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1 Introduction

Random-effects estimators for panel-data models have, of course, been much discussed in
the econometrics literature. However, relatively little attention has been devoted to the per-
formance and possible optimization of such estimators in the (common) case of unbalanced
panels, the primary exception being the work of Badi Baltagi and Young-Jae Chang (Baltagi
and Chang, 1994; Baltagi, 2005). In this paper we revisit the work of Baltagi and Chang,
which has not always been correctly interpreted. We confine ourselves to one-way random
effects (by individual and not by time) and concentrate on two of the most popular meth-
ods, those of Swamy and Arora (1972) and Nerlove (1971). Our perspective is practical and
software-oriented; we are interested in developing appropriate options, and appropriate
default procedures, for random-effects estimation. Our focus is on the open-source econo-
metrics software gretl (Cottrell and Lucchetti, 2017) but we also make reference to Stata and
R.

We may write the random-effects model as

yit = Xitβ + vi + εit

where Xit is a 1× K vector of regressors, vi is the “individual effect” (with variance σ2
v ) and

εit is the “idiosyncratic” error (with variance σ2
ε ). Since the composite error vi + εit is not

i.i.d., we can define a GLS estimator which is more efficient than either pooled OLS or the
fixed-effects estimator—provided that GLS is consistent, which requires that the regressors
are uncorrelated with the individual effects. This estimator can be implemented via OLS
on a dataset in which all variables are subject to quasi-demeaning, as in

ỹit = yit − θi ȳi

where ȳi indicates the mean of the observations on y for individual i and 0 ≤ θi ≤ 1. In
balanced panels θ is in common across individuals and is given by

θ = 1−
(

σ2
ε

σ2
ε + Tσ2

v

) 1
2

In an unbalanced panel θ differs by individual, depending on the number of available
observations per individual, Ti:

θi = 1−
(

σ2
ε

σ2
ε + Tiσ2

v

) 1
2

This point in itself is straightforward and does not stand in need of elaboration; our concern
is with estimation of the error variance components, σ2

v and σ2
ε , the former in particular.

As is well known, the method of Swamy and Arora (1972) is to infer σ2
v from estimates of

the Within and Between variances (obtained from the residual variance of the fixed-effects
model and the Between model, respectively). Writing σ2

ε and σ2
b for the Within and Between

variances respectively, the formula for a balanced panel is

σ̂2
v = σ̂2

b − σ̂2
ε /T (1)

where T is the (common) number of observations per individual. The method of Nerlove
(1971) is to infer σ2

v from the variance of the fixed effects (that is, the estimated per-individual
intercepts). Writing the fixed effects as αi, the formula is

σ̂2
v =

1
N − 1

N

∑
i=1

(α̂i − ¯̂α)2 (2)

where N is the number of included individuals and ¯̂α is the mean of the intercepts.
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Both of these methods were originally developed with balanced samples (uniform T) in
mind. Baltagi and Chang (1994) put forward a version of the Swamy–Arora method for
unbalanced panels, further discussion of which can be found in Baltagi (2005). To our
knowledge, nobody has published a corresponding unbalanced-panel version of Nerlove’s
method, though one can envisage such a thing by analogy with Baltagi and Chang’s mod-
ification of Swamy–Arora.

The purpose of this paper is, first, to explicate the proposal of Baltagi and Chang (which is
quite easily misinterpreted) and to test two possible readings of their proposal against the
“standard” (minimally modified, as explained below) Swamy–Arora method in the context
of unbalanced panels, and second, to construct and assess an analogous modification to
Nerlove’s method.

2 Understanding Baltagi–Chang

The equation given by Baltagi and Chang for an unbalanced-panel version of Swamy–
Arora is (using our notation in the subscripts of the variance components) as follows:

σ̂2
v =

ûb′Pûb − (N − K)σ̂2
ε

n− tr((X′PX)−1X′ZZ′X)
(3)

The matrix P is block-diagonal, the blocks being matrices of dimension Ti each of whose
elements are 1/Ti (so that multiplication by this matrix has the effect of obtaining Ti copies
of the individual mean of the multiplicand). N is as defined above, and K is the number of
regressors including the intercept.

The matrix whose trace figures in the denominator in (3) need not concern us here; its
definition is clear in context.1 The term that calls for clarification (in that it may be liable
to misinterpretation) is the leftmost element in the numerator, namely ûb′Pûb. Baltagi and
Chang mean by ûb the residuals from the Between regression, but it is important to note
that in their presentation this regression uses n = ∑N

i=1 Ti observations, not just N (the
number of included individuals) as is common in panel-data software. On page 70 of their
article they state that the Between estimator is obtained as

β̂b = (X′PX)−1X′Py (4)

Here X and y are of full length n, and the n× n matrix P is as described above.2 Since the
individual-mean values each appear Ti times in this regression, it is numerically identical to
weighted least squares, with weights Ti, on a dataset in which the individual-mean values
appear just once. This explains their comment (p. 73) that “ûb′Pûb can be obtained as the
OLS residual sum of squares from the regression involving

√
Ti ȳi. on

√
TiX̄i.” If we were to

think of the residuals ûb as derived from a regression using N observations3 this comment
would be wrong (or correct only in the balanced case); but if the Between regression is
defined as in (4) it is quite correct. In case a demonstration of this point is required, it is
provided in Listing 1 in the Appendix.

The proprietary econometric software Stata is in the enviable position of being regarded
as canonical by many practitioners. Nonetheless, the interpretation of the Baltagi–Chang
unbalanced variant of Swamy–Arora embedded in Stata’s xtreg command (when invoked

1Briefly, Z is an n × N matrix defined as diag(ıTi ), where ıTi is a column vector of 1s of length Ti . When
multiplied into an N-vector u it produces an n-vector in which element i of u occurs Ti times. In a balanced panel
the trace reduces to TK.

2This is not specific to the 1994 Baltagi–Chang article; it is also the presentation given in Baltagi (2005) (and
other editions of Baltagi’s panel-data book).

3This would require that P be an N × N diagonal matrix with the Ti’s on the diagonal.
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with its sa option) is mistaken. What Stata in fact calculates in place of ûb′Pûb is

SSR∗b =
N

∑
i=1

Tiũ2
i (5)

where ũi (i = 1, . . . , N) denotes the residual from a Between regression of length N. This
is therefore a Ti-weighted sum of squared residuals from an unweighted regression, as
opposed to the sum of squared residuals from a Ti-weighted regression, as per Baltagi–
Chang: these quantities are in general not equal (unless the Ti values are all the same, which
ex hypothesi is not the case here). That (5) truly represents what Stata does was determined
by emulating the results from xtreg with its sa option in gretl: if and only if we use this
expression do we get exact numerical agreement.4

By contrast, the plm package for panel-data modeling in R (Croissant, 2016) implements just
what Baltagi and Chang specified when the Swamy–Arora estimator is selected for an un-
balanced panel. However, we cannot simply take for granted that what Baltagi and Chang
recommend is “right” (and what Stata does is “wrong”). That remains to be determined.

3 The simulation dataset

Our artificial dataset comprises a maximum of T = 20 observations on each of N = 10, 20
or 40 individuals. In each case the individuals are divided into five classes of equal size,
having Ti values of 1, 4, 10, 15 and 20 respectively. The mean Ti is therefore 10, so the total
number of usable observations is n = 10N (that is, 100, 200 or 400).

The data-generating process is

yit = α + βxit + vi + εit

where xit ∼ N(0, 1), vi ∼ N(0, σ2
v ) and εit ∼ N(0, σ2

ε ). These three variates are both mutu-
ally and serially independent.

For each run of the simulation the xit values are generated once while the vi and εit are
generated anew at each of K = 250,000 iterations. The runs differ in two dimensions: (a) the
number of individuals, as mentioned above, and (b) the relative size of the individual and
idiosyncratic variances, namely

1. σ2
v = σ2

ε = 1.0;

2. σ2
v = 1.6, σ2

ε = 0.4; and

3. σ2
v = 0.4, σ2

ε = 1.6.

These choices conserve the variance of the composite error vi + εit at 2.0 while enabling us
to explore the effect of the relative size of its components. The Tables below therefore show
9 “cases”: three sample sizes × three ratios of σ2

v to σ2
ε .

4 Simulation and results

In each run we employ four estimators, as follows.

1. What might be called the “standard” estimator. This employs a minimally modified
version of equation (1), in which T (undefined for an unbalanced panel) is replaced

4In addition this point is now clear in the documentation for version 15 of Stata (xtreg, “Methods and formu-
las”). In previous versions the account given was inaccurate.
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by some sort of average of the Ti’s. This is used by Stata when the re option is
given with xtreg, and it is the default in gretl. Stata replaces T with the harmonic
mean of the Ti’s; since the value in question appears as a divisor in the formula for σ̂2

v
this choice seems reasonable and gretl follows suit.5 We give this estimator the label
“HMT” (for harmonic mean of T).

2. Stata’s take on Baltagi–Chang, which, as noted above, uses in (3) the Ti-weighted sum
of squared residuals from an unweighted Between regression of length N. We label
this “SBC.”

3. The estimator actually specified by Baltagi and Chang, which involves Ti-weighted
estimation of the Between model (labeled “BC”).

4. By way of benchmark, “Infeasible GLS” (IGLS): we can implement this since we know
the population values of σ2

v and σ2
ε and so can use these values in place of estimates.

We consider three figures of merit for the estimators: the mean error and MSE of σ̂v along
with the MSE of β̂, expressed as a ratio to that produced by IGLS. To be explicit, we mean
by the MSE of β̂ the mean value of (β̂ − β)2, or the mean square error of estimate, and
similarly for the MSE of σ̂v.

Results are shown in Table 1.6 The best values for each “case” (minimum absolute value of
mean error, minima of the MSEs) are highlighted in red. These results enable us to address
two questions: (1) Is one of the Baltagi–Chang variants clearly “correct” and the other ill
advised? (2) Does either of these variants offer a demonstrable efficiency gain over simple
HMT?

On the first question—comparison of BC and SBC—it is clear that BC is a more efficient
estimator of the variance of the individual effects than SBC. The figures of merit for σ̂2

v are
always substantially better for BC than SBC (although MSE(σ̂2

v ) for BC is in some cases in-
ferior to that for the HMT method). However, this does not translate into greater efficiency
in estimation of the slope coefficient, β, which is presumably of greater inherent interest
in practice; in fact, SBC is slightly better in that regard. In all nine cases in Table 1 SBC
gives a lesser MSE(β̂) than BC, although the differences are small (and SBC is in two cases
marginally inferior to HMT in this respect).

Cameron and Trivedi (2005) remark of the random effects model that “more efficient esti-
mators of the variance components. . . will not necessarily increase the efficiency of β̂RE”
(p. 734). We’re seeing a noteworthy instance of their point here: a clearly inefficient esti-
mator of σ2

v , SBC, turns out to yield the most efficient estimator of β. In each of the runs
reported in Table 1 we initialized gretl’s random number generator with the same seed,
for the sake of consistency across the cases. However, in view of the somewhat surprising
results we performed additional runs with different seeds (and also with different patterns
of imbalance in the data). On that basis we’re able to say that the reported results are not
flukey but quite typical.

There appears to be a problem of the “second best” type here. Reassuringly, if we use the
true population value of σ2

v (IGLS) we always get the minimal MSE for the β estimate (as
shown in Table 1: the MSE ratio to IGLS for β̂ is always greater than 1.0 for the feasible
estimators), but picking a better feasible estimator of σ2

v does not necessarily yield better
estimates of β.

A further perspective on our simulation results is provided by Figure 1. Here we restrict the
comparison to two figures of merit—namely, the MSEs of σ̂2

v and β̂—but add two elements.
First, we include a sample with N = 80 individuals (and so n = 800 total observations), to
help gauge the consistency of the estimators. Second, we construct a balanced panel with

5We have not been able to find a source in the panel-data literature for this recommendation.
6The script that produced this output is shown in Listing 2 in the Appendix.
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ME(σ̂2
v ) MSE(σ̂2

v ) MSE(β̂)/IGLS

N = 10, n = 100

σ2
v = σ2

ε HMT −0.0458 0.4049 1.01099

SBC +0.0746 0.4435 1.00515

BC +0.0006 0.3936 1.00600

IGLS 0.0000 0.0000 1.00000

σ2
v > σ2

ε HMT −0.0183 0.7200 1.00449

SB +0.1062 1.0134 1.00366

BC +0.0007 0.9054 1.00428

IGLS 0.0000 0.0000 1.00000

σ2
v < σ2

ε HMT −0.0404 0.1827 1.01665

SBC +0.0440 0.1066 1.00522

BC +0.0019 0.0919 1.00596

IGLS 0.0000 0.0000 1.00000

N = 20, n = 200

σ2
v = σ2

ε HMT −0.0259 0.1898 1.00283

SBC +0.0589 0.1994 1.00164

BC −0.0008 0.1798 1.00190

IGLS 0.0000 0.0000 1.00000

σ2
v > σ2

ε HMT −0.0107 0.3246 1.00107

SBC +0.0837 0.4549 1.00107

BC −0.0011 0.4137 1.00126

IGLS 0.0000 0.0000 1.00000

σ2
v < σ2

ε HMT −0.0320 0.1006 1.01608

SBC +0.0342 0.0487 1.00249

BC −0.0003 0.0426 1.00308

IGLS 0.0000 0.0000 1.00000

N = 40, n = 400

σ2
v = σ2

ε HMT −0.0138 0.0913 1.00146

SBC +0.0367 0.0917 1.00104

BC +0.0003 0.0862 1.00118

IGLS 0.0000 0.0000 1.00000

σ2
v > σ2

ε HMT −0.0049 0.1542 1.00060

SBC +0.0491 0.2096 1.00064

BC +0.0007 0.1989 1.00072

IGLS 0.0000 0.0000 1.00000

σ2
v < σ2

ε HMT -0.0214 0.0525 1.01126

SBC +0.0243 0.0224 1.00164

BC +0.0000 0.0203 1.00195

IGLS 0.0000 0.0000 1.00000

Table 1: Errors of estimation, Swamy–Arora (ME = mean error, MSE = mean square error)
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MSE(σ̂2
v ) MSE(β̂)
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Figure 1: Consistency check: Swamy–Arora variants, including a balanced panel with T =
10 (BAL); n = ∑ Ti on x-axis.
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the same n but a uniform T = 10 observations per individual; on this sample we deploy
only the standard balanced-panel Swamy–Arora estimator. The following points emerge
from this exercise:

• All of the estimators under consideration clearly exhibit consistency with respect to
N.

• While the performance of the various formulae considered as estimators of σ2
v dif-

fers quite substantially, their performance as estimators of the slope coefficient, β,
is almost indistinguishable. This is particularly true of the three unbalanced-panel
methods. And to the extent that estimators of β are distinguishable, it is notewor-
thy that the balanced-panel estimator applied to a balanced panel of the same overall
length n as the unbalanced ones is actually inferior for n < 400.

• A variant of the somewhat suprising result noted above—namely, that a more effi-
cient estimator of σ2

v may, in the Swamy–Arora context, yield a less efficient estimator
of β—is exhibited in the balanced/unbalanced comparison. A balanced sample per-
mits a sharper estimate of σ2

v at all n, but at smaller n the unbalanced samples support
sharper estimation of β.

Our second question concerned the gain from using either BC or SBC relative to the mini-
mally adjusted version of Swamy–Arora. Our results suggest that one can gain efficiency
in estimation of σ2

v by using BC (but not SBC, unless σ2
v is small relative to σ2

ε ). Both SBC
and (to a slightly lesser extent) BC appear to offer greater efficiency in estimation of β,
though the gain is marginal and not guaranteed. In particular, when σ2

v is large relative to
σ2

ε the “standard” estimator may work best. Conversely, the greatest gains from SBC and
BC occur when σ2

v is relatively small, but even then they are small.

5 Nerlove’s method

The modification to Swamy–Arora proposed by Baltagi and Chang involves weighting by
the Ti values in an unbalanced panel. In the case of Nerlove’s estimator, a “natural” analogy
would be to compute the Ti-weighted variance of the estimated fixed effects in place of the
unweighted variance. That is, we replace equation (2) with

σ̂2
v =

N
N − 1

N

∑
i=1

wi(α̂i − ¯̂αw)
2

where

wi = Ti/n and ¯̂αw =
N

∑
i=1

wiα̂i

Table 2 shows results from simulations on the same pattern as those performed in relation
to Swamy–Arora. Here “STD” means the standard unweighted formula and “WTD” the
Ti-weighted one. Our findings are broadly similar to those for Swamy–Arora: efficiency
may be gained in estimation of both σ2

v and β by weighting, but to the greatest extent when
σ2

v is relatively small, while the unweighted estimator may be superior when σ2
v is large.

As with Swamy–Arora, Figure 2 extends the analysis in Table 2. Here we see some similar-
ities with the Swamy–Arora exercise above but also some differences.

• On the similarities side, substantial efficiency gains in estimation of σ2
v via Ti-weighting

(in the cases σ2
v ≤ σ2

ε ) fail to translate into gains in efficiency of estimation of β. Here,
again, the respective MSE(β̂) values for the weighted and unweighted estimators are
virtually indistinguishable.
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• On the differences side, it appears that, given the overall n, a balanced sample is
always favorable for estimation of both σ2

v and β when the Nerlove approach is
taken. Of course, this contrast—balanced versus unbalanced samples of the same
overall size—is hypothetical; it does not correspond to a choice typically faced by a
researcher.

6 Practical conclusions

We embarked on this exercise hoping to draw definite conclusions regarding the best pol-
icy for econometric software to adopt with regard to random-effects panel-data models
estimated on unbalanced data. That turns out to be more difficult than we anticipated.
Nonetheless we have made some modifications to gretl, which we hope will be useful to
practitioners, in light of our results.

First, a little background: the basic command for panel-data estimation in gretl is panel.
The default estimator under panel is fixed effects but random effects can be invoked via
the --random-effects option flag. Under random effects the default procedure is Swamy–
Arora (with HMT for unbalanced panels) but the additional --nerlove option is available.

So here are the modifications. A new option, --unbalanced, is available when panel is
invoked in random-effects mode. The requirements of the new option differ depending on
whether the --nerlove option is also given, as follows.

• When Swamy–Arora is used, the new option requires a parameter, either stata or bc.
These invoke, respectively, the variants labeled “SBC” and “BC” above. For example,

panel y 0 X --random-effects --unbalanced=bc

will invoke the Baltagi–Chang unbalanced-panel version of Swamy–Arora, if the
dataset is in fact unbalanced for the regression in question.

• When the Nerlove estimator is selected, no parameter is required; the effect of --unbalanced
is just to employ the Ti-weighted estimator of the variance of the fixed effects, as de-
scribed above.

We hope it is clear from the the discussion above that marvels should not be expected from
gretl’s --unbalanced option. If the user’s focus is firmly on the regression slope coeffi-
cients, little gain should be expected.

However, given the consistency displayed in Figures 1 and 2, it appears that the practitioner
need not be too worried about using an unbalanced sample in random-effects estimation,
with or without a putative “correction” for the unbalanced nature of the sample, provided
that the overall sample size is adequate. This suggests a comment on the plm panel-data
package for R (Croissant, 2016): plm refuses to produce estimates for unbalanced panels
except when the Swamy–Arora estimator is specified (in which case the package produces
Baltagi–Chang estimates). In light of our results this seems unnecessarily austere: balance
or lack thereof in the panel makes less difference than one might think to the efficiency of
estimation of the slope coefficient(s).
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Figure 2: Consistency check: Nerlove variants; n = ∑ Ti on x-axis.
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ME(σ̂2
v ) MSE(σ̂2

v ) MSE(β̂)/IGLS

N = 10, n = 100

σ2
v = σ2

ε STD +0.2917 0.4858 1.00371

WTD +0.0510 0.3397 1.00238

IGLS 0.0000 0.0000 1.00000

σ2
v > σ2

ε STD +0.1174 0.6772 1.00155

WTD −0.0393 0.7766 1.00326

IGLS 0.0000 0.0000 1.00000

σ2
v < σ2

ε STD +0.4663 0.4566 1.00816

WTD +0.1415 0.0998 1.00226

IGLS 0.0000 0.0000 1.00000

N = 20, n = 200

σ2
v = σ2

ε STD +0.2876 0.2711 1.00189

WTD +0.0773 0.1734 1.00117

IGLS 0.0000 0.0000 1.00000

σ2
v > σ2

ε STD +0.1155 0.3264 1.00067

WTD +0.0032 0.3863 1.00089

IGLS 0.0000 0.0000 1.00000

σ2
v < σ2

ε STD +0.4593 0.3230 1.00559

WTD +0.1514 0.0622 1.00203

IGLS 0.0000 0.0000 1.00000

N = 40, n = 400

σ2
v = σ2

ε STD +0.2856 0.1733 1.00167

WTD +0.0897 0.0916 1.00096

IGLS 0.0000 0.0000 1.00000

σ2
v > σ2

ε STD +0.1148 0.1655 1.00044

WTD +0.0231 0.1935 1.00051

IGLS 0.0000 0.0000 1.00000

σ2
v < σ2

ε STD +0.4567 0.2634 1.00829

WTD +0.1563 0.0440 1.00308

IGLS 0.0000 0.0000 1.00000

Table 2: Errors of estimation, Nerlove (ME = mean error, MSE = mean square error)
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Appendix: hansl scripts

Example 1: Demonstration of equivalence

This script demonstrates the equivalence of the two ways given by Baltagi and Chang to
obtain the term they notate as ûb′Pûb: (a) quite literally, where ûb is the residual from a
full-length Between regression and P is a block-diagonal matrix as described in the text,
and (b) as the sum of squared residuals from a Between regression of length N, where
all the (individual-mean) data are multiplied by

√
Ti. The script also demonstrates that

this magnitude differs from the Ti-weighted sum of squared residuals from an unweighted
Between regression of length N, as employed by Stata.

set verbose off

nulldata 120

# panel structure: max(Ti) = 4, 30 individuals

setobs 4 1:1 --stacked-time-series

series x = normal()

series vi = pexpand(mnormal(30,1))

series eit = normal()

series y = 10 + x + vi + eit

# apply mask to reduce Ti to 2 for the first 15 individuals

scalar j=1

loop i=1..15 -q

y[j] = NA

x[j] = NA

y[j+1] = NA

x[j+1] = NA

j += 4

endloop

# run "standard" between regression with N=30 observations

panel y 0 x --between

matrix ub = $uhat

ub[1:15] *= sqrt(2)

ub[16:30] *= sqrt(4)

printf "Ti-weighted SSR (a la Stata): %g\n", ub’ub

/*

# compare stata (same results as gretl: uncomment if you have stata)

genr unit

genr time

foreign language=stata --send-data

xtset unit time

xtreg y x, be

end foreign

*/

Continued on next page.
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Example 1: Demonstration of equivalence, continued

# build the Baltagi-Chang P matrix (** = Kronecker product)

matrix P1 = I(15) ** ones(2,2)/2

matrix P2 = I(15) ** ones(4,4)/4

matrix P = (P1 ~ zeros(30,60)) | (zeros(60,30) ~ P2)

# calculate ub’P*ub as per Baltagi-Chang

matrix my = {y}

matrix X = ones(90,1) ~ {x}

matrix bb1 = inv(X’P*X) * X’P*my

printf "\nBaltagi-Chang between beta-hat (regression length n)"

printf "\n%#.6g", bb1

matrix ub = my - X*bb1

printf "ub’P*ub = %g\n", ub’P*ub

# construct individual-means dataset of length N, and run

# Ti-weighted between regression

matrix ybar = pshrink(pmean(y))

matrix Xbar = ones(30,1) ~ pshrink(pmean(x))

ybar[1:15] *= sqrt(2)

ybar[16:30] *= sqrt(4)

Xbar[1:15,] *= sqrt(2)

Xbar[16:30,] *= sqrt(4)

matrix bb2 = mols(ybar, Xbar)

printf "\nbeta-hat from weighted between regression (length N)"

printf "\n%#.6g", bb2

matrix ubw = ybar - Xbar*bb2

printf "ubw’ubw = %g\n", ubw’ubw
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Example 2: Simulation script

This is the script used to populate Table 1 in the text. It is designed to be called by the
program gretlcli with the --scriptopt command-line option set to 1, 2, or 3 (for N = 10),
21, 22 or 23 (N = 20), or 41, 42, or 43 (N = 40). The Nerlove table is produced by a very
similar script.

set verbose off

scalar parms = scriptopt

scalar N = 10

if parms > 40

N = 40

parms -= 40

elif parms > 20

N = 20

parms -= 20

endif

scalar T = 20 # max time-series length

scalar NT = N*T # total length of dataset

nulldata NT --preserve

setobs T 1:1 --stacked-time-series

set seed 777333119 # comment this out for a runtime-based seed

matrix Ti = {1, 5, 10, 14, 20}

series x = normal()

scalar K = 250000

# set the relative variances based on @parms

if parms == 1

true_s2v = 1.0

true_s2e = 1.0

elif parms == 2

true_s2v = 1.6

true_s2e = 0.4

else

true_s2v = 0.4

true_s2e = 1.6

endif

scalar true_sv = sqrt(true_s2v)

scalar true_se = sqrt(true_s2e)

scalar true_b2 = 1.0

printf "\ntrue_s2v = %.1f\n", true_s2v

printf "true_s2e = %.1f\n", true_s2e

printf "true_b2 = %.1f\n", true_b2

printf "NT = %d\n", NT

printf "K = %d\n", K

matrix s2v = zeros(K,4)

matrix b2 = zeros(K,4)

Continued on next page.
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Example 2: Simulation script, continued

# the number of distinct Ti values

scalar nTi = nelem(Ti)

# the number of individuals with each Ti value

scalar indiv_per = N/nTi

# write matrix of population variances for IGLS

string vname = sprintf("reV%d.mat", parms)

mwrite({true_s2v, true_s2e}, vname)

loop k=1..K -q

series v = pexpand(mnormal(N,1) * true_sv)

series e = normal() * true_se

series y = 10 + true_b2*x + v + e

# unbalance the data!

loop j=1..nTi -q

scalar tmax = T - Ti[j]

loop i=1..indiv_per -q

scalar ij = 1 + (j-1)*T*indiv_per + (i-1) * T

loop t=1..tmax -q

y[ij+t-1] = NA

endloop

endloop

endloop

panel y 0 x --random --quiet

s2v[k,1] = $model.s2v

b2[k,1] = $coeff[2]

panel y 0 x --random --unbalanced=stata --quiet

s2v[k,2] = $model.s2v

b2[k,2] = $coeff[2]

panel y 0 x --random --unbalanced=bc --quiet

s2v[k,3] = $model.s2v

b2[k,3] = $coeff[2]

panel y 0 x --random --unbalanced=@vname --quiet

s2v[k,4] = $model.s2v

b2[k,4] = $coeff[2]

endloop

matrix ME = meanc(s2v - true_s2v)

matrix MSE = meanc((s2v - true_s2v).^2)

matrix bMSE = meanc((b2 - true_b2).^2)

printf "\nMEs, MSE of s2v estimate, b2 MSE ratio\n\n"

printf " & & ME & MSE & ratio\n"

printf " & HMT & %+.4f & %.4f & %.5f \\\\\n", ME[1], MSE[1], bMSE[1]/bMSE[4]

printf " & SBC & %+.4f & %.4f & %.5f \\\\\n", ME[2], MSE[2], bMSE[2]/bMSE[4]

printf " & BC & %+.4f & %.4f & %.5f \\\\\n", ME[3], MSE[3], bMSE[3]/bMSE[4]

printf " & IGLS & %4f & %.4f & %.5f \\\\\n", ME[4], MSE[4], bMSE[4]/bMSE[4]
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