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Department of Quantitative Methods, Toruń School of Banking
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Abstract

This paper presents a software package that implements Bayesian model averaging for gretl,
the GNU regression, econometrics and time-series library. Bayesian model averaging is
a model-building strategy that takes account of model uncertainty in conclusions about
estimated parameters. It is an efficient tool for discovering the most probable models and
obtaining estimates of their posterior characteristics. In recent years we have observed an
increasing number of software packages devoted to Bayesian model averaging for different
statistical and econometric software. In this paper, we propose the BMA package for gretl,
which is an increasingly popular free, open-source software for econometric analysis with an
easy-to-use graphical user interface. We introduce the BMA package for linear regression
models with jointness measures proposed by Ley and Steel (2007) and Doppelhofer and
Weeks (2009).

Keywords: Bayesian model averaging, jointness measures, gretl, Hansl

JEL codes: C11, C21, C51



1 INTRODUCTION 1

1 Introduction
We know from elementary statistical theory that linear regression attempts to model the
relationship between two or more variables by fitting a simple linear equation to observed
data. In the classical approach, we usually rely on ordinary least squares (OLS) or maximum
likelihood (ML) estimates and popular model selection criteria, i.e., the Akaike information
criterion (AIC) and the Bayesian information criterion (BIC), to find the “best” model. A
problem with this approach arises when we have to select a “good” subset of variables from
a large set of regressors. When the number of possible exogenous variables is K, the number
of possible linear models is 2K . If we have, for example, K = 30 possible regressors, the
number of possible combinations of variables to be included or not equals 1073741824. This
means that it is very difficult, if not impossible, to find the estimates for all combinations.
Moreover, Raftery et al. (1997) show that standard variable selection procedures lead to
different estimates and conflicting conclusions about the main questions of interest.

Bayesian model averaging is a useful alternative to other variable selection procedures,
because it incorporates model uncertainty into conclusions about the estimated parameters.
Bayesian model averaging is a standard Bayesian solution to model uncertainty, where the
inference on parameters is based on a weighted average over all possible models under
consideration, rather than on one single regression model. These weights are the Bayesian
posterior probabilities of the individual models.

There is a recent and growing literature on Bayesian model averaging. Examples of ap-
plications of Bayesian model averaging can be found in a number of works (see, for example,
Hoeting et al. (1999), Steel (2011) for a recent overview). Our software package for param-
eter estimation and model comparison of linear regression models is based on Fernández
et al. (2001a,b) and Koop (2003). We use the Markov chain Monte Carlo model composi-
tion (MC3) sampling algorithm developed by Madigan et al. (1995) to select a representative
subset of models.

Doppelhofer and Weeks (2005, 2009) define a jointness measure of dependence among
explanatory variables that appear in the linear regression models. We use this measure to
identify whether two variables are substitutes, complements or neither. A similar jointness
measure was also proposed by Ley and Steel (2007).

In this paper, we propose Bayesian model averaging package for gretl named BMA. We
can list several reasons why, in our opinion, it is important to address this topic. gretl is an
increasingly popular, free, open-source software for econometric analysis, both for students
and academics. It is written in pure C “by econometricians for econometricians” with the
international community gathered around two men: Allin Cottrell and Riccardo “Jack” Luc-
chetti. Since 2009 the community has been meeting every two years at the gretl conference.
The last conference was held in Berlin on June 12–13, 2015. gretl is licensed under the
GPL-3 license (http://www.gnu.org/copyleft/gpl.html) and has been reviewed several
times in various international journals. The best known reviews were written by Baiocchi
and Distaso (2003), Yalta and Yalta (2007) and Rosenblad (2008). Some brief information
about gretl was also presented in Lucchetti (2011) and Adkins (2011). Unlike most other
statistical software packages gretl has an easy-to-use graphical user interface (GUI). Our
software package is, therefore, a free and easy-to-use tool for Bayesian model averaging.

The rest of the paper is organized as follows: Section 2 briefly outlines Bayesian model
averaging for linear regression models with the MC3 sampling algorithm and jointness mea-
sures. Section 3 provides an overview of the gretl packages for Bayesian model averaging.
Section 4 includes an overview of Bayesian model averaging software packages. Section 5
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presents an empirical illustration. The final section concludes.

2 Bayesian inference in normal linear regression models
In this section, we briefly introduce the main features of Bayesian inference in linear regres-
sion models. We present Bayesian estimation and prediction with normal-gamma natural
conjugate priors and many explanatory variables, as well as model selection and Bayesian
model averaging techniques. Finally, in this section we present the basics of the Markov
chain Monte Carlo model composition sampling algorithm and jointness measures.

2.1 Bayesian estimation, model selection, and prediction
Let us consider normal linear regression models which differ in their explanatory variables
(see Koop (2003) for further details). Suppose that we have K potential explanatory vari-
ables, which means there are 2K possible models and let Mr for r = 1, . . . , 2K denote the 2K
different models under consideration. Suppose also that yi and xi denote the observed data
on the dependent and explanatory variables for i = 1, . . . ,N . The observations are placed
in a (N × 1) vector y and a (N × kr) matrix Xr containing the set of regressors included in
model Mr

1. Thus, we can write our model as

y = αιN +Xrβr + ε,

where ιN is a (N × 1) vector of ones, βr is a (kr × 1) vector of unknown parameters, ε is a
(N × 1) vector of errors which are assumed to be normally distributed, ε ∼ N(0N ,h−1IN )

and h is the error precision, which is defined as h = 1
σ2 . N(µ, Σ) denotes a normal distri-

bution with mean µ and variance Σ. Following Koop (2003), the prior for βr is normally
distributed,

βr | h,Mr ∼ N
(

0kr ,h−1
[
gX>r Xr

]−1
)

,

while we use a noninformative prior for the intercept and precision,

p(α) ∝ 1, p(h) ∝ 1
h

.

The factor of proportionality g is part of the so-called Zellner’s g-prior Zellner (1986). This
prior is a convenient way to specify the prior variance matrix, because it reduces the number
of prior variance parameters and considerably simplifies posterior computations. The gretl
package offers the five most popular alternative Zellner’s g-priors (see Fernández et al.
(2001a) and Moral-Benito (2010)).

• Unit information prior (g-UIP), recommended by Kass and Wasserman (1995):

g =
1
N

. (1)

• Risk inflation criterion (g-RIC), proposed by Foster and George (1994):

g =
1
K2 . (2)

1We subtract the mean from all regressors as in Fernández et al. (2001a).
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• Benchmark prior, recommended by Fernández et al. (2001a):

g =

{
1
K2 for N ≤ K2,
1
N for N > K2.

(3)

• g-HQ prior which mimics the Hannan and Quinn criterion, see Fernández et al. (2001a):

g =
1

(lnN)3 . (4)

• Root of g-UIP, see Fernández et al. (2001a):

g =

√
1
N

. (5)

By Bayes’ rule, the mean of the posterior distribution of the slope parameters βr, con-
ditional on model Mr, can be written as

E(βr | y,Mr) =
[
(1 + g)X>r Xr

]−1
X>r y. (6)

It is easy to see that if g ≈ 0 the mean of the posterior distribution (see Equation 6) equals
the OLS estimates. The posterior variance of βr, conditional on model Mr, is given by

VAR (βr | y,Mr) =
Ns2

r

N − 2

[
(1 + g)X>r Xr

]−1
, (7)

where

s2
r =

1
1+g y

>PWry+
g

1+g (y− ȳιN )> (y− ȳιN )

N

and PWr = IN −Wr

(
W>r Wr

)−1
W>r for Wr = (ιN ,Xr).

The marginal data density, conditional on model Mr, may be written as

p(y |Mr) ∝
(

g

1 + g

) kr
2
[

1
1 + g

y>PWry+
g

1 + g
(y− ȳιN )> (y− ȳιN )

]−N−1
2

. (8)

In the Bayesian approach of comparing models, it is considered useful to employ probabil-
ities to represent the degree of belief associated with the alternative models. For the normal
linear regression models we can easily test two mutually exclusive (non-nested) and jointly
exhaustive models with different subset of variables. Using Bayes’ theorem, the posterior
odds ratio for a model Ml against model Mn is given by

P(Ml | y)
P(Mn | y)

=
P(Ml)

P(Mn)

p(y |Ml)

p(y |Mn)
, (9)

where P(Ml)
P(Mn)

is the prior odds ratio and p(y|Ml)
p(y|Mn)

is the Bayes factor. If the ratio P(Ml|y)
P(Mn|y) is

larger than 1, we can say that the data supports model Ml over model Mn. In our package,
we use two popular model priors.

• Binomial prior:
P(Mr) = θkr (1− θ)K−kr for r = 1, . . . , 2K . (10)

Note that for θ = 0.5 we have a uniform prior on the model space, i.e., P(Mr) = 2−K .
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• Binomial-beta prior (see Gelman et al. (1997)):

P(Ξ = kr) =
Γ(K + 1)

Γ(kr + 1)Γ(K − kr + 1) ·
Γ(a+ kr)Γ(K + b− kr)

Γ(a+ b+ kr)
· Γ(a+ b)

Γ(a)Γ(b)
, (11)

where Ξ denotes model size.

In our package, we only need to specify the prior expected model size E(Ξ) ∈ (0,K]. Note
that in case of the binomial prior we have E(Ξ) = Kθ and the choice of E(Ξ) automatically
produces a value for the prior inclusion probability θ. If we have the binomial-beta prior,
the average model size will satisfy E(Ξ) = a

a+bK. Here, we follow Ley and Steel (2009) and
fix a = 1 hence obtaining the value of the second hyperparameter as b = K−E(Ξ)

E(Ξ) .
One of the most widely accepted norms of scientific investigation is Occam’s razor. Sim-

ply speaking, Occam’s razor states that the simplest hypothesis is also the most probable
(see for example Madigan and Raftery (1994)). In the BMA package we penalize large mod-
els through the prior model probabilities (Osiewalski and Steel (1993)). Note that one can
make P(Mr) a decreasing function of kr simply by defining the prior expected model size
E(Ξ). The smaller the prior expected model size E(Ξ), the less probable are large models.

It is easy to show that the posterior probability of model Ml is given by

P(Ml | y) =
P(Ml)p(y |Ml)∑2K

r=1 P(Mr)p(y |Mr)
.

The posterior density of vector β is the average of the posterior densities p(βr | y,Mr)

conditional on the models

p(β | y) =
2K∑
r=1

P(Mr | y)p(βr | y,Mr).

Once the model posterior probabilities have been calculated, we can also easily evaluate
the mean and variance of the posterior distribution of slope parameters (see Leamer (1978)).

E(β | y) =
2K∑
r=1

P(Mr | y)E(βr | y,Mr) (12)

and

VAR(β | y) =
2K∑
r=1

P(Mr | y)VAR(βr | y,Mr) +
2K∑
r=1

P(Mr | y) (E(βr | y,Mr)− E(β | y))2 (13)

In a similar manner, we can find other characteristics of the posterior distribution (see for
example (Koop, 2003, p. 266)). We might be also interested in the estimates of the posterior
inclusion probability P(i | y) (PIP), i.e., the probability that, conditional on the data, but
unconditional with respect to a specific model, the variable xi is relevant in explaining the
dependent variable y (see Leamer (1978); Mitchell and Beauchamp (1988); Doppelhofer and
Weeks (2009)). The PIP is calculated as the sum of the posterior model probabilities for all
of the models including variable xi.

In Bayesian model averaging approach, predictions of the dependent variable are made
by taking a weighted average of the individual model forecasts. As described in Fernández
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et al. (2001b), prediction of an unobserved data point yf is based on calculating

p(yf | y) =
2K∑
r=1

fS(yf | N − 1, ȳ+ 1
g+ 1x

>
f ,rβ

∗
r ,

N − 1
Ns2

r
{1 + 1

N
+

1
g+ 1x

>
f ,r(X

>
j Xj)

−1xf ,r}−1)P(Mr | y), (14)

where fS(yf | v, b, a) denotes the univariate Student-t density with v degrees of freedom,
mean b and precision a (with variance v/{a(v− 2)}). In addition, β∗r =

[
X>r Xr

]−1
X>r y is

the ordinary least squares estimator for βr and xf ,r groups the r elements of xf corresponding
to the regressors in model Mr.

2.2 MC3 sampling algorithm
Our MC3 sampling algorithm is based on the Metropolis-Hastings algorithm, and was origi-
nally developed by Madigan et al. (1995). It simulates a chain of modelsM (s) for s = 1, . . . ,S
to find the equilibrium distribution P(Mr | y) of the posterior model probabilities. We do
this as follows: We construct a candidate set of models, containing all models constructed
by deleting one independent variable from M (s−1) or adding one independent variable to
M (s−1), where M (s−1) is the previously accepted model M (s−1). The chain is then con-
structed by drawing a model M ′ from this candidate set and the acceptance probability has
the form

α
(
M (s−1),M ′

)
= min

{
P(M ′)p(y |M ′)

P(M (s−1))p(y |M (s−1))
, 1
}

.

In order to assess the reliability and the convergence of the chain, we look at the Pearson’s
correlation between the analytical and MC3 posterior model probabilities. Convergence is
concluded to be achieved if the correlation is above 0.99 (see Fernández et al. (2001b) and
Koop (2003)). Note that we measure correlation between the analytical and MC3 posterior
model probabilities only for the top ranked models. If the number of top ranked models is
very small, this may lead to a high value of Pearson’s correlation even when convergence
has not been achieved.

2.3 Jointness measures
The main implementations of Bayesian model averaging are concerned with the selection
of variables when model uncertainty is present. Another relevant issue which arises in this
framework is to identify whether different sets of two variables xi and xj are substitutes,
complements or neither over the model space. For that reason, Ley and Steel (2007) and
Doppelhofer and Weeks (2009) define ex-post jointness measures of dependence between
different sets of explanatory variables. The logarithm of the jointness statistic proposed by
Ley and Steel (2007) has the form

JLS = ln
[

P(i∩ j | y)
P(i | y) + P(j | y)− 2P(i∩ j | y)

]
, (15)

where P(i ∩ j | y) represents the sum of the posterior probabilities of those models that
contain both variables xi and xj , P(i | y) and P(j | y) are the PIPs of xi and xj . JLS can be
interpreted as the posterior odds ratio of the models including both i and j vs the models
that include them only individually (see Ley and Steel (2007)).
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Evidence Jointness statistics
strong substitutes JLS , JDW ≤ −2
significant substitutes −2 < JLS , JDW ≤ −1
not significantly related −1 < JLS , JDW < 1
significant complements 1 ≥ JLS , JDW < 2
strong complements JLS , JDW ≥ 2

Table 1: Classification of strength of jointness measures.

An alternative jointness measure was proposed by Doppelhofer and Weeks (2009). It can
be written as follows

JDW = ln
[

P(i∩ j | y)P(ĩ∩ j̃ | y)
P(i∩ j̃ | y)P(ĩ∩ j | y)

]
, (16)

where P(ĩ∩ j̃ | y) denotes the sum of the posterior probabilities of the regression models in
which neither xi and xj are included, P(i ∩ j̃ | y) corresponds to the sum of the posterior
probabilities of all models in which xi is included and xj is excluded. The last probability
P(ĩ∩ j | y) is defined analogously.

JDW corresponds to the posterior odds of including i, given that j is included, divided
by the posterior odds of including i given that j is not included (see Doppelhofer and Weeks
(2009)). According to Doppelhofer and Weeks (2009), we use the classification of jointness
among the variables given in Table 1.

3 Implementation in gretl
In this section, we describe the code as well as the use of the gretl package for Bayesian model
averaging, together with the accompanying jointness measures. First, we will characterize
our code and the use of the GUI, then we will present how to use BMA via a script. Finally,
we will show the outputs that are returned.

3.1 Hansl programming language
“Hansl (the name expands, in recursive fashion, to “Hansl’s a neat scripting language”)
is gretl’s scripting language.” (Cottrell and Lucchetti, 2014, p. 1). Hansl’s syntax is very
similar to the C language, including the passing of pointers to functions. What is very
useful for the end user is that Hansl provides a friendly mechanism for building GUIs for
functions/packages. Such packages consist of (at least) one “public” function and zero or
more “private” helper functions (see Cottrell and Lucchetti (2013b)). This differentiation
gives programmers flexibility in writing packages for gretl and allows them to split the code
into small pieces (functions) responsible for logically separated computations.

The BMA package consists of 1 public and 17 private functions, but only 16 of them are
used regularly. The name of each function starts with the prefix BMA .
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3.2 The core of the BMA code
3.2.1 The main function

The core package function which runs and controls the main loop is

function matrix BMA_main (
list big_list "List of all variables for BMA (Y must be the first one)",
int acc_type[1:2:1] "Model prior" {"Binomial", "Binomial-beta"},
scalar av_model_size[0::1] "Prior average model size",
scalar alpha[0:1:0.6] "Significance level for the initial model",
int l_rank[2::10] "Number of the top ranked models",
int g_type[1:5:1] "g-prior type" {"Benchmark prior",

"Unit Information Prior (g-UIP)", "Risk Inflation Criterion (g-RIC)",
"Hannan and Quinn HQC", "Root of g-UIP"},

int do_joint[0:2:0] "Jointness analysis" {"None", "Ley-Steel Measure",
"Doppelhofer-Weeks Measure"},

int h_predict[0::] "Number of out-of-sample forecasts",
int Nrep[1000000] "Total number of replications",
int burn[0:99:10] "Percentage of burn-in draws",
int verbosity[1:2:1] "Verbosity")

The words in quotation marks are the labels for the GUI shown in Figure 2.

• The big list is a gretl’s object “named list” which is just a set of K + 1 variables
(defined by names or dataset ID). What is very important is the fact that the first
member of the big list is treated as y variable and the rest of the members are
treated as K explanatory variables. Furthermore, the big list cannot contain a
const (gretl’s internal and automatically generated constant term).

• The acc type[1:2:1] is an integer indicating model prior type (the default is bino-
mial, see Equations 10 and 11).

• The scalar av model size[0::1] is the scalar of the prior average model size. Note,
if av model size = K

2 and the model prior is set to binomial, we get the uniform
prior on the model space. The default value is 1.

• The scalar alpha[0:1:0.6] is the significance level in OLS estimation. An indepen-
dent variable enters the initial model if its p value is less than the significance level
(see Koop (2003)). The default value is α = 0.6, but setting α = 1 results in a model
consisting of 0 to K randomly chosen explanatory variables.

• The int l rank[2::10] is the number of the top ranked models. The default value
is 10.

• The int g type[1:5:1] indicates the type of g-prior to be used (the default value is
1: “Benchmark prior”), see Equations 1, 2, 3, 4 and 5.

• The int do joint[0:2:0] indicates whether we do jointness analysis and if so, which
measure to use. The default value is 0: “None”, see Section 2.3.

• The h predict[0::] is the number of out-of-sample forecasts.

• The int Nrep[1000000] is the total number of replications in the Monte Carlo sim-
ulation. The default value is 1000000.
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• The int burn[0:99:10] is the percentage of burn-in draws ranging from 0% to 99%.
The default value is 10%.

• The int verbosity[1:2:1] indicates the level of verbosity of the BMA package for
printing results. The default value is 1, i.e., silent mode.

3.2.2 The main loop

The main loop of the BMA package is split into four parts:

1. Setting up the MC3 sampling algorithm.

2. Constructing the initial model.

3. Markov chain Monte Carlo simulation.

4. Results printing.

In the first part of the main loop (Setting up the MC3 sampling algorithm), we set up
the internal variables and also check the correctness of the arguments passed to the package.
We use two private functions here:

1. function string BMA_parse (list big_list, const scalar *k,
const scalar *av_model_size, const scalar *l_rank);

2. function void BMA_scaling_factors (matrix *factors,
const scalar *k, scalar *y_sq, const int g_type, const matrix *Y);

where arguments indicated by the * modifier are pointers, see Cottrell and Lucchetti (2013b)
for explanation. If there is no error, we run the function BMA scaling factors which calls
the function scalar BMA gprior (const scalar *k, int type) to compute the g-prior
according to Equations 1, 2, 3, 4, and 5. and sets up some scalars needed for further
computations.

In the second part of the main loop (Constructing the initial model.), we construct the
initial model for MC3 sampling and set up some additional internal variables. Here we use
five private functions:

1. function list BMA_initial_model (const series *Y, list X,
const scalar *alpha, scalar *k, matrix var_order);

2. function void BMA_new_X_matrix (const matrix *big_mat_dem,
const matrix *Ones, const scalar *k, matrix *X_new_num,
matrix *X_new, list X_list, const scalar *k_new,
const matrix *var_numbers2, const matrix *big_mat_dem_predict[null],
matrix *X_new_predict[null], const scalar *h_predict);

3. function void BMA_matrix_precompute (const matrix *Y, matrix *X,
const scalar *k, const matrix *Ones, const matrix *factors,
matrix *XtY, matrix *XtXinv, scalar *yMy,
matrix *ZtZinv[null], const scalar h_predict);

4. function void BMA_ols (const matrix *factors, matrix *XtY,
matrix *XtXinv, scalar *yMy, matrix *bhat, matrix *bvar);
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5. function matrix BMA_model_structure (matrix *X_new_num,
const scalar *k, matrix *models_rank[null],
const scalar *l_models_rank[null], bool start_model[0]);

The function BMA initial model returns X old l – the list of explanatory variables in
the initial model according to the scalar *alpha. Next, the function BMA new X matrix
constructs X new – the matrix of demeaned explanatory variables based on X old l. Fur-
thermore, the X new matrix is taken by the function BMA matrix precompute for the linear
algebraic calculations necessary to compute Equations 6, 7, and 8. Then we run the following
code snippet to compute Equation 8:

lprob_old = scaling_f[5] * (k_new + 1) - scaling_f[6] *
log(scaling_f[3] * yMy + scaling_f[4])

Subsequently, we run the function BMA ols to compute Equations 6 and 7. Finally, we call
the function BMA model structure, which returns the 1×K row vector with a 1 indicating
that the explanatory variable was in the initial model and 0 otherwise.

In the third part of the main loop (Markov chain Monte Carlo simulation), we discard
the first Nburn = round(burn / 100 * Nrep) draws as burn-in replications and then we
simulate a chain of models. The most important code snippets are:

1. Drawing a candidate model.

potential_var = randint(0, k)
...

if (potential_var > 0)
if (mod_struct[potential_var] == 1)

X_new_l = X_old_l - var_numbers[potential_var + 1]
else

X_new_l = X_old_l var_numbers[potential_var + 1]
endif
...

2. Making the decision of accepting the candidate model.

if (log(randgen1(u, 0, 1)) < BMA_accept_prob(acc_type, &lprob_new,
&lprob_old, &k_new, &k_old, &k, &a, &b, &c))

...
endif;

3. Constructing/modifying the analytical and numerical model rankings.

function void BMA_build_rank (matrix *mod_rank,
matrix *mod_rank_prob, matrix *mod_nume_prob,
const matrix *mod_struct, const scalar *l_rank,
const scalar *lprob_old);

4. Computing Bayesian model averaging stuff.

mod_size += k_new
var_prob += mod_struct
loop for i = 1..k_new --quiet

bhat_avg[X_new_num[i] - 1] += bhat[i + 1]
bvar_avg[X_new_num[i] - 1] += (bvar[i + 1] + bhat[i + 1]ˆ2)

endloop;



3 IMPLEMENTATION IN GRETL 10

5. Out-of-sample forecasting (if needed).

if (h_predict > 0 && k_new > 0)
Yhat = X_new_predict * bhat[2:k_new + 1] + y_mean
Yhat_avg += Yhat
precision = (($nobs - 1) / dj) * ((1 + 1 / $nobs + scaling_f[3]
* diag(X_new_predict * ZtZinv * X_new_predict’)).ˆ-1)

Yhat_var_avg += (($nobs - 1) / (precision * ($nobs - 3)) + Yhat.ˆ2)
endif;

6. Analyzing jointness (if needed).

function void BMA_jointness_matrix (const matrix *mod_struct,
const scalar *k, matrix *jointness_m);

At Step 1 we draw the number of a variable ranging from 0 to K using the gretl’s built-in
function randint() which uses the SIMD-oriented fast Mersenne twister (SFMT) random
number generator (see Cottrell and Lucchetti (2013a); Yalta and Schreiber (2012))2. If the
drawn variable was in the last model, this variable is removed from it, otherwise it is added
to the last model.

At Step 2 we make the decision whether to accept the new draw (model) or not. We call
the BMA accept prob function, which implements the posterior odds ratio (see Equation 9).

At Step 3 we call the BMA build rank function, which is responsible for creating analyt-
ical, as well as numerical rankings.

At Step 4 we do some counting needed for the Bayesian model averaging computations
formulated in Equations 12 and 13, that is the mean and variance of the posterior distribution
of slope parameters, as well as the average model size and the PIP.

At Step 5 if out-of-sample forecasts were selected we compute mean and variance of
predictions according to Equation 14.

Finally at Step 6, if jointness analysis was selected, we call the BMA jointness matrix
function, which counts each coexistence (jointness) of every pair of explanatory variables in
the given draw.

In the last part of the main loop (Results printing), we finally call the BMA print results
function in order to print the MC3 sampling results. A detailed description of the structure
of the results printed here will be depicted in Section 3.3.

3.2.3 The matrix returned by the BMA package

The BMA package can optionally return a matrix containing substantial results obtained
in the analysis. The structure of that matrix is shown in Figure 1. The result matrix
has K rows, one for each explanatory variable. The first five columns are: the posterior
inclusion probabilities, the posterior mean and standard deviation of each coefficient (Mean
and Std.Dev.) and the posterior mean and standard deviation of each coefficient conditional
on the variable being included in the model (Cond.Mean and Cond.Std.Dev.), see page 14
for details. The next K columns appear only if any of the jointness measures was selected
and contain the values of one of the jointness measures: Ley-Steel or Doppelhofer-Weeks.

2The code of the BMA package contains the private function ran2 which implements the so-called “ran2”
random number generator (RNG) by L’Ecuyer with Bays-Durham shuffle and added safeguards (see Press
et al. (1988)). We implemented this RNG for convenience of replication of the earlier published results, see
Fernández et al. (2001b) and Ley and Steel (2007). In the BMA’s main loop code there can be switched
from SFMT to ran2 RNG. Note that our ran2 function is much slower than gretl’s internal RNG.
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PIP Mean Std.Dev. Cond.Mean Cond.Std.Dev. x1 x2 x3 . . . xK

x1

x2

x3 JLS or JDW
...
xK

Figure 1: Structure of the matrix returned by the BMA package.

3.3 Usage of the BMA package
3.3.1 The GUI way

Once you start gretl, you must open a data file and then you can load the relevant BMA
package from the gretl server. In the main window, go to Tools > Function packages >
On server heading. By selecting BMA, you will open a window similar to the one shown in
Figure 2:

Figure 2: Main window for BMA.

According to Figure 2, we can specify the following entries in the GUI BMA window

• List of all variables for BMA (Y must be the first one) – Loading variables from
the database, which must have been opened previously. The dependent variable must
be the first one in the list of the variables currently available. Notice that by default
we assume that you want to estimate an intercept; therefore, a constant is implicitly
included in the list of the variables.

• Model prior – Indicates the choice of model prior. One can employ the binomial
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model prior or the binomial-beta model prior. Note that the uniform model prior is
a special case of the binomial model prior. Therefore, in fact, our package allows for
three types of priors.

• Prior average model size – Specifies the prior expected model size E(Ξ). The
expected model size may range from 0 to K. The default value equals 1. It is the
smallest reasonable prior expected model size. It means that we penalize large models
and we assign high probability to small ones following Occam’s razor philosophy.
Note that for the binomial model prior and with E(Ξ) = 0.5K one can define the
uniform prior on the model space. For example, for K = 10 regressors we can define
the uniform prior with E(Ξ) = 5. For E(Ξ) < 5 we assign high probability to small
models. The smaller the prior expected model size E(Ξ), the less probable are larger
models.

• Significance level for the initial model – Defines the significance level which is
used to build the initial model. An explanatory variable enters the initial model if its
p value is less than the significance level. If the significance level equals 1, the initial
model will be randomly chosen (with equal probability) from all available models.
Note that if all available explanatory variables enter the initial model, you will get the
following gretl error message “No independent variables were omitted”.

• Number of top ranked models – Specifies the number of best models for which
detailed information is stored.

• g-prior type – One can choose between four Zellner’s g-priors for the regression
coefficients. Choices include: benchmark prior, unit information prior, risk inflation
criterion, Hannan and Quinn prior, root of g-UIP.

• Jointness analysis – If "None" (the default), the jointness analysis is omitted. Alter-
natively, one can choose the jointness measures of Ley and Steel (2007) or Doppelhofer
and Weeks (2009).

• Number of out-of-sample forecasts – Defines the total number of out-of-sample
forecasts of the dependent variable.

• Total number of replications – Defines the total number of iteration draws to be
sampled.

• Percentage of burn-in draws – Specifies the number of burn-in replications, calcu-
lated as the percentage of the total number of iteration draws.

• Verbosity – An integer value of 1 or 2; the default is 1, which allows to see the basic
Bayesian model averaging results. If Verbosity equals 2, a more detailed description
of the analysis is provided (initial model, speed of convergence, estimation results for
top ranked models).

• matrix – The output can be saved under a specified name to the current session.
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3.3.2 Script

The BMA package can also be used inside Hansl scripts. A very minimal code could be as
follows:

open greene9_1.gdt
include BMA.gfn

list greene = dataset

BMA_main(greene, 1, 1.5, 0.6, 4, 1, 0, 0, 1000000, 10, 1)

The above example consists of three blocks.
The first block defines just the opening of the so-called greene9 1 dataset, which is bun-

dled in every standard gretl installation. This dataset contains the cross-sectional data on
the manufacturing of transportation equipment presented in Greene (1999)3 and it consists
of the following variables: valadd – output, capital – capital input, labor – labor input and
nfirm – number of firms.

The second block is the definition of the green list which contains all variables available
in the greene9 1 dataset. The first variable – valadd – will be the dependent variable.

The third block contains the specification of the Bayesian model averaging analysis:
binomial model prior, prior average model size set to 1.5 (which means that we have the
uniform model prior), significance level for the initial model set to 0.6, 4 top ranked models,
Benchmark g-prior, without jointness analysis, without out-of-sample forecasts, 1000000
replications with 10% burn-in draws and basic output (verbosity set to 1).

Suppose we want to run the same analysis but following Occam’s razor philosophy. The
simplest way to do this, is to set the prior average model size to 1. The code would be as
follows:

BMA_main(greene, 1, 1, 0.6, 4, 1, 0, 0, 1000000, 10, 1)

In this case, we penalize large models by assigning high probabilities to small ones. Apart
from the binomial model prior, we can use the binomial-beta prior. To do this, we have to
set the model prior to 2. The code would be as follows

BMA_main(greene, 2, 1, 0.6, 4, 1, 0, 0, 1000000, 10, 1)

Suppose we want to set the g-prior to risk inflation criterion, select the uniform model prior,
do jointness analysis with the Ley-Steel measure, compute forecasts for 3 observations and
print additional information (verbosity set to 2). The code would then be as follows:

BMA_main(greene, 1, 1.5, 0.6, 4, 3, 1, 3, 1000000, 10, 2)

Finally, if we want to save results of the above Bayesian model averaging analysis in the
matrix named results mat, the code should be as follows

results_mat = BMA_main(greene, 1, 1.5, 0.6, 4, 3, 1, 3, 1000000, 10, 2)
3This dataset is also available at link http://people.stern.nyu.edu/wgreene/Text/Edition7/

TableF7-2.txt.
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3.3.3 Outputs

If you select the appropriate entries in the GUI BMA window, our package returns: PIP,
Mean, Std.Dev., Cond.Mean, Cond.Std.Dev. Furthermore, the package also returns the
predictive results of the dependent variable (Mean and Std.Dev.).

Let us consider the data used in Fernández et al. (2001b) (denoted FLS hereafter). This
data comprises the information about 72 countries and 41 potential growth determinants
for the period 1960 to 19924. The initial estimation sample consists of indices i = 1, . . . , 69
and the out-of-sample evaluation indices are from 70 to 72.

For example, for the FLS data, the following estimates should appear

Posterior moments (unconditional and conditional on inclusion):
PIP Mean Std.Dev. Cond.Mean Cond.Std.Dev

GDPsh560 0.998378 -1.444579 0.305391 -1.446927 0.300031
Confuncious 0.890878 0.427081 0.189631 0.479393 0.123638

Life_Exp 0.932297 0.988063 0.404005 1.059816 0.314688
Equip_Inv 0.904971 0.549653 0.250217 0.607370 0.184734
SubSahara 0.654270 -0.431560 0.369153 -0.659606 0.240550

Muslim 0.363769 0.130498 0.197138 0.358739 0.157977
Rule_of_Law 0.416318 0.206002 0.271416 0.494818 0.184491

Yrs_Open 0.547074 0.312026 0.318952 0.570354 0.196508
... ... ... ... ... ...

----------------------------------
Posterior probability of models:
Model 1: 0.007899
Model 2: 0.005294
Model 3: 0.004204
Model 4: 0.003960
Model 5: 0.003378

... ...
Total probability of the models in ranking (numerical): 0.058997
Correlation coefficient between the analytical
and numerical probabilities of the above models: 0.997518
----------------------------------
Predictive results:

Growth Mean Std.Dev.
Obs.70 2.714600 1.590657 1.279354
Obs.71 2.067600 2.006087 0.941517
Obs.72 1.889700 2.465582 0.981258

The BMA estimate function accepts a scalar, which sets the verbosity of the output. Its
default value is 1, which causes the estimation output to be printed out. A value of 2 forces
the BMA function to print out all the details of the estimation. You can print out the
above-mentioned results and additionally the following information: the total CPU time,
type of model prior, prior average model size, significance level for the initial model, type
of g-prior, total number of iterations and, finally, the number of burn-in draws. Moreover,
the BMA estimate function produces the estimation results for the initial and top ranked
models. The jointness analysis is inactive by default. If it is active, you will get: posterior

4The dataset is publicly available on the Journal of Applied Econometrics online data archive (http://
qed.econ.queensu.ca/jae/2001-v16.5/fernandez-ley-steel/). The reported chain (3000000 replications
with 33% burn-in draws) took about 51 minutes of CPU time on a PC with AMD Phenom II X6 1100T
CPU, 6.0 Gb of RAM running under Debian GNU/Linux. We used gretl 1.10.2 compiled by GCC 5.2.1.
The seed for RNG was set to 1000000. The dependent variable is the growth rate from 1960–1992.
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joint probability of explanatory variables, jointness statistic as given in Equations 15 or 16
and classification of jointness measures. The jointness analysis for the previous example
should look like this:

Posterior joint probability of variables:
GDPsh560 Confuncious Life_Exp Equip_Inv ...

GDPsh560 0.000000 0.889256 0.932182 0.903349 ...
Confuncious 0.000000 0.000000 0.826208 0.816956 ...

Life_Exp 0.000000 0.000000 0.000000 0.839068 ...
Equip_Inv 0.000000 0.000000 0.000000 0.000000 ...

... ... ... ... ... ...
Jointness statistics (Ley-Steel Measure):

GDPsh560 Confuncious Life_Exp Equip_Inv ...
GDPsh560 0.000000 2.083161 2.643181 2.235000 ...

Confuncious 0.000000 0.000000 1.576599 1.618373 ...
Life_Exp 0.000000 0.000000 0.000000 1.662559 ...

Equip_Inv 0.000000 0.000000 0.000000 0.000000 ...
... ... ... ... ... ...

Strong substitutes:
Rev_Coup,Area -4.516140

Rev_Coup,Publ_Edu_pct -4.459739
... ...

Significant substitutes:
GDPsh560,Hindu -1.997989

Mining,War_Dummy -1.989541
... ...

Significant complements:
Confuncious,Life_Exp 1.576599

Confuncious,Equip_Inv 1.618373
... ...

Strong complements:
DPsh560,Confuncious 2.083161
GDPsh560,Equip_Inv 2.235000

... ...

4 Comparison to other BMA software packages
Several Bayesian model averaging software packages have been developed by many re-
searchers5. The most popular in the literature are R packages. A recent and comprehensive
overview of Bayesian model averaging software in R is given in Amini and Parmeter (2011).
They outline the following BMA packages: BMS by Feldkircher and Zeugner (2013), BAS by
Clyde et al. (2012) and BMA by Raftery et al. (2014). According to their research the BMS
package provides the most accurate results and it is also the most flexible with numerous
options. Table 2 presents the main features of the above mentioned packages. Further-
more we compare our BMA package to the FLSBMA program developed in Fortran 77 by
Fernández et al. (2001b).

The most flexible package according to the model sampling category is R-BAS which con-
tains three sampling algorithms: Bayesian adaptive sampling (BAS), adaptive MCMC (AM-
CMC) and Bayesian adaptive sampling with MCMC for the initial replications (BAS+MCMC).

5Useful information about Bayesian model averaging software packages are available at link http://bms.
zeugner.eu/resources/.
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Main features R-BMS R-BMA R-BAS FLSBMA gretl-BMA

Model sampling MC3 BIC
BAS, AMCMC,

MC3 MC3
BAS+MCMC

Model priors 5 1 3 2 3
Zellner’s g-priors 6 1 9 9 5
Jointness analysis X X

Jointness measures 1 2
Out-of-sample forecast X X X X

No. of burn-in draws X X X X

No. of draws X X X X X

No. of top ranked models X X X

Graphical user interface X

Table 2: Main features of the selected Bayesian model averaging software packages. Model
sampling: Type of model sampling algorithms. Model priors: Number of available model
priors. Zellner’s g-priors: Number of available Zellner’s factors of proportionality. Joint-
ness analysis: Information if the package provides jointness analysis. Jointness measures:
Number of available jointness measures. Out-of-sample forecast: Information about which
package can be used for out-of-sample forecasting. No. of burn-in draws. No. of draws and
no. of top ranked models: Number of user-defined parameters in the sampling algorithm.
Graphical user interface: Presence of a GUI in the package.

All packages offer different model priors. The most limited is R-BMA with only a fixed model
prior, while the most comprehensive is R-BMS which contains the following model priors:
fixed, uniform, binomial, binomial-beta and custom (user-controlled prior probabilities).
Furthermore, the number of g-priors may differ depending on the package starting from one
for R-BMA, to nine for R-BAS and FLSBMA.

gretl-BMA and FLSBMA are the only packages which offer Bayesian model averaging
together with accompanying jointness statistics. FLSBMA contains one jointness measure
(Ley-Steel) while gretl-BMA contains two measures (Ley-Steel and Doppelhofer-Weeks).
The estimation of out-of-sample forecasts is possible in almost all packages excluding R-
BMA, where this option is not available. Three out of five packages enable full control
of the replication algorithm. In R-BMS, FLSBMA and gretl-BMA, the user can set the
number of burn-in draws, replication draws and detailed information about top ranked
models. Unlike other packages gretl-BMA offers an easy-to-use GUI for the Bayesian model
averaging approach.

In order to compare run times of the above mentioned packages we used the FLS dataset
with the following options: benchmark g-prior, 1000000 burn-in draws, 2000000 iterations.
Model prior was set to uniform. We considered two scenarios for our experiment: with or
without jointness analysis.

According to the results presented in Table 3, the fastest Bayesian model averaging
software package is R-BAS, while the slowest one is gretl-BMA. We are aware of this disad-
vantage of our package, but it strongly depends on the gretl development process, especially
on the improvements of the Hansl interpreter. It is possible that in the near future gretl
will be much faster than the current 1.10.2 version (see Section 6 for more details).
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Run time R-BMS R-BMA R-BAS FLSBMA gretl-BMA

Without jointness analysis 317 92 53 1423 1852
With jointness analysis 1423 3073

Table 3: Run time in seconds of Bayesian model averaging software packages for FLS data.

5 Empirical illustration
In this section we examine the ability of our package in replicating the results published
by Fernández et al. (2001b) and Ley and Steel (2007). We use the same original dataset
to attempt to replicate their results. In our empirical illustration, we discard the first 1
million models and draw samples from the model space 2 million times. We specify the
following entries in the GUI BMA window: model prior = ‘binomial’, prior average model
size = ‘20.5’ (we set the model prior to the uniform distribution), number of the top ranked
models = ‘20’, g-prior type = ‘Benchmark prior’, total number of replications = ‘3000000’,
percentage of burn-in draws = ‘33’. Tables 4 and 5 present the estimation results6. They
report the posterior means, standard errors and PIPs of regressors calculated by R-BMS,
R-BMA, R-BAS and FLSBMA packages. These benchmarking results allow us to compare
and analyze the performance of our package. Bold font indicates identical results.

As is apparent in Tables 4 and 5, the only minor differences in the posterior results are
found between gretl-BMA and the results published in Ley and Steel (2007). All PIPs and
estimated posterior means or standard deviations are reasonably close in all cases and the
same variables are identified to be relevant. Note that the gretl package results are almost
identical to the results produced by the R-BMS package.

In our opinion, the main reason for the very similar results produced by R-BMS and gretl-
BMA is the implementation of the same RNG algorithm (the SIMD-oriented Fast Mersenne
Twister), while FLSBMA package uses an older RNG algorithm, i.e., “ran2” developed
by L’Ecuyer. The R-BMA and R-BAS packages are not capable to reproduce our results
(see Amini and Parmeter (2011) for additional information).

6 Conclusions
This paper has outlined a new software package that implements Bayesian model averaging
and jointness measures for gretl. Bayesian model averaging is a straightforward and natural
extension of standard Bayesian analysis and it is a useful and popular alternative to other
variable selection procedures, especially for a large set of regressors. Here we used gretl,
which is a free, open-source software for econometric analysis with an easy-to-use GUI. Our
goal was to familiarize potential users with the features and the different options that our
package has to offer. We described how our package implements Bayesian model averaging,
as well as the outputs that are returned.

Recent trends in Bayesian model averaging still concern applications in various areas of
empirical research, i.e., economic growth (see Cuaresma et al. (2014), Gazda and Puziak
(2012)), stock returns (see Beckmann and Schüssler (2014)), geography (see Baran (2014))
and many more. One can also encounter new papers about theory of Bayesian model av-

6The reported chain took about 31 minutes of CPU time on a PC with AMD Phenom II X6 1100T CPU,
6.0 Gb of RAM running under Debian GNU/Linux. We used gretl 1.10.2 compiled by GCC 5.2.1. The seed
for RNG was set to 1000000.
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Regressors R-BMS R-BMA R-BAS FLSBMA gretl-BMA
Log GDP in 1960 1.00 1.00 1.00 1.00 1.00
Fraction Confucian 0.99 1.00 1.00 1.00 0.99
Life expectancy 0.93 1.00 1.00 0.95 0.94
Equipment investment 0.92 1.00 0.97 0.94 0.92
Sub-Saharan dummy 0.74 1.00 1.00 0.76 0.74
Fraction Muslim 0.65 0.60 0.43 0.66 0.65
. . . . . .
Population growth 0.04 0.04 0.09 0.02 0.04
British colony dummy 0.04 0.98 0.49 0.02 0.04
Outward orientation 0.04 0.86 0.44 0.02 0.04
Fraction Jewish 0.04 0.01 0.06 0.02 0.04
Revolutions and coups 0.03 n/a 0.06 0.02 0.03
Public education share 0.03 0.10 0.32 0.02 0.03
Area (scale effect) 0.03 n/a 0.06 0.02 0.03

Table 5: Posterior inclusion probabilities based on the Bayesian model averaging software
packages for FLS data. Abbreviation “n/a” means that R-BMA dropped the variable in the
pre-selection procedure. Bold font denotes identical results.

eraging, for example: two-stage Bayesian model averaging (see Lenkoski et al. (2014)) or
comparison of Bayesian model averaging to the weighted average least squares method (see
De Luca and Magnus (2011)).

The future development of the BMA package could be focused on two main aspects:
speed improvements and feature extensions. The first one is strongly correlated with the
gretl development process, especially with work on improvements in speed of the Hansl
interpreter. It is possible that the interpreter will be rewritten in the near future to achieve
speed boost with backward compatibility. The feature extensions would concern two aspects:
implementing new g-priors and model priors. In the literature we can find many types of
g-priors (see Fernández et al. (2001a)). Moreover new model priors could be also considered.
For instance, Sala-I-Martin et al. (2004) proposed the so-called fixed model prior. These
implementations would surely improve the flexibility of the BMA package.
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