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Abstract

This paper presents the Gretl function package DPB for estimating dynamic binary mod-
els with panel data. The package contains routines for the estimation of the random-effects
dynamic probit model proposed by Heckman (1981b) and its generalisation by Hyslop
(1999) and Keane and Sauer (2009) to accommodate AR(1) disturbances. The fixed-effects
estimator by Bartolucci and Nigro (2010) is also implemented. DPB is available on the Gretl

function packages archive.
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1 Introduction

Non-linear dynamic models for binary dependent variables with longitudinal data are
nowadays quite common in microeconometric applications, especially given the increas-
ing availability of panel datasets. One of the most attractive features of models of the type

y∗it = γyit−1 + x′itβ + αi + εit

yit = 1{y∗it ≥ 0} for i = 1, . . . , n t = 2, . . . , T

is that they lend themselves very naturally to an interpretation in terms of true state de-
pendence, that is a situation in which the realisation of an event affects the probability of the
same event occurring in the future, as opposed to simple time persistence in y∗it, which may
be due to covariates xit and/or to the time-invariant unobserved heterogeneity (Heckman,
1981a).

This feature is particularly attractive when the problem at hand displays some form
of path dependence. Therefore, these models have been found to be extremely useful in
the analysis of several microeconomic topics: labour force participation, more specifically
female labour supply (Heckman and Borjas, 1980; Hyslop, 1999; Carrasco, 2001; Arulam-
palam, 2002; Stewart, 2007; Keane and Sauer, 2009), self-assessed health condition (Contoy-
annis et al., 2004; Heiss, 2011; Halliday, 2008; Carro and Traferri, 2012), poverty transitions
(Cappellari and Jenkins, 2004; Biewen, 2009), unionisation of workers (Stewart, 2006), wel-
fare participation (Wunder and Riphahn, 2014), remittance decisions by migrants (Bettin
and Lucchetti, 2012), and access to credit (Alessie et al., 2004; Brown et al., 2012; Giarda,
2013; Pigini et al., 2014).

While static models are relatively mainstream and are supported by most statistical and
econometric software, dynamic models are more complex to implement and, therefore,
estimation routines are not always readily available to the practitioner. Compared to their
static counterparts, dealing with unobserved heterogeneity in these models raises several
complex issues, both statistical and computational in nature. The main statistical problem
lies in the so-called “initial conditions problem”: clearly, the recursive nature of the model
calls for some kind of conditioning when writing the log-likelihood. This, however, is made
problematic by the existence of the time-invariant unobserved individual effects αi, which
is correlated with the initial observation.

Random-Effects (RE henceforth) approaches tackle the initial conditions problem by
modelling the joint distribution of the outcomes conditional on y1. Historically, the first
proposal is due to Heckman (1981b) who, building on the static RE estimator, proposed
a model for the joint distribution for the response variable yi = [yi1, . . . , yiT ], in which a
separate reduced-form model for the initial observation yi1 is approximated via a linearised
index function. Under suitable distributional assumptions, the joint log-likelihood for yi
may be evaluated by means of Gauss–Hermite quadrature (Butler and Moffitt, 1982) and
estimation may be carried out by Maximum Likelihood (ML).

Generalisations of Heckman’s estimator were later proposed by Hyslop (1999), who in-
troduced autoregressive error terms, and Keane and Sauer (2009), who further generalised
it to a model with a more flexible treatment of the initial condition equation. In these cases,
however, it is necessary to evaluate multivariate normal integrals with an arbitrary corre-
lation structure among error terms and unobserved heterogeneity. This calls for simulation
techniques such as GHK (Geweke, 1989; Hajivassiliou and McFadden, 1998; Keane, 1994),
which make estimation considerably more costly in terms of CPU requirements.

Alternatively, Wooldridge (2005) proposed modelling the distribution of individual un-

1



observed effect αi conditional on y1 and on the history of covariates instead of dealing
with the joint distribution of all outcomes.1 Wooldrigde’s estimator employs techniques
for dealing with the initial observation problem in such a way that estimation can be car-
ried out through ordinary RE probit routines with the addition of some ad-hoc explanatory
variables. This alternative has become extremely popular, but unfortunately does not lend
itself to a natural generalisation to the case with autocorrelated disturbances, which is often
called for in practice.

The initial conditions problem can also be circumvented via a Fixed-Effects (FE) ap-
proach, which makes it possible to estimate the regression parameters consistently without
having to make distributional assumptions on the unobserved heterogeneity. The key idea
is to condition the joint distribution of yi on a suitably defined sufficient statistic for αi.
For static logit models, it is possible to define a Conditional Maximum Likelihood (CML)
estimator. Its dynamic extension, however, has not gained widespread adoption in empir-
ical work since it cannot be easily generalised to every time-configuration of the panel and
requires strong restrictions to the model specification. Moreover, these models generally
require that at least a transition between the states 0 and 1 is observed for the individual to
contribute to the likelihood. As a result, the number of usable observations often reduces
drastically compared to the sample size, especially in the cases when strong persistence in
the dependent variable is exactly the reason why a dynamic model is needed.

The first proposal of a FE logit model can be found in Chamberlain (1985): estima-
tion relies on conditional inference and, therefore, is rather simple to perform. Exogenous
covariates, however, cannot be included and the proposed sufficient statistic for inciden-
tal parameters needs to be determined on a case-wise basis according to the time-series
length. Honoré and Kyriazidou (2000) extended Chamberlain’s formulation in order to in-
clude explanatory variables; this approach, however, implies the usage of semi-parametric
techniques that require a substantial computational effort. Moreover, time-dummies (a
customary addition to practically all empirical models) cannot be handled either. Recently,
Bartolucci and Nigro (2010) defined a dynamic model, which belongs to the quadratic expo-
nential family and resembles closely a dynamic logit model, which overcomes most of the
difficulties encountered by Honoré and Kyriazidou’s estimator and can be implemented
by suitably adapting ordinary static FE logit software.2

In this work, we present the Gretl implementation of the available set of tools to esti-
mate dynamic models for binary dependent variables in panel datasets by both FE and RE
approaches, collected in the DPB (Dynamic Panel Binary) function package. The RE models
contained in DPB are the dynamic probit with linearised index initial condition proposed
in Heckman (1981b) and the generalisations by Hyslop (1999) and Keane and Sauer (2009).
Compared to the other available estimators based on a RE approach, Heckman’s estimator
has been shown to suffer from remarkably little small-sample bias (Miranda, 2007; Akay,
2012) and is widely used in microeconomic applications. On the contrary, the estimator
proposed by Wooldridge (2005) is not included in the package per se, despite its common
use by practitioners, since Gretl already provides suitable functions natively: therefore, we
just provide an example showing how to implement it via a simple script. Finally, DPB also
contains the software for estimating the quadratic exponential model in Bartolucci and Ni-
gro (2010).

1Similar approaches have been proposed by Orme (1997, 2001) and Arulampalam and Stewart (2009) which
we refer to for a more detailed discussion.

2Estimators based on the FE approach for long panels (T → ∞) have also been proposed, among which Hahn
and Newey (2004), Carro (2007), Fernández-Val (2009) Hahn and Kuersteiner (2011), Bartolucci et al. (2014). Here
we focus only on short panels (n→ ∞), which are the datasets usually available to applied microeconomists.
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The rest of the paper is organised as follows: Section 2 first lays the methodological
background for the estimators provided in the package, while in Section 3 we discuss the
main computational issues of their implementation; Section 4 describes in detail the fea-
tures of DPB; Section 5 provides an empirical application based on a dataset of unionised
workers extracted from the U.S. National Longitudinal Survey of Youth; Section 6 con-
cludes.

2 Methodological background

A general model for the conditional probability of a binary response variable yit can be
written as

p (yit|Ft, αi; ψ0) for i = 1, . . . , n t = 1, . . . , T,

where Ft is the information set at time t available to individual i, which, in general, may
consist of a set of individual covariates X i = [xi1, . . . , xiT ] as well as the lag of the response
variable yt−1

i = [yi1, . . . , yit−1], αi is the individual time-invariant unobserved effect, which
is assumed to be a continuous r. v.; ψ0 is the vector of model parameters. In the simple case
where the relevant conditioning information set is X i, i. e. yit does not depend on yt−1

i , the
joint probability of yi = [yi1, . . . , yiT ] for individual i is

p (yi|X i, αi; ψ0) =

∫
R

T

∏
t=1

p (yit|X i, αi; ψ0)dF(αi).

In a dynamic model yit is allowed to depend on its past history. When unobserved effects
are present, the process for the response variable needs to be initialised in order to account
for how yi relates to the process before the observations started being available. The de-
pendence on the past of yit is usually likely to be limited to its first lag, so that the relevant
subset of Ft is [yit−1, X i]. Therefore, the joint probability of yi, conditional on X i and αi,
becomes

p (yi|X i, αi; ψ0) =

∫
R

p(yi1|X i, αi; ψ0)
T

∏
t=2

p (yit|yit−1, X i, αi; ψ0)dF(αi).

The rest of the section describes the RE approach proposed by Heckman (1981b) and
its generalisations and the FE approach put forward by Bartolucci and Nigro (2010). In the
first case, a reduced form equation for p(yi1|X i, αi; ψ0) is specified. In the second case, the
unobserved effect αi is eliminated by conditioning p (yi|X i, αi; ψ0) on a suitable sufficient
statistic and, as a result, the initial condition does not need to be dealt with, so that the joint
probability can be written as p (yi|X i, yi1, αi; ψ0).

2.1 Random-Effects approach

The estimator proposed by Heckman (1981b) is based on a standard formulation of a dy-
namic RE binary choice model with an additional equation for the initial observation yi1:

yit = 1{γyit−1 + x′itβ + αi + εit ≥ 0} for i = 1, . . . , n t = 2, . . . , T (1)

yi1 = 1{z′i1π + θαi + εi1 ≥ 0} for i = 1, . . . , n (2)
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where yit is the binary response variable, 1{·} is an indicator function, xit is a vector of
individual covariates and zi1 contains the values of X i in the first period and pre-sample
information that can be used as exclusion restrictions. The assumptions on αi and εi are:
E [εit|X i, αi] = 0; orthogonality of αi and X i, E [αi|X i] = 0; joint normality conditional on
X i [θαi + εi1, αi + εi2, . . . , αi + εiT ]

′ ∼ N (0; Σ) with

Σ =


1 + θ2σ2

α θσ2
α θσ2

α . . .

θσ2
α 1 + σ2

α σ2
α . . .

θσ2
α σ2

α 1 + σ2
α . . .

...
...

...
...

 (3)

where σ2
α = V(αi).

In this paper, this model will be referred to as the “DP” model (Dynamic Probit). Note
that the distributional assumption implies independence between αi and εi and absence
of autocorrelation in εi, i. e. E [εitεis] = 0 for t, s = 1, . . . , T and t 6= s. Under these as-
sumptions, the parameter vector ψ =

[
β′, γ, π′, θ, σα

]
can be estimated by ML, and the i-th

contribution to the likelihood is given by the following expression:

Li(ψ) =

∫
R

Φ
[
(z′i1π + θαi)(2yi1 − 1)

] T

∏
t=2

Φ
[
(γyit−1 + x′itβ + αi)(2yit − 1)

]
dΦ

(
αi
σα

)
,

where Φ(·) is the standard normal c.d.f. Since the unobserved effects are normally dis-
tributed, the integral over αi can be evaluated by means of Gauss-Hermite quadrature
(Butler and Moffitt, 1982).

Hyslop (1999) considered an interesting generalisation of Heckman’s approach by al-
lowing for autocorrelation in εi. In terms of interpretation, this setting makes it possi-
ble to further disentangle two different sources of time persistence: in Heckman (1981b),
the true state dependence captured by γ in (1) is isolated form the persistence induced
by time-invariant unobserved effects αi; with autocorrelated errors, the persistence in the
time-varying unobserved effects is also parametrised. The error terms εit follow the AR(1)
process

εit = ρεit−1 + ηit for t = 2, . . . , T

where |ρ| ≤ 1 and ηit ∼ N(0, 1− ρ2). Therefore, the variance-covariance matrix of the error
components needs to be modified as follows:

Σ =


1 + θ2σ2

α ρ + θσ2
α ρ2 + θσ2

α . . .

ρ + θσ2
α 1 + σ2

α ρ + σ2
α . . .

ρ2 + θσ2
α ρ + σ2

α 1 + σ2
α . . .

...
...

...
...

 (4)

Note that (4) reduces to (3) for ρ = 0; hence, we will call this the “ADP” model (AR1
Dynamic Probit).

Recently, Keane and Sauer (2009) introduced a more general version of Σ in which an
additional parameter is defined. The starting point is to modify (2) as

yi1 = 1{z′i1π + θαi + ui ≥ 0},

with E(ui · εi2) = τ. Note that since both ui and εit need to be normalised for identification,
τ is effectively a correlation coefficient, so |τ| ≤ 1 holds by the Cauchy-Schwartz inequality.
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Therefore, (4) becomes:
[θαi + ui, αi + εi2, . . . , αi + εiT ]

′ ∼ N (0; Σ) with

Σ =


1 + θ2σ2

α τρ + θσ2
α τρ2 + θσ2

α . . .

τρ + θσ2
α 1 + σ2

α ρ + σ2
α . . .

τρ2 + θσ2
α ρ + σ2

α 1 + σ2
α . . .

...
...

...
. . .

 (5)

Notice that (5) is equal to (4) for τ = 1 and equal to (3) for ρ = 0. The acronym we will use
henceforth for this model is “GADP” (Generalised ADP).

In theory, its greater generality makes model (5) more appealing for applied work than
it restricted counterpart (4) and, a fortiori, (3). However, there are two factors that may
make it advisable to opt for the more restrictive versions of the model. The first one is
computational complexity: the specification of εit as an AR(1) process makes it impossible
to evaluate the joint probability p(·) by integrating out the random effect αi. Instead, T-
variate normal probabilities must be evaluated by simulation by using the GHK algorithm
(Geweke, 1989; Hajivassiliou and McFadden, 1998; Keane, 1994) in order to compute the
likelihood function:

L ∗
i (ψ) =

1
R

R

∑
r=1

Φ∗Tr(ai, bi, C)

with ai = (z′i1π)(2yi1 − 1) and bi = [bi2, . . . , biT ], where bit = (γyit−1 + x′itβ)(2yit − 1); C
is the lower-triangular Cholesky factor of Σ, defined in (4) or (5), and r is the number of
random draws used in the simulation. The second one is that, in finite samples, the ADP
and GADP models (especially the latter) may suffer from serious identification problems
for certain regions of the parameter space; in some cases, this could cause serious numerical
problems for conducting inference, because of insufficient curvature of the log-likelihood
function. These issues will be described in greater detail in section 3.4.

2.2 Fixed-Effects approach

With the exception of linear probability models, FE approaches to the estimation of dy-
namic binary choice models are usually based on the dynamic logit formulation. In this
case, model (1) is subject to strict exogeneity conditional on αi and it is assumed that the
error terms εit, t = 1, . . . , T, are i.i.d. standard logistic random variables. Therefore, the
probability of observing yit can be written as

p(yit|yit−1, xit, αi; ψ) =
exp

[
yit
(
γyit−1 + x′itβ + αi

)]
1 + exp

(
γyit−1 + x′itβ + αi

) .

As is well known (Chamberlain, 1985), in the static case (γ = 0) the total score yi+ ≡
∑t yit is a sufficient statistic for αi, on which the distribution of yi can be conditioned, so as
to remove the unobserved individual effect αi; unfortunately, in the dynamic logit model
(γ 6= 0) equivalent sufficient statistics may exist, bu they must be derived on a case-wise
basis. Moreover, the inclusion of explanatory variables requires restrictions on their distri-
bution and a non-negligible computational effort (Honoré and Kyriazidou, 2000).

The joint probability of observing the response configuration yi conditional on the initial
observation yi1 is

p(yi|X i, yi1, αi; ψ) =
exp

(
∑t yityit−1γ + ∑t yitx′itβ + yi+αi

)
∏t
[
1 + exp

(
γyit−1 + x′itβ + αi

)] (6)
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where sums and products go from t = 2 to T.
The quadratic exponential model proposed by Bartolucci and Nigro (2010) (for which

we will use, from here onward, the “QE” acronym) directly defines the joint probability of
yi as

p(yi|X i, yi1, αi; ψ) =
exp

(
∑t yityit−1γ + ∑t yitx′itβ1 + yiT

(
µ + x′iT β2

)
+ yi+αi

)
∑

b∈B

exp
(
∑t btbt−1γ + ∑t btx′itβ1 + bT

(
µ + x′iT β2

)
+ b+αi

) (7)

where b+ ≡ ∑t bt and B ≡
{

b : b ∈ {0, 1}T}, that is the set of all possible T-vectors b
containing zeros and ones.

This probability closely resembles the one in (6) and, under (6) and (7), Bartolucci and
Nigro (2010) show that γ has the same interpretation in terms of log-odds ratio between
each pair of consecutive yits. It can be shown that the total score yi+ is a sufficient statistic
for the unobserved effects αi in (7). The conditional distribution based on the total score is

p(yi|X i, yi1, yi+; ψ) =
p(yi|X i, yi1, αi; ψ)

p(yi+|X i, yi1, αi; ψ)
=

exp
[
∑t yit−1yitγ + ∑t yitx′itβ1 + yiT

(
µ + x′iT β2

)]
∑

b: b+=yi+

exp
[
∑t btbt−1γ + ∑t btx′itβ1 + bT

(
µ + x′iT β2

)] . (8)

So that the denominator contains only those vectors b ∈ B such that b+ = yi+. By using
the above conditional probability, the conditional log-likelihood can be written as

`(ψ) =
n

∑
i=1

1{0 < yi+ < T} log p(yi|X i, yi1, yi+; ψ)

and maximised with respect to ψ =
[
γ, β′1, µ, β′2

]′. We refer the reader to Bartolucci and
Nigro (2010) for details on the score and Hessian of `(ψ).

3 Computation and numerical issues

3.1 Treatment of missing values

The DPB package can handle unbalanced panels, as long as there are enough consecutive
observations for each longitudinal unit. If we use Ti to indicate the maximum time span of
consecutive observations for individual i, the requirements for a cross-sectional unit i to be
included in the sample are

• Ti ≥ 2 for the DP, ADP and GADP models;

• Ti > yi,+ > 0 for the QE models.

For each unit, the longest available consecutive set of observations per individual is used.
If more than one sequence is available, we take the most recent one. Of course, the choices
above imply the assumption that observability of yi,t and/or xi,t is totally independent of
the random variables included in the models. For further details, see Albarrán et al. (2015).
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3.2 Computation of the log-likelihood and its derivatives

The two most important algorithms employed for computing the log-likelihood of the four
models handled by the package are Gauss-Hermite quadrature for the DP model and the
GHK algorithm for the ADP and GADP models.3 As for the QE model, the main problem
lies in efficient computation of the denominator in equation (8), which does not include
problematic functions, but is made tricky by the multiplicity of cases to consider. Fortu-
nately, a recursive approach is possible, which we will describe in subsection 3.3.

For Gauss-Hermite quadrature, the DPB function package uses the Gretl native function
quadtable, which guarantees good speed and accuracy. The number of quadrature point
can be chosen by the user, with a default of 24. The DPB package does not include, at
present, the option of using adaptive quadrature methods as recommended, for example,
in Rabe-Hesketh et al. (2002).

As for simulation-based methods, DPB relies on the Gretl function ghk, which natively
provides analytic derivatives. This function does not implement optimisation techniques
such as the pivoting method by Genz (1992), because Genz’s method may introduce dis-
continuities that would make numerical differentiation problematic. On the other hand, it
automatically switches to a parallel implementation on a multi-core machine in a shared-
memory environment, which gives a noticeable performance boost on modern CPUs.4 The
default method for feeding the uniform sequence to the GHK algorithm is by using Halton
sequences, but the user can switch to the uniform generator used by default in Gretl (the
SIMD-oriented implementation of the Mersenne Twister algorithm described in Saito and
Matsumoto (2008)) if so desired.

The choice method for optimisation is BFGS with analytical derivatives for the probit
models DP, ADP and GADP; this has generally proven quite effective and remarkably more
robust and efficient than Newton-Raphson. Alternatively, its limited-memory variant de-
scribed in Byrd et al. (1995) can also be used. Two of the parameters in the covariance matrix
Σ are in fact maximised via an invertible transformation to help numerical stability: σ2

α is
expressed as its natural logarithm and ρ through the (inverse) hyperbolic tangent trans-
form, so that the parameters that enter the actual maximisation routine are unbounded.
Initial values for β, γ, and π are obtained by straightforward linear probability models,
while σα and θ are both set to 1.

For the QE model, instead, the method of choice is Newton-Raphson, which takes ad-
vantage of the fact that the computation of the Hessian matrix is remarkably inexpensive
once the analytical score has been been obtained. Initial values for γ, β1, µ and β2 are
simply 0.5

3.3 Computation of the denominator term in the QE model

The peculiar nature of the QE model makes it impossible to compute its denominator in a
manner akin to the algorithm used in several packages for the ordinary conditional logit
model, which is in turn a variation of the recursive algorithm by Krailo and Pike (1984).

The algorithm we implement has the virtue of relegating the recursive computation of
the relevant combinations (b vectors) at the initialisation stage; by memorising the rele-

3It is perfectly possible to use the GHK technique for estimating the DP model, but it would be rather ineffi-
cient. However, it may be interesting to do so for comparison purposes, so the package makes it possible via an
option.

4Gretl also provides MPI extensions for distributed-memory architectures, but they have not been used in the
DPB package.

5This choice, to our surprise, was found to outperform logit-based initialisation.
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vant information into an array of matrices, we avoid recursion at each computation of the
likelihood. Our algorithm can be briefly described as follows.

The denominator in equation (8) can be easily written as a function of a matrix Q, whose
size and elements are function of three scalars: Ti, yi+ and yi∗, where yi∗ = ∑ yityit−1 is the
number of consecutive ones in yi.

Define an injective index function j = j(T, y+, y∗) (where we omit the i subscript for
conciseness). Obviously, all individuals in the sample with the same values for T, y+ and y∗
can share the same j index. The idea is to pre-generate all the needed Qj matrices and store
them in an array; since Ti ≥ yi+ > yi∗ holds, the array can have at most T2

max(Tmax − 1)
elements, although in practice the number of distinct elements in the array will be much
smaller. In a typical panel data setting, it is unlikely that more than a few hundred distinct
Qj matrices will have to be computed and stored in memory.

The internal structure of Qj is

Qj =
[

Q1(T, y+)
∣∣q2(y∗)

]
(9)

in which

1. Q1(T, y+) is a matrix with T!
y+ !(T−y+)!

rows and T columns whose rows are the ele-
ments of B (see Section 2.2)

2. q2(y∗) is a column vector holding the number of times in which you get consecutive
ones in the corresponding row of Q1.

For example, consider an individual for whom yi = [0, 1, 1, 0]; in this case we have
Ti = 4, y+ = 2 and y∗ = 1. The corresponding Q matrix would be

Q =



1 1 0 0 1

1 0 1 0 0

0 1 1 0 1

1 0 0 1 0

0 1 0 1 0

0 0 1 1 1


which lists all the possibilities. We call the “relevant” row ki the one which contains the
sequence yi actually observed (the third row of Q in this example, so ki = 3).

The Q1(T, y+) matrices can be computed recursively by noting that

Q1(T, y+) =



Q1(T − 1, y+)

0
...

0

Q1(T − 1, y+ − 1)

1
...

1
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with the special cases

Q1(n, 0) = [0 . . . 0]

Q1(n, 1) = In

Q1(n, n) = [1 . . . 1]

Since none of the necessary Qj depend on parameters to be estimated, they are precom-
puted in a preliminary loop and stored in an array of matrices. The algorithm employed
can be therefore given the following schematic description:

1. initialise an empty array of matrices Q;

2. for each individual i;

(a) compute the j(i) index as a function of Ti, yi+ and yi∗;

(b) if Qj has already been computed, stop and go to the next individual i; else

i. compute Q1(Ti, yi+) via the recursive method described above;
ii. store the relevant row ki for individual i.

iii. compute Qj via equation (9);
iv. store Qj into the array at position j.

Once this is done, the likelihood for individual i in (8) becomes a simple function of ki and
Qj, which don’t need to be recomputed during the Newton-Raphson iterations.

3.4 Identification of ρ and τ in short panels for RE probit models with
AR(1) disturbances

When estimating RE probit models with autocorrelated errors, maximising the log-likelihood
may be quite challenging from a numerical point of view because of weak identification in
some of the parameters. Consider first the ADP model, in which the covariance matrix of
the compound disturbance terms for a unit is given in equation (4). It is quite obvious that
some combinations of the parameters give rise to a very badly conditioned matrix. This
happens, in particular, when θ ' 1 and ρ = 1− ε (for “small” ε). In those cases, Σ will
be very close to be singular, especially in those units for which the time dimension is short
(note that all these three possibilities are far from being uncommon in practice). The typical
outcome is BFGS taking many iterations to converge or, worse, not converging at all.

The situation is even worse for the GADP model, whose covariance matrix is given in
equation (5): first, since the covariance matrix depends on four parameters, an elementary
order condition dictates that only the observations for which Ti ≥ 3 will provide enough
curvature to the log-likelihood to separately identify all four parameters, which is not an
overly restrictive requirement. However, note that the parameter τ only appears in prod-
ucts like τ · ρt, with 1 ≥ t ≥ (Ti − 1). This implies that, for obtaining enough curvature
in the objective function in the direction of τ, the sequence ρ, ρ2, ρ3, . . . must be noticeably
different (from a numerical point of view) from a sequence of constants. In practice, this
implies that estimation is likely to fail anytime (i) ρ is very close to 0 or to 1 and (ii) Tmax

is small, unless N is truly enormous. In the limit, if ρ = 0 or ρ = 1 the model is under-
identified even when N → ∞ and T → ∞.
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4 The DPB function package

In Gretl, function packages are collections of user defined functions made available to other
users. The user can download and install the function packages available on the Gretl

server by menu or script. A function package can be downloaded and installed simply by
invoking the install command:

Gretl console: type ’help’ for a list of commands

? install DPB

Installed DPB

Then, in each work session, the function package needs to be loaded by:

? include DPB.gfn

We refer the reader to the Gretl user guide for illustration on how to download and install
function packages from the menu. The function package DPB includes four functions that
handle model set-up, option management, estimation and printing of results. A summary
of these functions is given in Table 1 and a detailed description is contained in the section
“List of Public Functions” of the DPB documentation file.

In the rest of this section, we first illustrate how to estimate the RE models DP, ADP and
GADP described in Section 2.1, then we show how to perform estimation of the QE model
proposed by Bartolucci and Nigro (2010). All the script files and datasets used in this
section are available in the folder your path/.gretl/functions/DPB/examples, created
after the installation of DPB. The minimum version of Gretl required to use the package is
1.10.0.

4.1 Random-Effects dynamic probit

We start by describing how DPB handles the RE approach proposed by Heckman (1981b),
by using an artificial dataset generated following (1) and (3):

yit = 1{1 + 0.6 yit−1 + 0.5 xit + αi + εit ≥ 0} (10)

yi1 = 1{1 + xi1 + zi1 + 1.2 αi + εi1 ≥ 0},

σ2
α = 1, αi ∼ N(0, σ2

α)

xit ∼ N(0, 1) zit ∼ U(0, 1),

for i = 1, . . . , 4096 and t = 1, . . . , 6.

We also assume that ρ = 0, so εit is not autocorrelated. For the purpose of replication, we
provide the script file RE gendata.inp: this script generates dynamic binary data under
normality with the error structure in (3), sets the parameter values in (10) and stores the
artificial data in DP artdata.gdtb. The following code is provided in the DP example.inp

script file.
Once the DPB function package has been downloaded form the Gretl server, a simple

Hansl script to estimate the DP model is:

set echo off

set messages off

include DPB.gfn

open DP_artdata.gdtb

10



Table 1: Summary of functions in DPB

Function DPB setup(string mod, series depvar, list X, list Z[null])

Return type bundle

Function arguments string mod

"DP": Dynamic Probit model (Heckman, 1981b)

"ADP": AR(1) Dynamic Probit model (Hyslop, 1999)

"GADP": Generalised AR(1) Dynamic Probit model (Keane and Sauer,
2009)

"QE": Quadratic Exponential model (Bartolucci and Nigro, 2010)

series y: the binary dependent variable

list X: list of the xit in equations (1) and (8)

list Z: list of the zi1 in equation (2) (optional)

Description initialise the model bundle, sub-sample the data as needed, build data
matrices, handle default settings

Function DPB setoption(bundle *b, string opt, scalar value)

Return type scalar

Function arguments bundle *b: pointer to the model bundle

string opt: a string indicating which option to set

scalar value: a scalar value for the option

Description sets various options of the model (see Table 2); returns an error code, 0
if no error

Function DPB estimate(bundle *bun, matrix *par[null])

Return type void

Function arguments bundle *b: pointer to the model bundle

matrix *par[null]: matrix holding initial values (optional)

Description estimates the model

Function DPB printout(bundle *bun)

Return type void

Function arguments bundle *b: pointer to the model bundle

Description prints the estimation results

11



setobs id time --panel-vars

list X = const x

list Z = const x z

b = DPB_setup("DP",y,X,Z)

DPB_estimate(&b)

The first two lines of code just prevent Gretl from echoing unnecessary output, while the
include command loads the function package. After setting the panel structure, which is
required for DPB to work, the lists of explanatory variables are created. In the next line,
the call to the public function DPB setup initialises the model and returns a bundle: the
first argument is a string containing the name of the model to be estimated ("DP" in this
case). The remaining arguments y, X, Z are the dependent variable, the list of explanatory
variables for the primary equation and those for initial condition equation.

The function DPB estimate takes as its argument the pointer to the model bundle and
fills the bundle with the estimated quantities. The bundle elements can be listed by simply
typing print b. A detailed description of the bundle elements is given in the DPB docu-
mentation. Bundle elements can be accessed by the syntax npar = b["npar"] or npar =

b.npar. The returned bundle can also be stored as an XML file by using the Gretl built-
in function bwrite(b, "mod") and reloaded, if necessary, by the companion function b =

bread("mod"). The DPB estimate function also assigns initial values for the parameters;
the user can supply a vector of initial values as a second argument to DPB estimate. For
instance

scalar npar = b.npar

inipar = muniform(npar,1)

DPB_estimate(&b,&inipar)

To print out the results, the corresponding public function is called

DPB_printout(&b)

which produces the following output:

Dynamic Probit model

Dependent variable: y

Units: 4096 (observations: 24576)

Covariance matrix: Sandwich

Method: Gaussian quadrature with 24 quadrature points

coefficient std. error z p-value

------------------------------------------------------

y(-1) 0.615952 0.0338469 18.20 5.34e-74 ***

coefficient std. error z p-value

-------------------------------------------------------

const 0.501168 0.0375208 13.36 1.08e-40 ***

x 0.502661 0.0138080 36.40 3.73e-290 ***

coefficient std. error z p-value

-------------------------------------------------------

const 1.00756 0.0703784 14.32 1.73e-46 ***

x 0.940772 0.0483211 19.47 2.00e-84 ***

z 0.812821 0.113210 7.180 6.98e-13 ***
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coefficient std. error z p-value

-------------------------------------------------------

theta 1.11218 0.0764148 14.55 5.47e-48 ***

sigma 0.998992 0.0334803 29.84 1.25e-195 ***

Log-likelihood -10771.971 AIC 21559.942

BIC 21624.818 HQC 21580.958

Wald test = 1325.22 (1 df); p-value = 3.73248e-290

where coefficients, standard errors and related z-tests are reported for the state dependence
parameter γ, the coefficients of the main equation β, the coefficients of the initial conditions
equation π, and the covariance matrix parameters θ and σα. At the end of the output table,
a Wald test for the joint significance of the explanatory variables in the main equation is
reported.

As shown in the output headings, the model has been estimated using the Gauss-
Hermite quadrature with 24 quadrature points, and the variance-covariance matrix of the
parameters has been estimated by a sandwich formula. These are the default settings,
which can be altered by the user by calling the public function DPB setoption before
DPB estimate. For instance,

err = DPB_setoption(&b, "nrep", 32)

DPB_estimate(&b)

DPB setoption returns a scalar (called err in the above code lines) containing 0 if the option
is valid and successfully set, an error code otherwise. For a detailed description of the
available options, see Table 2.

In the example above, the string nrep and the scalar 32 are used to set the number of
quadrature points to be used during estimation.

The DP model can also be estimated by computing the multivariate normal probabilities
by GHK instead of using numerical integration by Gauss-Hermite quadrature. After the
call to DPB setup, the user can switch the method form GHQ (default) to GHK by calling
DPB setoption as follows

err = DPB_setoption(&b, "nrep", 100)

err = DPB_setoption(&b, "method", 1)

When the GHK method is invoked, a Halton sequence is used by default. The user may
instead use random draws from a uniform distribution by setting "draws" to 1, as described
in Table 2. The number of Halton points used by the GHK algorithm has a default value of
128 that can also be modified by the function DPB setoption with the string nrep and the
number of points, as illustrated earlier in this section.

In some cases, estimation can be computationally quite intensive. In particular, the
GHK algorithm is quite sensitive to the time dimension of the panel, as T sets the dimension
for the covariance matrix (3). Table 3 reports the performance of the DPB function package
for different numbers of quadrature points and GHK replications to give the user an idea of
the trade-off between algorithm quality and time. The table was obtained by the following
command lines:

b = DPB_setup("DP",y,X,Z)

err1 = DPB_setoption(&b, "verbose", 2)

err2 = DPB_setoption(&b, "vcv", 1)
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Table 2: Description of DPB setoption’s arguments

string opt scalar value

"method" 0 = Gauss-Hermite Quadrature (GHQ), default choice for the DP
model, 1 = GHK algorithm. For the ADP and GADP models, method is
forced to 1. For the QE model a warning message is printed

"nrep" number of quadrature points or GHK draws. Default is 24 for the DP
model with GHQ, 128 for the DP model with GHK and for the ADP
and GADP models. For the QE model a warning message is printed

"vcv" parameters covariance matrix

0 = Sandwich (default), 1 = Outer Product of the Gradient (OPG), 2 =
Hessian

"verbose" degree of output verbosity

0 = no output is printed, 1 = the log-likelihood at each iterations is
printed (default), 2 = log-likelihood, parameters and gradient at each
iteration are printed

"draws" type sequence for the GHK algorithm

0 = Halton (default), 1 = Uniform with seed 31415927. For the DP
model with GHQ and the QE model a warning message is printed.

loop foreach i 16 24 32

set stopwatch

err_$i = DPB_setoption(&b, "nrep", $i)

DPB_estimate(&b)

DPB_printout(&b)

t_$i = $stopwatch

print t_$i

endloop

The above commands are stored in the sample script DP perf.inp. The verbose string and
the scalar 2 in DPB setoption result in the printing of the values of parameters and gradi-
ents at each iteration in the log-likelihood maximisation. In addition, we use the option vcv

with value 1 to set the covariance matrix estimator to OPG, which is the least computation-
ally demanding. Since the method option was left unmodified, the above code estimates
the dynamic probit by GHQ, with 16, 24, and 32 quadrature points. If, instead, one wishes
to inspect the performance of the GHK algorithm, the method must be changed via err

= DPB setoption(&b, "method", 1) after the set-up function; in Table 3 we display the
results obtained by setting the number of to 128, 192, and 256. The estimates obtained via
GHQ do no exhibit remarkable differences from each other. Conversely, the GHK algo-
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Table 3: DPB performance with different numbers of quadrature points/GHK replications.
Covariance matrix in (3)

γ (se) θ (se) σα (se) log-lik N. of iter. time
mm.ss.ms

GHQ

16 0.6159 (.0349) 1.1120 (.0742) 0.9992 (.0337) -10771.962 28 00:36:12

24 0.6159 (.0350) 1.1122 (.0743) 0.9990 (.0337) -10771.971 28 00:38:43

32 0.6159 (.0349) 1.1122 (.0743) 0.9990 (.0337) -10771.969 28 00:44:27

GHK

128 0.6210 (.0347) 1.0984 (.0727) 0.9986 (.0336) -10770.737 26 02:52:55

192 0.6191 (.0348) 1.1062 (.0733) 0.9979 (.0336) -10771.302 25 03:52:65

256 0.6185 (.0348) 1.1067 (.0736) 0.9980 (.0336) -10771.322 25 05:04:85
Results obtained on a system with two Intel(R) Pentium(R) CPU G640 @ 2.80GHz processors.

rithm obviously takes a longer time to yield the results because of its nature. In particular,
the cpu-time increases in a roughly linear way with the number of replications.

As described in Section 2.1, the ADP and GADP models can be formulated by setting the
variance-covariance matrix of the error terms as in (4) and (5) respectively. Such structure
does not allow the use of GHQ to evaluate the relevant normal integral and GHK has to be
used instead. In order to illustrate how DPB handles these extensions, we use the simulated
dataset in (10) with ρ = 0.3, τ = 1 (stored in ADP artdata.gdtb) and ρ = 0.3, τ = 0.6
(stored in GADP artdata.gdtb) to build (4) and (5), respectively. The ADP model can be
estimated by setting the the first argument of DPB setup to "ADP":

open ADP_artdata.gdtb

list X = const x

list Z = const x z

b = DPB_setup("ADP",y,X,Z)

DPB_estimate(&b)

DPB_printout(&b)

The above code is also stored in the script file ADP example.inp. In this case, if the user
tries to set GHQ as estimation method, a warning message is printed and the estimation
proceeds with GHK using 128 Halton points. The above code also returns the following
output:

AR(1) Dynamic Probit model

Dependent variable: y

Units: 4096 (observations: 24576)

Covariance matrix: Sandwich

Method: GHK with 128 Halton points

coefficient std. error z p-value

------------------------------------------------------

y(-1) 0.604903 0.0811089 7.458 8.79e-14 ***
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coefficient std. error z p-value

--------------------------------------------------------

const 0.483515 0.0560415 8.628 6.25e-18 ***

x 0.512773 0.0182398 28.11 6.81e-174 ***

coefficient std. error z p-value

-------------------------------------------------------

const 1.03196 0.0759177 13.59 4.40e-42 ***

x 0.993716 0.0550138 18.06 6.23e-73 ***

z 1.03108 0.128254 8.039 9.03e-16 ***

coefficient std. error z p-value

--------------------------------------------------------

theta 1.25590 0.0990524 12.68 7.72e-37 ***

sigma 1.01745 0.0373731 27.22 3.37e-163 ***

rho 0.306027 0.0563038 5.435 5.47e-08 ***

Log-likelihood -10057.724 AIC 20131.449

BIC 20196.325 HQC 20152.464

Wald test = 790.336 (1 df); p-value = 6.81115e-174

Similarly, the GADP model can be estimated by setting the first value in the DPB setup to
"GADP" (the code is provided in GADP example.inp):

open GADP_artdata.gdtb

list X = const x

list Z = const x z

b = DPB_setup("GADP",y,X,Z)

After loading data with ρ = 0.3 and τ = 0.6, running the estimation functions produces:

Generalised AR(1) Dynamic Probit model

Dependent variable: y

Units: 4096 (observations: 24576)

Covariance matrix: Sandwich

Method: GHK with 128 Halton points

coefficient std. error z p-value

------------------------------------------------------

y(-1) 0.555213 0.0632615 8.776 1.69e-18 ***

coefficient std. error z p-value

-------------------------------------------------------

const 0.523555 0.0469495 11.15 7.05e-29 ***

x 0.502173 0.0162414 30.92 6.57e-210 ***

coefficient std. error z p-value

-------------------------------------------------------

const 1.09461 0.0852157 12.85 9.16e-38 ***

x 1.02195 0.0632144 16.17 8.70e-59 ***

z 1.10415 0.131548 8.393 4.72e-17 ***
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coefficient std. error z p-value

--------------------------------------------------------

theta 1.23328 0.122465 10.07 7.46e-24 ***

sigma 1.01042 0.0393478 25.68 2.00e-145 ***

rho 0.338685 0.0463474 7.308 2.72e-13 ***

tau 0.528361 0.129116 4.092 4.27e-05 ***

Log-likelihood -9999.321 AIC 20014.641

BIC 20079.517 HQC 20035.657

Wald test = 956.004 (1 df); p-value = 6.57193e-210

4.2 Quadratic Exponential model

We exemplify the FE estimator proposed in Bartolucci and Nigro (2010), by means of arti-
ficial data set, generated in a similar way as in (10):

yit = 1{0.6 yit−1 + 0.5 x1it + 0.5 x2it + αi + εit ≥ 0}
yi1 = 1{0.5 x1i1 + 0.5 x2i1αi + εi1 ≥ 0} for i = 1, . . . , 1024 t = 1, . . . , 6

where αi is generated as in (10), the regressors x1it and x2it are standard normal random
variables and the error terms εit are logistically distributed with zero mean and variance
π2/3. The file QE gendata.inp contains the Hansl code for generating the artificial data also
stored in QE artdata.gdtb. A simple script to estimate the quadratic exponential model
described in 2.2 is:

set echo off

set messages off

include DPB.gfn

open QE_artdata.gdtb

setobs id time --panel-vars

list X = x1 x2 x3

b = DPB_setup("QE",y,X)

DPB_setoption(&b, "vcv", 2)

DPB_estimate(&b)

DPB_printout(&b)

The above commands are also stored in QE example.inp. After the required panel struc-
ture is set and the list of explanatory variables has been created, the script calls the set-up
function with the string "QE" as its first argument. For illustrative purposes, in the above
example the covariance matrix estimator is set to the Hessian by setting the vcv option to
2. The script returns the following output:

Quadratic Exponential model

Dependent variable: y

Units: 821 (observations: 4105)

Total units: 1024 (total observations: 5120)

Covariance matrix: Hessian

coefficient std. error z p-value

------------------------------------------------------

y(-1) 0.612351 0.0911535 6.718 1.84e-11 ***
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coefficient std. error z p-value

-------------------------------------------------------

x1 0.406810 0.0695830 5.846 5.02e-09 ***

x2 0.556566 0.0512341 10.86 1.73e-27 ***

x3 0.527469 0.0341211 15.46 6.59e-54 ***

coefficient std. error z p-value

------------------------------------------------------

const 0.345770 0.103625 3.337 0.0008 ***

x1 0.569998 0.133328 4.275 1.91e-05 ***

x2 0.374503 0.0955802 3.918 8.92e-05 ***

x3 0.496962 0.0697174 7.128 1.02e-12 ***

Log-likelihood -1081.463 AIC 2178.926

BIC 2229.486 HQC 2196.825

Wald test = 492.54 (3 df); p-value = 1.97431e-106

Notice that, since only the units with 0 < yi+ < T, DPB reports in the output headings
the number of actual contributions to the log-likelihood. The output reports coefficients,
standard errors and z-statistics for the parameters in (8): the coefficient associated with the
lagged dependent variable γ, the parameters β1 for the explanatory variables and, finally,
the parameters associated with the last observation,

[
µ, β′2

]′.
The handling of time dummies in the model specification deserves a special mention.

For instance, let us discuss the case of a balanced dataset: in a panel of T periods, the
QE model identifies T − 3 time effects, as two dummies are dropped for the initial and
rank condition in the main equation; another one gets dropped as the observation at time
T is handled separately in the model specification (see expression (8)) and it includes an
intercept term. An example is given in the script file QE example.inp.

5 Examples: the union dataset

In this section, we illustrate the DPB function package by means of two empirical applica-
tions. In the first exercise, we replicate the example proposed by Stewart (2006), used to
present the software components to estimate RE dynamic probit models in Stata.

In the second, we show how to implement in Hansl the estimator proposed by Wooldridge
(2005), how to compute Partial Effects, and compare it with the DP model available in DPB.
As a side-product, we show how to implement the popular Correlated Random Effects
(CRE) approaches (Mundlak, 1978; Chamberlain, 1980) in Gretl and within the DPB function
package.

Both examples use data extracted from the U.S. National Longitudinal Survey of Youth
on unionised workers, a very popular dataset often used as a benchmark for RE (dynamic)
models for binary dependent variables with longitudinal data.

5.1 Example 1

In the following, we replicate the empirical example provided in Stewart (2006), where the
union dataset is used to illustrate the Stata software component for the estimation of the
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RE dynamic probit models of Heckman (1981b), DP, and Hyslop (1999), ADP. 6 Differently
from DPB, the software provided by Stewart (2006) unsurprisingly does not allow for the
implementation of the estimator proposed by Keane and Sauer (2009). The results reported
in this section can be replicated using the script file union example1.inp and the data file
union full.gdtb.

Using the variables given in the union dataset, a model is specified for the binary de-
pendent variable at time t and for the initial condition as in Heckman (1981b):

unionit = 1{γ unionit−1 + β0 + β1 age + β2 gradeit + β3 southit + αi + εit ≥ 0}
unioni1 = 1{π0 + π1 agei1 + π2 gradei1 + π3 southi1 + π4 not smsa + θαi + εi1 ≥ 0}

for i = 1, . . . , n and t = 2, . . . , T, where union is the binary dependent variable, age is the
age at time t, grade are the years of schooling and south is a dummy variable for living
in the South. For the initial condition, not smsa, living outside a standard metropolitan
statistical area, is used as an exclusion restriction.

The dataset is an unbalanced panel which starts in 1970 and ends in 1988; a few years
do not appear in the dataset, so several gaps are present. The number units is 4434 and
the maximum time length T = 12, for a total of 26200 observations. Simple descriptive
statistics on the dataset are given by the summary command, followed by the variable
names:

? summary union age grade south not_smsa --simple

Mean Minimum Maximum Std. Dev.

union 0.22179 0.0000 1.0000 0.41546

age 30.432 16.000 46.000 6.4891

grade 12.761 0.0000 18.000 2.4117

south 0.41302 0.0000 1.0000 0.49238

not_smsa 0.28370 0.0000 1.0000 0.45080

In order to replicate the example provided in Stewart (2006), the dataset needs to be sub-
sampled: only the years from 1978 are kept and 1983 is dropped; in addition, the panel is
balanced by keeping units that are present for six consecutive waves. The following code
sub-samples the dataset in order to keep the portion used in Stewart (2006) and stores it,
for convenience, in the Gretl data file union.gdtb:

series valid = 0

smpl year>=78 --restrict

smpl year!=83 --restrict

matrix m = aggregate(const,idcode)

series nwav = replace(idcode, m[,1], m[,2])

smpl nwav==6 --restrict

series valid = 1

store union.gdtb

open union.gdtb --quiet

smpl full

smpl valid --dummy

setobs idcode year --panel-vars

6The data for this example were retrieved from the URL . As far as we are aware, usage of this dataset was
unrestricted for academic use and we believe that a comparison between our results and Stewart’s was indispens-
able.
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The resulting dataset is a balanced panel of 799 units observed for T = 6 periods, for a total
of 3995 observations.

The models estimated in Stewart (2006) are a pooled probit, a RE probit (with no special
treatment for the initial conditions), the DP and the ADP. The first two columns of Table 4
show the estimation results of the pooled probit and of the the RE probit. In the first case,
the estimates of both the coefficients and standard errors are identical to those obtained by
Stewart (2006), whereas the estimates of the RE probit (with 24 quadrature points) exhibit
very small differences (the coefficient associated with uniont−1 is 1.1507 in Stewart (2006)
compared to 1.1509, and so on).

The third column of Table 4 reports the estimation results of the DP model, using 24
quadrature points. In this case, estimated coefficients, standard errors and the value of the
log-likelihood at convergence are identical.7 The fourth and fifth columns of Table 4 show
the estimation results of the DP model using GHK instead of GHQ and of the ADP, both
using 500 Halton points. While substantially similar, the results do present some discrep-
ancies from those obtained by Stewart (2006). Such differences can probably be ascribed the
use of Halton sequences in DPB as opposed to random draws form the uniform distribution
in the command written by Stewart (2006). Nevertheless, both sets of estimates show that
ignoring the autocorrelation in the unobservables leads to the underestimation of the state
dependence effect in these data. Finally, Table 5 reports the estimation results for the GADP
and the QE model. In the first case, the results are very similar results to those obtained
by estimating the ADP model, which is expected since the additional correlation coefficient
τ is positive and close to unity. In the second, the values of the estimated coefficients are
coherent with those of the RE models with no autocorrelation.

Since DPB handles unbalanced datasets, we repeat the exercise keeping all the usable ob-
servations. Starting from the full dataset at our disposal (union full.gdtb), the DPB setup

function for RE models automatically sub-samples the dataset as described in Section 3:
out of the 4434 units 3790 are kept, while 400 are dropped because observed only once
and 244 because are never observed for at least two consecutive periods. Table 6 reports
the estimation results based on this dataset and only for the models implemented in DPB.
Retaining all usable units in the dataset considerably increases the estimate of the state
dependence parameter in all models while reduces the estimated persistence due to time
invariant unobserved heterogeneity.

5.2 Example 2

In the following, we show how to implement in Gretl the popular RE estimator for dynamic
binary models proposed by Wooldridge (2005), CDP (Conditional DP) henceforth. To this
aim, we use the same dataset available in the data archive of the Journal of Applied Econo-
metrics, also available in Gretl data archive. The data are a balanced panel of workers,
extracted from the U.S Longitudinal Survey of Youth, which comprises 545 observed for
T = 7 periods, from 1981 to 1987.

The method proposed by Wooldridge (2005) relies on specifying a distribution for the
individual unobserved heterogeneity conditional on the initial value of the dependent vari-
able and the observed history of strictly exogenous explanatory variables. Following the
paper, to which we refer the reader to for details, the distribution of the individual unob-
served effect is specified as

7The reader should keep in mind that we directly estimate σα while Stewart (2006) estimates λ = σ2
α

σ2
α+1

.
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Table 4: Estimation results: Replication of Stewart (2006), Table 1, p. 265

Pooled RE probit DP DP with GHK ADP

probit (static)

union(-1) 1.8849 (.0525) 1.1509 (.1419) 0.6344 (.0983) 0.6343 (.1012) 1.3181 (.1554)

const -0.6986 (.2474) 0.1785 (.4181) 0.5633 (.4798) 0.5956 (.4818) 0.0948 (.4034)

age -0.0087 (.0058) -0.0240 (.0085) -0.0286 (.0092) -0.0294 (.0092) -0.0237 (.0081)

grade -0.0145 (.0103) -0.0386 (.0207) -0.0539 (.0269) -0.0539 (.0269) -0.0369 (.0201)

south -0.1684 (.0519) -0.3691 (.1034) -0.4883 (.1239) -0.4953 (.1247) -0.3742 (.0998)

const -0.9597 (.8414) -0.9419 (.8417) -0.8710 (.8496)

age 0.0081 (.0238) 0.0077 (.0238) 0.0100 (.0243)

grade -0.0064 (.0341) -0.0064 (.0341) -0.0132 (.0334)

south -0.7261 (.1651) -0.7310 (.1650) -0.7559 (.1670)

not smsa -0.4152 (.1644) -0.4151 (.1644) -0.4181 (.1662)

θ 0.8641 (.1095) 0.8622 (.1106) 1.2250 (.2143)

σ 1.5261 (.1251) 1.5293 (.1619) 1.0438 (.1519)

ρ - 0.3372 (.0554)

ln(σ2) 0.0909 (.2923)

Log-lik -1573.642 -1563.184 -1860.215 -1860.275 -1854.618

Standard errors (in parentheses) are computed using the Hessian. Number of quadrature points: 24; Number of

GHK Halton draws: 500.

αi|yi1, wi ∼ N(δ0 + δ1yi1 + δ′2wi; s2
α)

where yi1 is the initial observation and wi contains the whole sequence of the strictly exoge-
nous covariate wit as in the approach of Chamberlain (1980). Notice that we use a different
notation of the variance parameter as we will use σ2

α to denote the variance of the uncondi-
tional distribution.

5.2.1 Estimation of the CDP probit

As is well known, the main virtue of the CDP model is that it can be easily estimated by
means of standard routines used for the static RE probit with additional regressors. In
Section 6 of Wooldridge (2005) the CDP model is estimated with unionit as the dependent
variable, a dummy variable marriedit and time dummies as explanatory variables. In addi-
tion, the whole history of married and the initial observation unioni80 are included in the set
of regressors to account for the conditional distribution of αi. A second specification is also
used, where the set of regressors contains also educ (years of schooling) and the dummy
black. The practice of including lags and leads of a time-varying strictly exogenous variable
is often adopted by practitioners as a preventive measure against possible correlation be-
tween the random effect and the covariates. For this reason, a static/dynamic model with
this feature is often referred to as a CRE (Correlated Random Effects) approach.

The Hansl script to replicate the results in Table I, p. 52 of Wooldridge (2005) is
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Table 5: Estimation results: GADP and QE models

GADP QE

union(-1) 1.3006 (.1618) 1.0638 (.17060)

const 0.1164 (.4101)

age -0.0241 (.0082) -0.0889 (.0231)

grade -0.0376 (.0204) -0.1907 (.1811)

south -0.3791 (.1016) -0.1187 (.4895)

const -0.8824 (.8421) 0.5677 (.9465)

age 0.0101 (.0241) -0.1140 (.0516)

grade -0.0121 (.0332) -0.1105 (.1850)

south -0.7486 (.1659) 0.0266 (.5355)

not smsa -0.4149 (.1648)

θ 1.1813 (.2256)

σ 1.0635 (.1619)

ρ -0.3419 (.0567)

τ 0.8499 (.1877)

ln(σ2)

Log-lik -1854.534 -467.495

Standard errors (in parentheses) are computed using the Hessian. Number of GHK Halton draws: 500. For the last

column, the coefficients related to the second block of covariates refers to the parameters for the last observation

in (7).

list TIME = dummify(year)

TIME -= Dyear_2

list MARR = marr8*

list X = const union_1 union80 married MARR TIME

probit union X --random-effects --quadpoints=12

probit union X educ black --random-effects --quadpoints=12

where, after creating the list of explanatory variables, the two probit commands with
the --random-effects flag estimate the CDP models. The default number of quadrature
points has to be set to 12 to have an exact replication of Wooldridge’s original results.

For comparison purposes, we use the same specifications to estimate the DP model
with the CRE approach. The code, also containing the above script, is given in the file
union example21.inp and the estimation results are displayed in Table 7. The results in
the first two columns of the table perfectly replicate the results in Wooldridge (2005). In
addition, the same models estimated as DP models produce very similar results, as to be
expected from the simulation study in Akay (2012).

The Mundlak version (Mundlak, 1978) of the CRE approach is also very popular among
practitioners: instead of lags and leads, the regression is augmented by the within group
mean of one or more time-varying strictly exogenous covariate. This estimator can easily
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Table 6: Estimation results: DP, ADP, GADP and QE models, 3790 units

DP ADP GADP QE

union(-1) 0.9183 (.0472) 1.5168 (.0636) 1.5129 (.0648) 1.6640 (.0735)

const -1.7983 (.1749) -1.6159 (.1402) -1.6185 (.1408)

age 0.0029 (.0033) 0.0005 (.0028) 0.0005 (.0028) 0.0143 (.0060)

grade 0.0316 (.0110) 0.0200 (.0087) 0.0201 (.0087) -0.0802 (.0577)

south -0.4206 (.0530) -0.3215 (.0434) -0.3225 (.0437) -0.6180 (.1665)

const -1.8242 (.2238) -1.6905 (.2159) -1.6857 (.2156) -0.4120 (.6163)

age -0.0011 (.0052) -0.0052 (.0051) -0.0051 (.0051) 0.0372 (.0146)

grade 0.0659 (.0136) 0.0682 (.0130) 0.0678 (.0131) -0.0782 (.0590)

south -0.4674 (.0683) -0.4741 (.0665) -0.4721 (.0666) -0.6912 (.1956)

not smsa 0.0031 (.0691) -0.0174 (.0686) -0.0170 (.0684)

θ 0.8405 (.0575) 1.0855 (.0908) 1.0714 (.0996)

σ 1.1735 (.0535) 0.8305 (.0508) 0.8348 (.0524)

ρ -0.3207 (.0246) -0.3233 (.0258)

τ 0.9461 (.0766)

Log-lik -7480.237 -7445.438 -7445.387 -2348.336

Standard errors (in parentheses) are computed using the Hessian. Number of quadrature points: 24; Number of

GHK Halton draws: 500.

be implemented in Gretl by means of dedicated panel-data functions, available to the user
after setting the panel data structure. In the script file union example21.inp, the within
group mean of the variable married is readily created in the line m marr = pmean(married).
Using the baseline specification in Wooldridge (2005), we estimate the CDP and DP models
with the Mundlak’s CRE specification. The results are displayed in Table 8.

5.2.2 Computation of Partial Effects

One of the reasons why RE models are often preferred to FE models by practitioners is the
possibility of computing Partial Effects (PE), that have a meaningful economic interpreta-
tion in terms of probability variations. While the computation of PE is straightforward in
models for cross-sectional data, additional sources of complication arise when dealing with
panel data, mainly because the individual unobserved effect αi enters the index function.
However, in CRE models, the unobserved heterogeneity is represented by the estimated
conditional mean of αi, that enters the predicted probability additively to the index func-
tion. In the following we show how to compute predicted probabilities by Hansl scripting,
that can be used to derive PE or Average PE (APE).

As an example, Wooldridge (2005) computes the estimated probability of being in a
union in 1987 conditional on being or not in a union in 1986 and on being married or not.
After estimating the RE model and saving the relevant quantities, the predicted probabili-
ties can easily be computed by means of a few lines of code. For instance, the probability
of being in a union in 1987, conditional on being in a union in 1986 and being married,
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Pr(unioni1987 = 1 | unioni1986 = 1, marriedit = 1, xit, wi), can written as

Φ

(
γ̂ + δ̂0 + δ̂1unioni1980 + β̂ + w′i δ̂2 + β̂1987√

1 + s2
α

)

and is computed as

list X = const union_1 union80 married MARR TIME

probit union X --random-effects --quadpoints=12 --quiet

k = nelem(X)

bw = $coeff[1:k]

s2a = exp($coeff[k+1])

series ndx = bw[1] + bw[2] + bw[3]*union80 + bw[4] + lincomb(MARR,bw[5:11]) + bw[17]

series ndx /= sqrt(1+s2a)

wp11_m = cnorm(ndx)

After the model estimation command is invoked on the second line, we retrieve the esti-
mated parameters by means of the accessor $coeff, which contains the parameter ln(sα)

at the end. Then, we proceed to the computation of the index function, where bw[1] is
δ̂0, bw[2] is γ̂, bw[3] is δ̂1, bw[4] is the coefficient that multiplies the dummy married,
lincomb(MARR,bw[5:11]) is w′i δ̂2 and bw[17] is the coefficient for the 1987 time dummy.
After the index function is normalised by

√
1 + ŝ2

α, the predicted probability is computed
by the function cnorm, which returns the standard normal cdf. Similarly the estimated
probabilities Pr(unioni1987 = 1 | unioni1986 = 0, marriedit = 1, xit, wi), and for marriedit =

0, can be computed by appropriately excluding bw[2] and bw[4] from the index function
calculation.

The top panel of Table 9 reports the average estimated probabilities in the four cases
and is the equivalent of Table II on page 52 in Wooldridge (2005). APEs can readily be de-
rived by taking cell differences: for instance, the state dependence for married individuals
is 0.182, and so on. The lower panel of Table 9 reports the results for the same exercise
performed on the estimated coefficients by the Heckman’s RE dynamic probit. In this case,
the script file looks like

list X = const married MARR TIME

list Z = const married

b = DPB_setup(1,union,X,Z)

DPB_setoption(&b, "nrep", 12)

DPB_setoption(&b, "verbose", 0)

DPB_estimate(&b)

k = b.nk

z = b.nz

bh = b.coeff[1:k+1]

sig_a = b.coeff[k+z+3]

s2a = sig_a^2

series ndx = bh[1] + bh[2] + bh[3] + lincomb(MARR, bh[4:10]) + bh[16]

series ndx =/sqrt(1+s2a)

series hp11_m = cnorm(ndx)

This time, after estimating the model, estimated coefficients needs to be extracted form the
bundle b, where they are stored into the vector coeff. The syntax bh = b.coeff[1:k+1]
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and sig a = b.coeff[k+z+3] extracts the needed estimates according to the order in which
they are stored. The index function and the estimated probabilities are computed as in the
previous exercise.

The script file union example22.inp contains the code to replicate the full Table 9. An
alternative way to compute estimated probabilities would be to use the Gauss-Hermite
quadrature to integrate αi out of the standard normal cdf. For brevity we do not illustrate
this procedure here, however we do provide the script file union example22 quad.inp that
computes the same average estimated probabilities by numerical integration.

6 Conclusions

The aim of the DPB function package is to provide the practitioner with an intuitive and
simple-to-use tool for the estimation of panel data dynamic binary choice models, whose
adoption is often called for in applied microeconometrics. Hopefully, DPB will allow prac-
titioners, who may otherwise be discouraged by the complexity that arises from imple-
menting these estimators in-house, to easily employ these estimators in standard research
problems.
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Table 7: Estimation results: Replication of Wooldridge (2005), Table I, p. 52 and DP models,
Chamberlain’s CRE approach

CDP CDP DP DP

(1) (2) (1) (2)

union(-1) 0.8747 (.0944) 0.8857 (.0942) 0.8866 (.1090) 0.8885 (.1128)

const -1.8276 (.1522) -1.7124 (.4493) -1.4907 (.1373) -1.4921 (.5033)

married 0.1676 (.1110) 0.1691 (.1110) 0.1686 (.1120) 0.1703 (.1126)

year82 0.0280 (.1141) 0.0274 (.1139) 0.0303 (.1276) 0.0297 (.1276)

year83 -0.0880 (.1179) -0.0893 (.1178) -0.0836 (.1125) -0.0869 (.1126)

year84 -0.0484 (.1195) -0.0508 (.1194) -0.0399 (.1196) -0.0429 (.1197)

year85 -0.2675 (.1230) -0.2681 (.1228) -0.2587 (.1211) -0.2591 (.1215)

year86 -0.3190 (.1250) -0.3173 (.1248) -0.3085 (.1212) -0.3109 (.1216)

year87 0.0738 (.1194) 0.0727 (.1192) 0.0789 (.1292) 0.0772 (.1296)

educ -0.0169 (.0361) -0.0126 (.0426)

black 0.5349 (.1942) 0.7816 (.2055)

marr81 0.0637 (.2088) 0.0546 (.2071) 0.1173 (.1829) 0.1136 (.2007)

marr82 -0.0707 (.2556) -0.0606 (.2458) -0.0752 (.2467) 0.0216 (.2908)

marr83 -0.1292 (.2425) -0.1363 (.2423) -0.0824 (.2453) -0.1403 (.2956)

marr84 0.0251 (.2651) 0.0698 (.2678) -0.0019 (.2610) -0.0330 (.2463)

marr85 0.4070 (.2459) 0.4282 (.2445) 0.3621 (.2235) 0.3367 (.1801)

marr86 0.1089 (.2626) 0.0789 (.2628) 0.1915 (.2489) 0.2394 (.2112)

marr87 -0.4266 (.2106) -0.3878 (.2157) -0.5065 (.1907) -0.4085 (.1657)

union80 1.5144 (.1646) 1.4771 (.1706)

const -0.9775 (.1013) -0.6868 (.5808)

married 0.2279 (.1907) 0.2462 (.1886)

educ -0.0291 (.0486)

black 0.5401 (.2363)

θ 0.7134 (.0993) 0.6991 (.1040)

σα 1.3181 (.1083) 1.3097 (.1307)

ln(sα) 0.2435 (.1812) 0.1885 (.1788)

Log-lik -1287.475 -1283.390 -1594.371 -1587.094
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Table 8: Estimation results: CDP and DP models, Mundlak’s CRE approach

CDP DP

union(-1) 0.8875 (.0925) 0.8988 (.1068)

const -1.8568 (.1420) -1.5462 (.1362)

married 0.1698 (.1103) 0.1677 (.1109)

year82 0.0293 (.1138) 0.0299 (.1271)

year83 -0.0889 (.1177) -0.0865 (.1117)

year84 -0.0494 (.1192) -0.0402 (.1191)

year85 -0.2673 (.1227) -0.2579 (.1205)

year86 -0.3182 (.1246) -0.3095 (.1207)

year87 0.0717 (.1192) 0.0762 (.1289)

m marr 0.0332 (.1993) 0.0570 (.2035)

union80 1.4776 (.1630)

const -0.9569 (.1005)

married 0.1956 (.1805)

θ 0.6962 (.0941)

σα 1.3058 (.1040)

ln(sα) 0.2295 (.1694)

Log-lik -1291.377 -1598.478

Table 9: Probability of being in a union in 1987

Replication of Wooldridge (2005), Table II, p.52

In union, 1986 Not in union, 1986

Married, 1987 0.4082 0.2256

Not married, 1987 0.3696 0.1970

DP

In union, 1986 Not in union, 1986

Married, 1987 0.4081 0.2211

Not married, 1987 0.3680 0.1922
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