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Abstract

We clarify a point regarding the appropriate measure(s) of the variance of smoothed dis-
turbances in the context of linear state-space models. This involves explaining how two
different concepts, which are sometimes given the same name in the literature, relate to
each other. We also describe the behavior of several common software packages is in this
regard.
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1 Introduction and motivation

In this note we aim to clarify a point regarding the appropriate measure(s) of the variance
of estimated (smoothed) disturbances in the context of linear state-space models. The “dis-
turbance smoother” that yields such estimates was foreshadowed in Harvey and Koopman
(1992) and first systematically developed in Koopman (1993). Further exposition and exam-
ples of use can be found in Koopman, Shephard and Doornik (1999), Durbin and Koopman
(2012) and Commandeur, Koopman and Ooms (2011).

What stands in need of clarification? Not the backward-recursive mechanism for pro-
ducing the smoothed disturbances as such. That is clearly and consistently explained in
the sources just mentioned. It is a computationally efficient method that not only gives op-
timal estimates of the disturbances in the state equation (and, if applicable, the observation
equation) of a state-space model, but also, with little extra computation, yields a smoothed
estimate of the unobserved state (though not its variance). The clarification just concerns
the appropriate variance measure for the inferred disturbances. Our point is that there are
two such measures, each one suitable for a particular analytical purpose, but the literature
is not as clear as it might be on the distinction between the two, and their respective uses.

To motivate our discussion, suppose a practitioner were to compare results from differ-
ent software packages when applying the Local Level model, as defined in Harvey (1989),
to the famous Nile flow data set.1 When comparing smoothed disturbances from different
packages, our practitioner might see a picture similar to Figure 1: the two plots are very
similar—except for a striking difference in scale on the y-axis. This difference would be
far from inconsequential if one wanted to use the smoothed residuals for their primary
purpose, namely diagnostic testing. Users of Eviews would tend to conclude in favor of
a structural break around 1900 (“00” on the x-axis), where the auxiliary residual exceeds
3.0 in absolute value,2 but this conclusion would not be shared at all by users of the KFAS

package for R.
Faced with this sort of discrepancy it would be natural to suspect a software bug. How-

ever, that’s not the problem here: it is more subtle, and involves the unfortunate fact that
two different definitions of variance, which are sometimes given the same name in the
literature, are being used.

In explicating this issue we concentrate on two references: the SsfPack documentation
(Koopman, Shephard and Doornik, 1999) and the extended discussion in Durbin and Koop-
man (2012). That’s in part because we think these sources are the most likely to be accessed
by practitioners, and also because the apparent tension between their respective exposi-
tions of the disturbance variance may be a source of puzzlement.

Section 2 sets up notation and compares the respective measures of variance of smoothed
disturbances in the two references just mentioned. Section 3 confirms our interpretation of
these measures by means of simulation and section 4 provides an illustration of what they
are respectively good for. Section 5 draws a parallel with the familiar case of Ordinary Least
Squares residuals, and section 6 gives an account of what is produced under the name of
variance of smoothed disturbances by various software packages. An appendix gives an
exposition of the disturbance smoother as a case of linear projection, thereby providing a
more rigorous basis for statements made in the main text.

1A whole issue of the Journal of Statistical Software was devoted, a few years ago, to just this problem; see
Commandeur et al. (2011).

2As would users of STAMP, which produces essentially the same plot.
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Figure 1: Standardized residuals from two software packages, pertaining to the level component of
the Local Level model on the Nile data

2 Two measures of variance

We begin by establishing notation. We represent the linear state-space model by the fol-
lowing two equations, for the unobserved state and the observable outcome respectively:

αt+1 = Ttαt + vt vt ∼ NID(0, Qt) (1)

yt = Ztαt + wt wt ∼ NID(0, Rt) (2)

More general specifications are possible, of course, but given the question we have in view
we lose no relevant generality by working with the above representation.

In Koopman, Shephard and Doornik (1999) (hereinafter KSD), the disturbances in the
state and observation equations are represented as, respectively, Htεt and Gtεt where εt ∼
NID(0, I), thereby allowing for dependence between the two equations if HtG′t 6= 0.

For present purposes we confine ourselves to the case of mutual independence of the
disturbances, HtG′t = 0, and for this case KSD write the smoothed disturbances and their
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variances as follows (Koopman et al., 1999, pages 124–5):

E(Htεt|Yn) = HtH′trt

V(Htεt|Yn) = HtH′t NtHtH′t
E(Gtεt|Yn) = GtG′tet

V(Gtεt|Yn) = GtG′tDtGtG′t

Using the notation specified above we may rewrite these KSD results as

E(vt|Yn) = Qtrt

V(vt|Yn) = QtNtQt

E(wt|Yn) = Rtet

V(wt|Yn) = RtDtRt

The ancillary quantities et, rt, Nt and Dt are defined on pages 130–131 of KSD; their precise
definition need not concern us here since it is not in question (but see the Appendix for
further discussion). The expression “Yn” means {y1, . . . , yn}, indicating conditionality on
all n observations.

In Durbin and Koopman (2012) (hereinafter DK), the disturbances in the state and ob-
servation equations are represented as, respectively, Rtηt—where ηt ∼ NID(0, Qt) and Rt
is a selection matrix—and εt ∼ NID(0, Ht).

Using this notation they write the smoothed disturbances and their variances as3

E(ηt|Yn) = QtR′trt

V(ηt|Yn) = Qt −QtR′tNtRtQt

E(εt|Yn) = Htet

V(εt|Yn) = Ht − HtDtHt

(See pages 95–96 of DK.)
Under our representation of the state-space model, DK’s “Rt” becomes an identity ma-

trix, and renaming of the other vectors and matrices consistently with our chosen notation
gives

E(vt|Yn) = Qtrt

V(vt|Yn) = Qt −QtNtQt

E(wt|Yn) = Rtet

V(wt|Yn) = Rt − RtDtRt

Therefore, converted to a common notation, we have the results shown in Table 1. The
expectations agree (obviously) but the variances are quite different.

KSD make no mention of what we’re calling the DK variance. DK, on the other hand,
use the KSD variance at some points; for example, their Figure 2.8 shows auxiliary residuals
calculated as smoothed disturbances divided by the square roots of the KSD variance. So
what’s going on?

Having no desire to keep the reader is suspense, we proceed straight to the resolution of
the puzzle: the formulae in KSD and DK are both perfectly valid, they just refer to different

3DK write ut for what is called et in KSD; here we follow KSD and write et.
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KSD DK

E(vt|Yn) Qtrt Qtrt

V(vt|Yn) QtNtQt Qt −QtNtQt

E(wt|Yn) Rtet Rtet

V(wt|Yn) RtDtRt Rt − RtDtRt

Table 1: Comparison of KSD and DK formulae

concepts (while, unfortunately, using the same symbols for these different concepts). The
variance of a random vector x is of course

E
[(

x−E(x)
)(

x−E(x)
)′]

The ambiguity relates to the appropriate definition of E(x). In KSD this is the unconditional
expectation of the disturbance, namely zero. So their formulae in fact produce

VKSD(v̂t|Yn) = E(v̂tv̂′t)

VKSD(ŵt|Yn) = E(ŵtŵ′t),

that is, the mean squared deviation of the inferred disturbances from zero.
In DK, on the other hand, the expectation of v̂t is taken to be the actual vt (and similarly

for wt), so we have

VDK(v̂t|Yn) = E[(v̂t − vt)(v̂t − vt)
′]

VDK(ŵt|Yn) = E[(ŵt − wt)(ŵt − wt)
′],

that is, the mean squared deviation of the inferred disturbances from their true values.
The ambiguity can also be resolved by considering that v̂t and ŵt are unbiased and

efficient predictors of the unobservable quantities vt and wt.4 The above argument can
then be summarized by saying that VKSD is the variance of the predictor function, whereas
VDK is the variance of the prediction error.

3 Simulation results

If our interpretations are correct, this has implications for the results from simulation of a
linear state-space model with given parameters. For the sake of simplicity, let the state and
the observable both be scalars. Then if we run K simulations, indexed by i, we should find
that

1. K−1 ∑K
i=1 v̂2

t,i is a good approximation to VKSD(v̂t); and

2. K−1 ∑K
i=1(v̂t,i − v∗t,i)

2 is a good approximation to VDK(v̂t),

where in this context v∗t,i indicates the (known) artificial disturbance to the state at observa-
tion t on replication i and v̂t,i indicates its estimate obtained via the disturbance smoother.
Strictly analogous relations should hold with regard to the disturbance in the observation
equation.

4Absolute efficiency depends on the Gaussianity assumption, but this could be dropped if one is willing to
adopt a wider notion of efficiency.
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We checked this implication using the famous Nile flow data, which have been much
analysed in the state-space modeling literature. The SsfPack distribution, for example, in-
cludes a sample program ssfnile.ox which carries out maximum likelihood estimation of
the Local Level model on these data. We used the disturbance smoother to obtain analyti-
cal results for the disturbance variances under this model, then ran K = 50000 replications
in which we simulated data using the ML parameter estimates along with pseudo-random
normal disturbances and calculated the respective sample variances.

The results are shown in Figure 2. It is clear that the simulated variance series do indeed
fluctuate around the analytical values with which they should be associated according to
the reasoning above.

(a) KSD variance of state (b) KSD variance of observable
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Figure 2: Analytical variances (red) and simulated variances (blue)

It is also clear from the shapes of the KSD and DK versions of the variance that the
former is at minimum at the beginning and end of the time series, while the latter reaches
its maximum at the same places.5 Recall that the disturbance smoother is a predictor of
the unobservable disturbance vt (wt) and that at the beginning and at the end of the time
series the information that can be used to predict that disturbance is minimal, since half
of the neighboring observations, the most relevant, are missing. If you had no relevant
observations yt, the best guess for vt (wt) would be its unconditional expectation, namely
0: the less information, the closer the prediction of vt (wt) to 0. This implies that the variance
of vt (wt) around 0 is smallest at the beginning and at the end of the time series. However,
since at these times v̂t (ŵt) is shrunk towards zero, this bias makes its MSE as predictor of

5Durbin and Koopman note, of their variance measure as computed on the Nile data, “the extent that these
conditional variances are larger at the beginning and end of the sample” (DK, page 25), but they don’t offer an
explanation of this effect.
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vt (and wt) higher. This is also coherent with the intuition that predictions based on less
information are generally worse.

4 What are the respective variances good for?

To clarify what the KSD and DK variance measures are good for, we again refer to the
Local Level model of the Nile data. We focus on the state equation; that is, the random-
walk component of the observed series. Figure 3 shows plots based on two calls to the
disturbance smoother. (Here we just use the actual data, no simulation.)

(a) Auxiliary (standardized) residuals, state equation
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Figure 3: Nile data: auxiliary residuals (a) and v̂t (b) from disturbance smoother
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In the first call to the smoother we compute the KSD or sample variance of the distur-
bances, E(v̂tv̂′t), for each t. We then compute “auxiliary residuals” as v̂t divided by the
square root of the variance. These are shown in panel (a) of the Figure along with a band
at ±2 — for similar plots see Koopman et al. (1999), Pelagatti (2011). This plot suggests the
presence of a structural break shortly prior to 1900, as several authors have observed. More
generally, such plots may be useful for detecting outliers (level shifts, in the context of the
Local Level model).

In the second smoother call we instead compute the DK variance E[(v̂t − vt)(v̂t − vt)′],
the MSE of v̂t considered as an estimator of vt. And in panel (b) of the Figure we plot v̂t
along with a 90% confidence band (±1.645 times the RMSE). This reveals that, given the
sampling variance of v̂t, we’re not really sure that any of the vt values were truly different
from zero, since the confidence band brackets zero at all observations. More generally,
plots of this type may be useful for checking model specification: are we confident that
such-and-such a posited disturbance is distinguishable from zero?

There’s an apparent conflict in the case of the Nile data: some of the auxiliary residuals
are “big enough” to suggest a structural break (panel a), yet it seems that none of them are
strongly distinguishable from zero (panel b). The resolution is commonly reckoned to be
that there was in fact a change in mean around 1900, but apart from that event there’s little
evidence for a non-zero σ2

v . Or in other words the standard Local Level model is not really
applicable to the data. While this diagnosis may be arrived at by other means, it’s worth
noting that it “suggests itself” when one cross-references the two sorts of plot.

Let us return to the two contrasting plots shown in Figure 1. It can be seen that the
one from Eviews is essentially the same as panel (a) of our Figure 3; Eviews is dividing the
smoothed residuals by their KSD standard deviations. In the R/KFAS plot, the divisor
is the (DK) RMSE. Since the latter is in this case a good deal larger, the y-axis scale is
correspondingly smaller. The plot using KSD tells us (roughly speaking) that it’s unlikely
that the downspike around 1900 comes from the same statistical distribution as the other
level disturbances. The KFAS “t tests” plot using DK should be seen as making the same
point as we make in panel (b) of Figure 3, namely that—in the context of the standard
Local Level model—we cannot reject the null hypothesis that none of the disturbances are
non-zero.

In the space of possible graphical representations of the estimated disturbances there’s
one we have not yet considered, namely a counterpart to panel (b) of Figure 3 in which a
band is drawn around the smoothed disturbances at plus-or-minus so many times the KSD
standard deviation. Although we don’t show it here, this is in fact what Eviews produces if
the option to plot “Disturbance estimates” is selected. Such a plot should be used with cau-
tion: we usually think of a confidence interval as a band that brackets the true value of the
quantity being estimated (in this case the true disturbance) with some specified probability,
but this interpretation is valid only if the band is based on the (DK) RMSE.

5 An analogical explanation: OLS residuals

In the Appendix the reader can find the derivation of the variances and mean square errors
of the smoothed disturbances. However, it may be helpful to note a parallel with the case
of ordinary least squares (OLS) residuals. In a standard notation the OLS residual is, of
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course,

û = y− ŷ = (Xβ + u)− Xβ̂ =

= (I − X(X′X)−1X′)u ≡ MXu

where MX is a symmetric, idempotent projection matrix.6 Therefore

û′û = (MXu)′(MXu) = u′MX
′MXu = u′MXu

And û′u = u′MXu, so û′û = û′u. It follows that E(û′û) = E(û′u), and since E(û) =

E(u) = 0 we get the result V(û) = Cov(û, u).
This is interesting because it means that

V(û− u) = V(û) + V(u)− 2Cov(û, u) = V(u)−V(û)

That is, the variance of the difference between û and u is equal to the difference between
the variance of u and the variance of û—a relationship that obviously does not hold for
most pairs of random variables A and B but only on condition that V(A) = Cov(A, B).
This is characteristic of the case where A is an efficient estimator of B: the estimator varies
only “in the direction of” the estimand. (For more on this, see the Appendix.)

In this context, û is clearly an unbiased and efficient predictor of u, and looking back
at Table 1 it is easy to draw an analogy to the case of linear state space disturbances. The
(KSD) variance of v̂t is QtNtQt and the (DK) variance of (v̂t − vt) is Qt −QtNtQt, where Qt
is the variance of vt, so

V(v̂t − vt) = V(vt)−V(v̂t)

which holds if and only if V(v̂t) = Cov(v̂t, vt).
When we speak of “residual variance” in the context of OLS we usually mean V(û),

not V(û − u). We might take this as suggesting that the expression “the variance of the
smoothed disturbance” should apply to the KSD formulation. There’s nothing wrong with
the DK formulation, but it might better be called the MSE of the smoothed disturbance.

6 Software packages

Several software packages offer the facility of computing the disturbance smoother. In light
of our discussion above, it is important for users of such software to understand exactly
what they are getting under the name of the “standard deviation” or “variance” of the
smoothed disturbances. This section gives a brief account of five relevant packages.

SsfPack (www.ssfpack.com) is one of the best known packages for state-space modeling,
written by Siem Jan Koopman, the creator of the algorithms discussed in this paper. It
comprises a set of routines coded in C and made available as an Ox package. The distur-
bance smoother is computed by the function SsfMomentEst, which returns the diagonal of
the (KSD) covariance matrix. This is the right quantity for computing t-ratios for detecting
outliers and structural breaks. The (DK) MSE is not provided automatically but can be ob-
tained by subtracting the variances returned by SsfMomentEst from the variances on the
diagonal of the matrix Qt. The function KalmanSmo returns the quantities rt and et together
with the diagonals of the respective covariance matrices Nt and Dt.

6See, for instance, Davidson and MacKinnon (2004, chapter 2).
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Eviews (www.eviews.com) offers a simple way to specify and estimate models in state-space
form using the sspace object. A method on this object lets you plot the “Std. disturbance
estimates,” obtained by dividing the estimates by their (KSD) standard deviations. These
are the quantities that should be used to find structural breaks. You can also obtain a plot of
the “Disturbance estimates,” however the confidence intervals shown in this plot are based
on the (KSD) variances and not on the (DK) MSE as shown in panel (b) of our Figure 3,
which we would find more useful. Nonetheless, the KSD variances can be saved into the
workspace and the MSE can then be obtained by subtracting these from the disturbance
variances.

R/KFAS: There are several packages in R to estimate models in state-space form (Petris
and Petrone, 2011); here we consider KFAS by Jouni Helske, which is easy to use, efficiently
coded and implements the disturbance smoother. The function that does the smoothing is
KFS, which returns v̂t and ŵt, named etahat and epshat, and two arrays of MSE matrices
(as DK) Qt−QtNtQt and Rt−RtDtRt, named V eta and V eps. In order to obtain the (KSD)
variance, one should change the signs of these matrices and add the system covariance
matrices Qt and Rt, respectively.

SSM is a Matlab Toolbox written by Jyh-Ying Peng and John Aston (Peng and Aston,
2011) for estimating models in state-space form. The function that computes the distur-
bance smoothers and the relative variances is [epshat etahat epsvarhat etavarhat] =

disturbsmo(y, llm). Here epshat and etahat are ŵt and v̂t and the relative variances
epsvarhat and etavarhat are of the KSD type.

Gretl: The original implementation of state-space modeling in gretl (Lucchetti, 2011) had
limited support for the disturbance smoother, but versions 2016c and higher offer full sup-
port (along with a streamlined interface). The relevant function is kdsmooth: this makes
available estimates of v̂t and ŵt in matrix form under the name smdist and their standard
deviations under the name smdisterr. By default these standard deviations are of the KSD
type, but the function has an optional Boolean parameter: if a non-zero argument is given,
smdisterr instead holds DK-type RMSE values. Current documentation can be found in
the Gretl User’s Guide at https://sourceforge.net/projects/gretl/files/manual/.

To summarize, in most cases the variance measure produced natively by current state-
space modeling software is KSD (and the production of DK-type MSEs is up to the user).
The exceptions are R/KFAS, which produces DK values, and gretl, which offers an explicit
choice between the two variants.
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Appendix: the disturbance smoother as projection

The disturbance smoother (DS) is an algorithm to compute a projection of the disturbances
vt and wt onto the linear span of the observations Yn = {y1, . . . , yn}. In simpler words,
the smoother provides the best linear combination of the observations Yn (and a constant)
for predicting the unobservable random quantities vt and wt. Here by “best” is meant
that there is no other linear function of the observations whose mean square error (MSE) is
smaller in predicting vt and wt.

If the normality assumptions in equations (1)–(2) hold, then the DS turns out to be also
the best predictor of vt and wt, which corresponds to the conditional expectations E(vt|Yn)

and E(wt|Yn), used in the text. In this case, there is no other (linear or non-linear) function
of the observations that predicts vt and wt with smaller MSE.

To keep the derivation more general, let us assume that the DS provides just the linear
projections, which we represent with the symbol P:

v̂t = P[vt|Yn], ŵt = P[wt|Yn].

For a treatment of the theory of linear projections and their properties, see Pelagatti (2015,
chapter 1), however here we will need just the following results. Let x be a random variable
and y a random vector, then if x̂ = P[x|y] the projection of x onto the linear span of y, then
it holds

E(x− x̂) = 0, E(x− x̂)y = 0, E(x− x̂)x̂ = 0 V(x̂) = Cov(x̂, x).

The last two properties are direct consequences of the first two. Indeed, since x̂ is a linear
function of y and a constant, then by the first two properties it must be equal to zero. The
last result is readily obtained: let us call µ the expectation of x, which by the first property
is also the expectation of x̂, then

E(x̂− µ)(x− µ) = E(x̂− µ)(x− x̂ + x̂− µ)

= E(x̂− µ)(x− x̂) + E(x̂− µ)(x̂− µ)

= 0 + V(x̂).

Now, KSD (pages 130–131) define the quantities rt and et as linear functions of the ob-
servations Yn with zero mean and covariance matrices, respectively, Nt and Dt. KSD prove
that the linear projections of vt and wt onto the observations Yn are given by v̂t = Qtrt and
ŵt = Rtet. It is immediate to see that the means of v̂t and ŵt are zero, while their variances
are

V(v̂t) = E(v̂tv̂′t) = E(Qtrtr′tQt) = QtNtQt

V(ŵt) = E(ŵtŵ′t) = E(Rtete′tRt) = RtDtRt.

Using the last two properties of the linear projections, the MSE of v̂t and ŵt as predictors
of vt and wt are easily derived:

E[(vt − v̂t)(vt − v̂t)
′] = E[(vt − v̂t)v′t] = V(vt)−Cov(v̂t, vt) = Qt −QtNtQt

E[(wt − ŵt)(wt − ŵt)
′] = E[(wt − ŵt)w′t] = V(wt)−Cov(ŵt, wt) = Rt − RtDtRt.
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