2; 1] -0.144198 0.280103 -0.5148 0.6067

A[3; 1] 0.00000 0.00000 NA NA

A[1; 2] -0.0397571 0.155114 -0.2563 0.7977

A[2; 2] 1.00000 0.00000 NA NA

A[3; 2] 0.00000 0.00000 NA NA

A[1; 3] 0.00000 0.00000 NA NA

A[2; 3] 0.732161 0.146135 5.010 5.44e-07 ***

A[3; 3] 1.00000 0.00000 NA NA

22

coefficient std. error z p-value

--

B[1; 1] 0.00671793 0.000473619 14.18 1.15e-45 ***

B[2; 1] 0.00000 0.00000 NA NA

B[3; 1] 0.00000 0.00000 NA NA

B[1; 2] 0.00000 0.00000 NA NA

B[2; 2] 0.00858125 0.000581359 14.76 2.63e-49 ***

B[3; 2] 0.00000 0.00000 NA NA

B[1; 3] 0.00000 0.00000 NA NA

B[2; 3] 0.00000 0.00000 NA NA

B[3; 3] 0.00555741 0.000371320 14.97 1.21e-50 ***

Estimated contemporaneous impact matrix (x100) =

0.675666 0.034313 -0.016270

0.097430 0.863073 -0.409238

0.000000 0.000000 0.555741

Bootstrap results (2000 replications)

coefficient std. error z p-value

A[1; 1] 1.00000 0.00000 NA NA

A[2; 1] -0.0909784 0.395312 -0.2301 0.8180

A[3; 1] 0.00000 0.00000 NA NA

A[1; 2] -0.0377229 0.228185 -0.1653 0.8687

A[2; 2] 1.00000 0.00000 NA NA

A[3; 2] 0.00000 0.00000 NA NA

A[1; 3] 0.00000 0.00000 NA NA

A[2; 3] 0.782728 0.181538 4.312 1.62e-05 ***

A[3; 3] 1.00000 0.00000 NA NA

coefficient std. error z p-value

B[1; 1] 0.00635862 0.000850539 7.476 7.66e-14 ***

B[2; 1] 0.00000 0.00000 NA NA

B[3; 1] 0.00000 0.00000 NA NA

B[1; 2] 0.00000 0.00000 NA NA

B[2; 2] 0.00814276 0.00111305 7.316 2.56e-13 ***

B[3; 2] 0.00000 0.00000 NA NA

B[1; 3] 0.00000 0.00000 NA NA

B[2; 3] 0.00000 0.00000 NA NA

B[3; 3] 0.00512819 0.000478826 10.71 9.14e-27 ***

6 Checking for identification

Consider equation (2) again, which we reproduce here for clarity:

Aεt = But

23

-0.002

 0

 0.002

 0.004

 0.006

 0.008

 0 10 20 30 40 50

IRF: uIS -> i

Bstrap 95% CI
Bstrap median

IRF

Figure 8: uIS → i

Since the ut are assumed mutually incorrelated with unit variance, the following relation
must hold:

AΣA′ = BB′ (12)

If C ≡ A−1B, equation (12) can be written as

Σ = CC′.

The matrix Σ can be consistently estimated via the sample covariance matrix of VAR
residuals, but estimation of A and B is impossible unless some constraints are imposed
on both matrices: Σ̂ contains n(n+1)

2 distinct entries; clearly, the attempt to estimate 2n2

parameters violates an elementary order condition.
The recursive identification scheme resolves the issue by fixing A = I and by imposing

lower-triangularity of B. In general, however, one may wish to achieve identification by
other means.14 The most immediate way to place enough constraints on the A and B ma-
trices so to achieve identification is to specify a system of linear constraints; in other words,
the restrictions on A and B take the form

Ra vec A = da (13)

Rb vec B = db (14)

This setup is perhaps overly general in most cases: the restrictions that are put almost
universally on A and B are zero- or one-restrictions, that is constraints of the form, eg,
Aij = 1. In these cases, the corresponding row of R is a vector with a 1 in a certain spot and
zeros everywhere else. However, generality is nice for exploring the identification problem.

The order condition demands that the number of restrictions is at least 2n2 − n(n+1)
2 =

14Necessary and sufficient conditions to achieve identification are stated in Lucchetti (2006). Other interesting
contributions in this area is Rubio-Ramirez et al. (2010) and Bacchiocchi (2011).

24

n2 + n(n−1)
2 , so for the order condition to be fulfilled it is necessary that

0 < rank (Ra) ≤ n2

0 < rank (Rb) ≤ n2

n2 +
n(n− 1)

2
≤ rank (Ra) + rank (Rb) ≤ 2n2

For the C model, Ra = In2 and da = vec In, so to satisfy the order condition n(n−1)
2

constraints are needed on on B: in practice, for a C model we have one set of constraints
which pertain to B, or, equivalently in this context, to C:

R vec C = d (15)

The problem is that the order condition is necessary, but not sufficient. It is possible
to construct models in which the order condition is satisfied but there is an uncountable
infinity of solutions to the equation AΣA′ = BB′. If you try to estimate such a model,
you’re bound to hit all sorts of numerical problems (apart from the fact, of course, that
your model will have no meaningful economic interpretation).

In order to ensure identification, another condition, called the rank condition, has to
hold together with the order condition. The rank condition is described in Amisano and
Giannini (1997) (chapter 4 for the AB model), and it involves the rank of a certain matrix,
which can be computed as a function of the four matrices Ra, da, Rb and db. The SVAR

package contains a function for doing just that, whose name is SVAR ident.
As a simple example, let’s check that the plain model is in fact identified by running a

simple variation of the example contained in Table 3:

set verbose off

include SVAR.gfn

open sw_ch14.gdt

genr infl = 400*ldiff(PUNEW)

rename LHUR unemp

list X = unemp infl

list Z = const

Mod = SVAR_setup("C", X, Z, 3)

SVAR_restrict(&Mod, "C", 1, 2)

Now check for identification

scalar is_identified = SVAR_ident(&Mod)

if is_identified

printf "Whew!\n"

else

printf "Blast!\n"

endif

Re-check, verbosely

scalar is_identified = SVAR_ident(&Mod, 1)

The above code should produce the following output:

25

Order condition OK

Rank condition OK

Whew!

Constraints in implicit form:

Ra:

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

da:

1

0

0

1

Rb:

0 0 1 0

db:

0

no. of constraints on A: 4

no. of constraints on B: 1

no. of total constraints: 5

no. of necessary restrictions for the order condition = 5

Order condition OK

rank condition: r = 5, cols(Q) = 5

Rank condition OK

7 Structural VEC Models

This class of models was first proposed in King et al. (1991).15 A SVEC is basically a C-
model in which the interest is centred on classifying structural shocks as permanent or
transitory by exploiting the presence of cointegration.

Suppose we have an n-dimensional system with cointegration rank r which can be rep-
resented as a finite-order VAR Φ(L)yt = εt. As is well known,16 the system also admits the
VECM representation

Γ(L)∆yt = µt + αβ′yt−1 + εt (16)

in which α and β are r × n matrices, with 0 ≤ r ≤ n. If r = n, the system is stationary; if
r = 0, the system is I(1). In the intermediate cases, r is said to be the cointegration rank.

In all these cases, it is also possible to express ∆yt as a vector moving average process

∆yt = C(L)εt. (17)

The main consequence of cointegration for eq. (17) is that C(1) is a singular matrix, with
rank n− r. The most important consequence of the above for structural estimation is that

15A very nice paper in the same vein which is also frequently cited is Gonzalo and Ng (2001). A compact yet
rather complete analysis of the main issues in this context can be found in Lütkepohl (2006).

16See Johansen (1995).

26

the C(1) matrix satisfies
C(1)α = 0;

Moreover, as argued in section 4, the ij-th element of C(1) can be thought of as the long-run
response of yi,t to ε j,t or, more precisely

C(1)ij = lim
k→∞

∂yi,t+k

∂ε j,t
.

Hence, the long-run response of yt to structural shocks is easily seen (via eq. 4) to be C(1) ·
C.

Now, define a transitory shock as a structural shock that has no long-run effect on any
variable: therefore, the corresponding column of C(1) · C must be full of zeros. But this,
in turn, implies that the corresponding column of C must be a linear combination of the
columns of α. Since α has r linearly independent columns, the vector of structural shocks
must contain r transitory shocks and n− r permanent ones.

By ordering the structural shocks with the permanent ones first,

ut =

[
up

t

ut
t

]

it’s easy to see that a separation of the transitory shocks from the permanent ones can be
achieved by imposing that the last r columns of C lie in the space spanned by α; in formulae,

α′⊥CJ = 0, (18)

where J is the matrix

J =

[
0n−r×r

Ir×r

]
and ⊥ is the “nullspace” operator.17 Equation (18) can be expressed in vector form as

(J′ ⊗ α′⊥) vec(C) = 0;

since α⊥ has n− r columns, this provides r · (n− r) constraints of the type R vec(C) = d,
that we know how to handle.

Since 0 < r < n, this system of constraints is not sufficient to achieve identification,
apart from the special case n = 2, r = 1, so in general the partition between transitory
and permanent shocks must be supplemented by extra constraints. Clearly, these can be
short-run constraints on both kind of shocks, but long-run constraints only make sense on
permanent ones.

Syntax

Fort this type of model, the model code you have to supply to SVAR setup is "SVEC". This
means that your model is a C-model in which, however, the structural shocks will be clas-
sified as transitory or permanent, depending on the cointegration properties you assume.

This is an important point: SVAR is not meant for doing inference on the cointegration
part of your model. For determining the cointegration rank of your system and estimating

17If M is an r× c matrix, with r > c and rank (M) = c, then M⊥ is some matrix such that M′⊥M = 0. Note that
M⊥ is not unique.

27

the cointegration β, you’re on your own. Of course, you can use gretl’s in-built commands,
such as coint2 and vecm, or pre-set them to some theory-derived value: SVAR won’t care,
and will blindly accept the matrix β you supply it; the cointegration rank is implicitly
assumed as the number of columns of the β matrix.

Another piece of information you must supply separately, prior to estimation, is how
you want the deterministic terms (the constant and the trend) in your model to be treated;
in practice, which of the famous “five cases” you want to apply to your model. In fact, the
constant and the trend are subject to a special treatment in this class of models, so they will
be dropped from the exogenous list X, if present, when you call SVAR setup and re-added
internally if needed. Unless you have extra exogenous variables, such as centred seasonals,
you might just as well leave X as null. The five cases range from the most to the least
restrictive, as per Table 10.

Code vecm option Description

1 --nc No constant, no trend

2 --rc Restricted constant, no trend

3 Unrestricted constant, no trend

4 --crt Constant, restricted trend

5 --ct Constant, unrestricted trend

Table 10: The five cases for deterministic terms in cointegrated systems

This is not the place for explaining the differences between the five options; if you’ve
come this far, you probably know already. If you don’t, grab any decent econometrics
textbook or the Gretl User’s Guide and look for the chapter on cointegration and VECMs.

For injecting the necessary information into the model bundle once you’ve set it up,
there is a dedicated function whose name is SVAR coint. It takes four compulsory param-
eters: the SVAR model (in pointer form), the “deterministic terms code” and the matrices
β and α; the latter may be empty, in which case it will be estimated via OLS. If, on the
contrary, it is not empty, then it should be a n× r matrix that will be accepted at face value.
Pre-setting α may be useful, in some cases, to force some of the variables to be weakly ex-
ogenous. Note that the $jbeta and $jalpha standard gretl accessors make it painless to
fetch them from a Johansen-style VECM if necessary.

Calling this function will

1. set up a system of constraints such that the n− r permanent shocks will come first in
the ordering, followed by the r temporary ones. The shock names will be set accord-
ingly.

2. Estimate the VECM parameters subject to the constraints implied by the given β (and
α, if not empty): in practice, the matrix Σ and the parameters µ and Γi in equation
(16). Internally, SVAR coint will take care of transforming into the VAR form (3) so
that the VMA representation can be computed and everything will proceed like in an
ordinary C model.

At that point, the rest of the model can be setup as per usual (setting extra restrictions
and so on). In the next subsection, we will provide an extended and annotated example.

28

1 nulldata 116

2 setobs 4 1970:1

3 include SVAR.gfn

4

5 # grab data from AWM

6 join AWM.gdt YER PCR ITR

7

8 # transform into logs

9 series y = 100 * ln(YER)

10 series c = 100 * ln(PCR)

11 series i = 100 * ln(ITR)

12 list X = c i y

13

14 # find best lag

15 var 8 X --lagselect

16 p = 3

17

18 # check for the "balanced growth path" hypothesis

19 coint2 p X

20 vecm p 2 X

21 restrict

22 b[1,1] = -1

23 b[1,2] = 0

24 b[1,3] = 1

25

26 b[2,1] = 0

27 b[2,2] = -1

28 b[2,3] = 1

29 end restrict

30

31 # ok, now go for the real thing

32 x = SVAR_setup("SVEC", X, const, p)

33 matrix b = I(2) | -ones(1,2)

34 SVAR_coint(&x, 3, b, {}, 1)

35 x.horizon = 40

36 SVAR_restrict(&x, "C", 1, 2, 0)

37

38 SVAR_estimate(&x)

39 loop j=1..3 --quiet

40 FEVDplot(&x, j)

41 endloop

42

43 SVAR_boot(&x, 1024, 0.90)

44 loop j=1..3 --quiet

45 IRFplot(&x, 1, j, 2)

46 endloop

Table 11: The awm.inp script

29

A hands-on example

In this example, we will go through a pseudo-replication of the simpler of the two examples
presented in King et al. (1991): the structure of the model will be kept the same, but we will
use a different dataset. While the original article used post-WWII data for the US economy,
we will use the so-called AWM dataset, which is supplied among gretl’s sample datasets.
AWM stands for Area-Wide Model, and is a quarterly dataset of the Euro area, which spans
the 1970-1998 period. It was originally developed by Fagan et al. (2005) but has been used
in countless other benchmark studies. The script is supplied in the examples directory as
awm.inp, but we reproduce it here as table 11 for your convenience.

The model comprises three variables, all in logs: real GDP (yt), real private consump-
tion (ct) and real investment (it); these should, in theory, follow the same stochastic trend
(the so-called “balanced growth path”), so that there ought to be two cointegration rela-
tionships:

ct = yt + zc
t

it = yt + zi
t

The general idea of the script is: use gretl’s internal functions to estimate the VECM and
test whether the “balanced growth path” hypothesis is in fact tenable on this particular
dataset. Then, set up the structural part of the model, estimate it and do a few plots.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35 40

IRF: Permanent -> y

Bstrap 90% CI
Bstrap median

IRF

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35 40

IRF: Permanent -> c

Bstrap 90% CI
Bstrap median

IRF

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25 30 35 40

IRF: Permanent -> i

Bstrap 90% CI
Bstrap median

IRF

Figure 9: Impulse responses to a permanent shock

More in detail, the script goes like this:

Lines 1–7 Create an empty quarterly dataset, populate it with the relevant variables from
the AWM.gdt file.

lines 8–13 Transform the series to logarithms and group them into the list X.

30

lines 14–30 Run some preliminary checks: find the best lag length for the VAR, check that
the cointegration rank is in fact 2 and that the cointegration matrix is the one hypoth-
esised by economic theory.

Line 32 Set up the SVAR object. Note the usage of the SVEC code.

Lines 33–36 Set up the cointegration infrastructure (deterministic terms, β, etcetera).

lines 35–36 Set the horizon for IRF computation to a higher value than the default and add
an extra restriction to one of the temporary shocks to achieve identification. Here
we assume that the idiosyncratic shock on investment does not affect consumption
instantaneously.

lines 38–42 Estimate the model and plot the FEVD graphs.

lines 43–46 Bootstrap the model and plot the IRFs with a 90% confidence interval.

A selection of the output is shown below, while Figure 9 is the equivalent of King et al.’s
figure 2 (p. 820).18 Considering that the data span a different period and describe a dif-
ferent economy, the similarity between the original figure and the replicated one is quite
remarkable.

ok, now go for the real thing

? x = SVAR_setup("SVEC", X, const, p)

? matrix b = I(2) | -ones(1,2)

Generated matrix b

? SVAR_coint(&x, 3, b, {}, 1)

Unestricted constant, beta =

1.00000 0.00000

0.00000 1.00000

-1.00000 -1.00000

alpha is unrestricted

? x.horizon = 40

? SVAR_restrict(&x, "C", 1, 2, 0)

? SVAR_estimate(&x)

Optimization method = Scoring algorithm

Unconstrained Sigma:

0.29538 0.39670 0.22203

0.39670 1.64419 0.55188

0.22203 0.55188 0.32538

coefficient std. error z p-value

C[1; 1] 0.485389 0.0391266 12.41 2.44e-35 ***

C[2; 1] 1.09533 0.0948831 11.54 7.92e-31 ***

C[3; 1] 0.516670 0.0406739 12.70 5.71e-37 ***

C[1; 2] 0.00000 0.00000 NA NA

C[2; 2] 0.373888 0.0245469 15.23 2.18e-52 ***

C[3; 2] -0.211184 0.0138649 -15.23 2.18e-52 ***

18Note the usage of the fourth, optional parameter in the call to IRFplot to move the legend to the bottom of the
figure.

31

C[1; 3] 0.244504 0.0160525 15.23 2.18e-52 ***

C[2; 3] -0.551965 0.0501828 -11.00 3.86e-28 ***

C[3; 3] -0.117619 0.0210737 -5.581 2.39e-08 ***

Estimated long-run matrix

longrun (3 x 3)

1.1036 0.0000 0.0000

1.1036 0.0000 0.0000

1.1036 0.0000 0.0000

Log-likelihood = -295.974

8 The GUI interface

This section introduces the GUI interface with which most of the available calculations can
be accomplished as well and which can be accessed via the Model > Time Series > Multi-
variate > Structural VAR menu entry of the the graphical gretl client. While we recommend
using the script interface to access the full capabilities of the SVAR package, the GUI inter-
face may be less intimidating for less experienced users. At the time of writing, the GUI
component covers everything but the SVEC case (see section 7) where the cointegration
properties of the system are exploited for special long-run restrictions. The SVEC case will
receive its own GUI in a future version of the SVAR package.

Many important contents of the window displayed in Figure 10 should be rather self-
explanatory; the model type chooser, the list of endogenous VAR variables, another (op-
tional) list of exogenous variables, the lag order, and further down the number of bootstrap
replications along with the nominal bootstrap confidence level (leave the number of repli-
cations at the default value zero to skip the bootstrap), and finally the choice of the precise
optimization algorithm from the drop-down menu at the bottom, where as before the scor-
ing algorithm is the default.

The other function parameters will be explained now. First there are three checkboxes
that specify the deterministic terms to be included in the model.19 Note that it is still pos-
sible to manually specify the deterministic terms as in the script interface, namely as part
of the exogenous regressor list. Next, the horizon parameter sets the desired maximum im-
pulse response horizon as explained above for the script interface, and can be left at zero to
invoke the default settings.

Identifying constraints

The two central inputs for the C and AB model types are the identifying constraints. In the
SVAR GUI they must be given as pattern matrices that can only have two types of entries:
Each entry with a ”missing” value denotes an unrestricted element, and every entry with
a valid numerical value will be restricted to just that value. You can either pre-define the
pattern matrices before you call the SVAR package and then choose the corresponding
name of the matrix in the drop-down menu, or you have to click on the “+” button next to
the function argument field and specify the matrix on the spot in the following standard

19The seasonal dummies are automatically centered, which should only matter in the rather exotic case without
a constant term, however.

32

Figure 10: Plain Cholesky model through the GUI interface

gretl matrix creation dialog.20 If you do not wish to restrict any of the involved matrices,
just leave the function argument at the default ”null” value.

For a C model, as indicated by the function argument labels the first restriction pattern
matrix refers to the short-run restrictions, while the second pattern matrix must be used
for the long-run restrictions. If you choose an AB model instead, these matrix inputs serve
to hold the restrictions on B and A, respectively. Note the reversed ordering of B and A
here, which reflects the fact that if A is the identity matrix then B is the same thing as the
short-run restriction C matrix, so these latter two matrices belong together.

Bootstrap parameters and cumulation

The next checkbox after the bootstrap specification concerns the activation of the bias cor-
rection that was already explained in relation to the script interface. Following is another
checkbox that activates a check for identification, see section 6.

Towards the end of the SVAR GUI window you have another matrix argument which
serves to tell the package which of the impulse responses should be provided in cumulated
form. You need to provide a (row or column) vector that holds the corresponding integer

20Hint: with recent gretl versions it is possible to initialize the matrix to hold only missing values, by entering
na or nan as the initial fill value. Then you just have to edit the actually restricted elements afterwards.

33

indices of the variables to be cumulated referring to the list of endogenous variables. Say
your list of endogenous variables is “foo baz bar” and the responses of foo and bar should
be cumulated, then you would need to pass a vector {1, 3} (or {1; 3}).21 Note that you
can type an expression of this sort into the matrix entry box directly, as shown in Figure 11.

Figure 11: Entering a matrix specification directly

The output window

After specifying all necessary function arguments and clicking OK, you are presented—
possibly after having to wait for the CPU intensive bootstrap to finish—with a first output
window holding the basic estimation results, for example of the C matrix or of the A and B
matrices. If the provided restrictions are over-identifying the corresponding LR test result
is also printed out.

In the SVAR output window (see Figure 13 below) three toolbar buttons deserve special
mention: The “Save” button allows you to save the printed output, but more importantly
you can also save the entire bundle that was returned by the SVAR package as an icon
(element) of the current gretl session. When you open (view) the bundle again later, some
information about the model specification will also be shown. (And the session can in turn
later be saved into a session file.) Next, for saving only selected members of the SVAR
bundle there is the “Save bundle content” button. Finally you have the “Graph” button
which provides the access to the central SVAR analyses, namely the impulse responses, the
error variance as well as the historical decompositions.

An example

For example, suppose we wanted to estimate a C model like the one used as example so
far, with the only difference that we want the C matrix to be upper triangular, rather than
lower triangular. Via a script, you would use the function SVAR restrict(), as in

Force C_{2,1} to 0

SVAR_restrict(&Mod, "C", 2, 1, 0)

but you can do the same via the GUI interface by using a pattern matrix, which must be a
n× n matrix (that is, the same size as C).

Suppose we call the pattern matrix TMPL and that we select the option “Build Numer-
ically” (of course, with 2 rows and 2 columns in this example). When you’re done, you
return to the main SVAR window (be sure to select C-model as the model type). After
clicking “OK”, the results window will appear, as in Figure 13. Note that the estimated C
matrix is now upper triangular.

From the output window, you can save the model bundle to the Icon view by clicking
on the leftmost icon22 and re-use it as needed for further processing.

21This way of specifying the responses to be cumulated in the GUI of SVAR may change in the future, perhaps
by using another list of variables instead.

22The visual appearance of the icons on your computer may be different from the one shown in Figure 12, as

34

Figure 12: Template matrix

Figure 13: Output window

References

Amisano G, Giannini C. 1997. Topics in structural VAR econometrics. Springer-Verlag, 2nd
edition.

Bacchiocchi E. 2011. Identification in structural VAR models with different volatility
regimes. Departmental Working Papers 2011-39, Department of Economics, Manage-
ment and Quantitative Methods at Universit degli Studi di Milano.
URL http://ideas.repec.org/p/mil/wpdepa/2011-39.html

Blanchard O, Quah D. 1989. The dynamic effects of aggregate demand and aggregate sup-
ply shocks. American Economic Review 79: 655–73.

Fachin S, Bravetti L. 1996. Asymptotic normal and bootstrap inference in structural VAR
analysis. Journal of Forecasting 15: 329–341. ISSN 1099-131X.

Fagan G, Henry J, Mestre R. 2005. An area-wide model for the Euro area. Economic Modelling
22: 39 – 59.

Gonzalo J, Ng S. 2001. A systematic framework for analyzing the dynamic effects of per-
manent and transitory shocks. Journal of Economic Dynamics and Control 25: 1527–1546.

they depend on your software setup. The number and ordering of the icons, however, should be the same on all
systems.

35

http://ideas.repec.org/p/mil/wpdepa/2011-39.html

Johansen S. 1995. Maximum Likelihood Inference in Co-Integrated Vector Autoregressive Pro-
cesses. Oxford University Press.

Kilian L. 1998. Small-sample confidence intervals for impulse response functions. The
Review of Economics and Statistics 80: 218–230.

King RG, Plosser CI, Stock JH, Watson M. 1991. Stochastic trends and economic fluctua-
tions. American Economic Review 81: 819–40.

Lucchetti R. 2006. Identification of covariance structures. Econometric Theory 22: 235–257.

Lütkepohl H. 1990. Asymptotic distributions of impulse response functions and forecast
error variance decompositions of vector autoregressive models. The Review of Economics
and Statistics 72: 116–25.

Lütkepohl H. 2006. Cointegrated structural VAR analysis. In Hübler O (ed.) Modern Econo-
metric Analysis, chapter 6. Springer, 73–86.

Lütkepohl H, Krätzig M (eds.) . 2004. Applied Time Series Econometrics. Cambridge Univer-
sity Press.

Pagan A. 1995. Three econometric methodologies: An update. In Oxley L, Roberts C,
George D, Sayer S (eds.) Surveys in Econometrics. Basil Blackwell, 30–41.

Rubio-Ramirez J, Waggoner D, Zha T. 2010. Structural vector autoregressions: Theory of
identification and algorithms for inference. Review of Economic Studies 77: 665–696.

Runkle DE. 1987. Vector autoregressions and reality. Journal of Business & Economic Statistics
5: 437–42.

Sims CA. 1980. Macroeconomics and reality. Econometrica 48: 1–48.

36

A Alphabetical list of functions

FEVD(bundle *SVARobj)

Computes the Forecast Error Variance Decomposition from the structural IRFs, as con-
tained in the model SVARobj. Returns an h × n2 matrix. The FEVD for variable k is the
block of columns from (k− 1)n + 1 to kn (where n is the number of variables in the VAR).

FEVDplot(bundle *obj, scalar vnum, int keypos[0:2:1])

Plots on screen the Forecast Error Variance Decomposition for a variable. Its arguments
are:

1. a bundle holding the model

2. the progressive number of the variable

3. the position of the legend, if any (optional; default = right).

FEVDsave(string outfilename, bundle *obj, scalar vnum, int keypos[0:2:1])

Saves the Forecast Error Variance Decomposition for a variable to a graphic file, whose
format is identified by its extension. Its arguments are:

1. The graphic file name

2. a bundle holding the model

3. the progressive number of the variable

4. the position of the legend, if any (optional; default = right).

GetShock(bundle *SVARobj, scalar i)

Retrieves, as a series, the estimate of i-th structural shock of the system via equation (2),
in which VAR residuals are used instead of the one-step-ahead prediction errors εt. If the
bundle SVARobj contains a non-null string snames with shock names, those are used in the
description for the generated series.

HDplot(bundle *obj, scalar vnum)

Plots on screen the Historical Decomposition for a variable. Its arguments are:

1. a bundle holding the model

2. the progressive number of the variable

37

HDsave(string outfilename, bundle *obj, scalar vnum)

Saves the Historical Decomposition for a variable to a graphic file, whose format is
identified by its extension. Its arguments are:

1. The graphic file name

2. a bundle holding the model

3. the progressive number of the variable

IRFplot(bundle *obj, scalar snum, scalar vnum, int keypos[0:2:1])

Plots an impulse response function on screen. Its arguments are:

1. a bundle holding the model

2. the progressive number of the shock (may be negative, in which case the IRF is
flipped)

3. the progressive number of the variable

4. the position of the legend, if any (optional; default = right).

IRFsave(string outfilename, bundle *obj, scalar snum, scalar vnum, int keypos[0:2:1]))

Saves an impulse response function to a graphic file, whose format is identified by its
extension. Its arguments are:

1. The graphic file name

2. a bundle holding the model

3. the progressive number of the shock (may be negative, in which case the IRF is
flipped)

4. the progressive number of the variable

SVAR boot(bundle *obj, scalar rep, scalar alpha, bool quiet[1])

Perform a bootstrap analysis of a model. Returns the number of bootstrap replications
in which the model failed to converge. Its arguments are:

1. a bundle holding the model

2. the number of bootstrap replications

3. the quantile used for the confidence bands

38

4. (optional) omit the table with bootstrap means and standard errors (default: yes)

SVAR coint(bundle *obj, scalar case, matrix jbeta, matrix jalpha, bool verbose[0])

Sets up a SVEC model for subsequent estimation. Its arguments are:

1. a bundle holding the model

2. a code for the constant/trend combination (1 to 5, as per Johansen)

3. the cointegration matrix (required)

4. the loading matrix (optional, will be estimated via OLS if empty)

5. an optional verbosity switch (default 0)

SVAR cumulate(bundle *b, scalar nv)

Stores into the model the fact that the cumulated IRFs for variable nv are desired. This
is typically used jointly with long-run restrictions.

SVAR estimate(bundle *obj, int verbosity[1])

Estimates the model by maximum likelihood. Its second argument is a scalar, which
controls the verbosity of output. If omitted, output is printed.

SVAR hd(bundle *b, scalar nv)

Performs the “historical decomposition” of variable nv: this function outputs a list of
variables which decomposes the nv-th variable in the system into a deterministic compo-
nent and n stochastic components. The names of the resulting series are as follows: if the
name of the decomposed variable is foo, then the historical component attributable to the
first structural shock is called hd foo 1, the one attributable to the second structural shock
is called hd foo 2, and so on. Finally, the one for the first deterministic component is called
hd foo det.

SVAR ident(bundle *b, int verbose[0])

Checks if a model is identified by applying the algorithm described in Amisano and
Giannini (1997). Returns a 0/1 scalar. Its second argument is a scalar, which controls the
verbosity of output. If set to a non-zero value, a few messages are printed as checks are
performed.

39

SVAR restrict(bundle *b, string code, scalar r, scalar c, scalar d)

Sets up constraints for an existing model. The function which takes at most five argu-
ments:

1. A pointer to the model for which we want to set up the restriction(s)

2. A code for which type of restriction we want:

"C" Applicable to C models. Used for short-run restrictions.

"lrC" Applicable to C models. Used for long-run restrictions.

"A" Applicable to AB models. Used for constraints on the A matrix.

"B" Applicable to AB models. Used for constraints on the B matrix.

"Adiag" Applicable to AB models. Used for constraints on the whole diagonal of the
A matrix (see below).

"Bdiag" Applicable to AB models. Used for constraints on the whole diagonal of the
B matrix (see below).

3. An integer:

case 1 : applies to the codes "C", "lrC", "A" and "B". Indicates the row of the re-
stricted element.

case 2 : applies to the codes "Adiag" and "Bdiag". Indicates what kind of restriction
is to be placed on the diagonal: any valid scalar indicates that the diagonal of
A (or B) is set to that value. Almost invariably, this is used with the value 1.
IMPORTANT: if this argument is NA, all non-diagonal elements are constrained to
0, while diagonal elements are left unrestricted.

4. An integer: the column of the restricted element, for the codes "C", "lrC", "A" and
"B". Otherwise, unused.

5. A scalar: for the codes "C", "lrC", "A" and "B", the fixed value the matrix element
should be set to (may be omitted if 0). Otherwise, unused.

A few examples:

• SVAR restrict(&M, "C", 3, 2, 0); in a C model called M, sets C3,2 = 0. As a conse-
quence, the IRF for variable number 3 with respect to the shock number 2 starts from
zero.

• SVAR restrict(&foo, "A", 1, 2, 0); in an AB model called foo, sets A1,2 = 0.

• SVAR restrict(&MyMod, "lrC", 5, 3, 0); in a C model called MyMod, restricts C
such that the long-run impact of shock number 3 on variable number 5 is 0. This
implies that the cumulated IRF for variable 5 with respect to shock 3 tends to zero.

• SVAR restrict(&bar, "Adiag", 1); in an AB model called bar, sets Ai,i = 1 for
1 ≤ i ≤ n.

• SVAR restrict(&baz, "Bdiag", NA); in an AB model called baz, sets Bi,j = 0 for
i 6= j.

40

If the restrictions are found to conflict with other ones already implied by the pre-
existing constraints, they will just be ignored and a warning will be printed.

SVAR setup(string type, list Y, list X, int varorder)

Initialises a model: the function’s output is a bundle. The function arguments are:

1. A type string: at the moment, valid values are "C", "plain" and "AB";

2. a list containing the endogenous variables;

3. a list containing the exogenous variables;

4. a positive integer, the VAR order.

41

42

B Contents of the model bundle

Basic setup

step done so far

type integer, model type (1: PLAIN, 2: C, 3: AB, 4: SVEC)

n number of endogenous variables

p VAR order

k number of exogenous variables

T number of observations

t1, t2 initial and final observations

X exogenous variables data matrix

calc lr switch to get long-run matrix lrmat in short-run models

VAR

VARpar autoregressive parameters

mu coefficients for the deterministic terms

E residuals from base VAR (as matrix)

Sigma unrestricted covariance matrix

jalpha (SVEC only) cointegration loadings

jbeta (SVEC only) cointegration coefficients

SVAR setup

Rd1 short-run constraints on B (and therefore C in non-AB models)

Rd1l long-run constraints on C

Rd0 short-run constraints on A in AB models

horizon horizon for structural VMA

cumul vector of cumuland variables

ncumul number of cumuland variables

Ynames string array, names for VAR variables

Xnames string array, names for exogenous variables, if any

snames string array, names for shocks

optmeth integer between 0 and 4, optimisation method

SVAR post-estimation

S1 estimated A

S2 estimated B

C estimated C

lrmat estimated long-run matrix

theta coefficient vector

IRFs IRF matrix (see section 2)

Bootstrap-related

nboot number of bootstrap replications

boot alpha bootstrap confidence level

bootdata output from the bootstrap (see section 2)

biascorr scalar, 0 for no bias correction, 1 for partial, 2 for full

43

C Changelog (after v1.2)

Version 1.31 and 1.32, January 2018

• Update this documentation to reflect some previous changes.

• Fix failing printout for bootstrap. (v1.32: Sanitize further the printout of the long-run
matrix.)

• Enable long-run matrix calculation and reporting also for SVEC models.

Version 1.3, December 2017

• The full bias correction now also corrects the estimated A/B/C matrices explicitly,
not only the implied IRFs.

• Make it clear that long-run restrictions are not supported in AB models.

• Calculate the long-run matrix and put it into the model bundle as lrmat. Also add
a boolean switch calc lr to the model bundle to force its calculation when it would
normally not be done (in models with short-run constraints only).

• The case of a SVEC model with Blanchard-Quah restrictions on top might not have
been handled correctly, and should be OK now (but the bootstrap is currently not
allowed in this case).

• Require gretl version >2016c or >2017a due to internal changes.

44

	Introduction
	C models
	A simple example
	Base estimation via the SVAR package
	Algorithm choice
	Displaying the Impulse Responses
	Bootstrapping
	A shortcut

	More on plotting
	Plotting the FEVD
	Historical decomposition

	C-models with long-run restrictions (Blanchard-Quah style)
	A modicum of theory
	Example
	Combining short- and long-run restrictions

	AB models
	A simple example

	Checking for identification
	Structural VEC Models
	Syntax
	A hands-on example

	The GUI interface
	Identifying constraints
	Bootstrap parameters and cumulation
	The output window
	An example

	Alphabetical list of functions
	Contents of the model bundle
	Changelog (after v1.2)
	Version 1.31 and 1.32, January 2018
	Version 1.3, December 2017

