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Abstract
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A rotated Dynamic Factor Model for the
yield curve: squeezing out information
when it matters∗

Chiara Casoli Riccardo (Jack) Lucchetti

1 Introduction
Two fundamental facts about the yield curve have been known for a long
time: i) it embodies information on the state of the economy andmarket ex-
pectations that can very useful for several purposes, notably forecasting or
identification of monetary policy shocks; ii) its structure can be described,
at a given point in time, by a limited number of factors.

The profound interactions ofmacroeconomic factorswith the yield curve
has led many to monitor the term structure of interest rates for predicting
recessions and creating better proxies for expectations of future economic
conditions (see Chinn and Ferrara, 2024). This builds on a long tradition
linking the slope of the yield curve to future economic conditions (Estrella
and Hardouvelis, 1991).

In general, as explained in Coroneo et al. (2016), the short end of the
yield curve is more closely connected with the policy instruments of the
central banks, whereas the average level of the yield curve usually co-moves
with broader macroeconomic forces, such as the inflation rate. Finally, the
spread of long versus short rates is associated with business cycle condi-
tions. These interactions are often analysed in order to predict economic
recessions (Bordo and Haubrich, 2024; Minesso et al., 2022), interest rates
(Caruso and Coroneo, 2023), financial crises (Bluwstein et al., 2023) and
the business cycle (Han et al., 2021).
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faello Seri, Yiannis Venetis and Mark Watson. We are also indebted to all the participants of the
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11st Italian Congress of Econometrics and Empirical Economics, the 3rd Vienna Workshop on
Economic Forecasting and the 2025 International Association for Applied Econometrics Confer-
ence in Turin. Chiara Casoli gratefully acknowledges financial support from the “Department of
Excellence 2023–2027” provided by the Italian Ministry of University and Research.
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Modelling the yield curve is challenging because of its complexity and
the dynamic nature of the factors influencing it, which can also be unob-
servable. Importantly, different modelling choices can lead to heteroge-
neous forecasting performances (see, e.g., Caldeira et al., 2025).

One of the most commonly accepted way of modelling the yield curve
relies on the fact that the entire structure can be described by a small num-
ber of factors. Examples are the famous Nelson and Siegel (1987) model,
which syntheses all the information contained in several yields in only
three factors governing the shape of the curve, and the extension to four
factors proposed by Svensson (1994).1 Diebold and Li (2006); Diebold
et al. (2006) extend the Nelson-Siegel model by considering dynamic fac-
tors, opening the way to dynamic factor models (DFM) as the preferred
estimation tool for modelling the yield curve.

In this paper, we revisit the important contributions by Diebold and Li
(2006) and Diebold et al. (2006) in the light of more recent developments
in the literature on Dynamic Factor Models and provide evidence on how
differences in the methods for extracting yield curve factors are reflected
in the estimated components, and thereafter, in forecasting performance.
Specifically, Diebold and Li (2006) express yields as combinations of three
common dynamic factors governing the level, slope and curvature of the
curve. In this framework, the loading matrix is constrained and depends
non-linearly on a scalar unknown parameter, universally denoted as λ.2

One of the main ideas in the present contribution is that the cointegra-
tion properties of the observed yields can be used to perform a rotation of
the observable terms: we show that taking the cointegration structure of
the yields into account leads to a significant reduction of the cross-sectional
correlation of the idiosyncratic components of the DFM.3 The advantages
of embedding cointegration in a DFM are highlighted in Barigozzi and Lu-
ciani (2019); Casoli and Lucchetti (2022). Our setup considers a similar
background to the Casoli and Lucchetti (2022) work, in which cointegra-
tion is assumed among the observable variables rather than the factors.

The importance of reducing the cross-correlation of the idiosyncratic
components relies on the fact that more information is included in the

1Recently,Wahlstrømet al. (2022) have demonstrated that theNelson-Siegel parameter
estimates are more stable with respect to those of the Svensson alternative.

2Notably, the literature on DFMswith constrained loadingmatrices is evolving rapidly
and is closely related to this setup. Examples include multilevel DFMs (Breitung and
Eickmeier, 2015; Choi et al., 2018) or matrix/tensor DFMs (see Chen et al., 2024; Yu et al.,
2024, as examples)

3Note that this is an approximate DFM, so that the variance-covariance matrix of the
idiosyncratic term is not diagonal.
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common component, therefore leading to a better estimation of the fac-
tors space. Fresoli et al. (2023) demonstrate that ignoring cross-correlated
idiosyncratic components has implications in terms of forecasting, as it can
underestimate prediction intervals.

Additionally, we compare the forecasting performance of two sets of
yield-curve factors extracted from an original (unrotated) model and from
a rotated model that incorporates cointegration. Using these factors, we
forecast several macroeconomic variables for both the United States and
the Euro area and assess predictive performance by comparing predictive
log-likelihoods.

We find that the twomodels exhibit very similar forecasting ability out-
side periods of economic instability and financial stress. However, during
episodes of large turbulence, such as the 2008 global financial crisis and the
Covid-19-related recession, the rotatedmodel consistently outperforms the
classic specification. This evidence suggests that incorporating cointegra-
tion into yield-curve factor models is particularly relevant for predicting
recessions.

Finally, as a secondary result, we also estimate byMaximumLikelihood
the parameter λ governing the Nelson-Siegel loadings. The literature has
typically relied on pre-set values, but our estimates indicate much smaller
values of λ both for the US and the Euro area datasets. This finding is con-
sistent with the persistently flatter yield curves observed during the zero
lower bound (ZLB) period. While this is not the core focus of the paper, it
provides new empirical evidence that may inform future work on the evo-
lution of the term structure under unconventional monetary conditions.

The structure of the paper is as follows: Section 2 introduces the moti-
vation and research questions, Section 3 explains theway cointegration can
be embedded in a DFM, Section 4 describes our dataset, while our results
are in Sections 5 and 6. Section 7 concludes.

2 Motivation and preliminary evidence
As we anticipated in the previous section, the idea that the yield curve
contains information that may be useful for predicting macro variable has
been used in many cases for a long time. The possibility of using such
information is even more tempting if the entire structure of the yield curve
can be summarised by a few factors, the Nelson-Siegel model being the
most popular choice.

However, it can be conjectured that the predicting power of the yield
curve factors may not be uniform through time: several practitioners have
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recently been concerned on the apparently decreasing relevance of the yield
curve as a predictor for recessions (see for instance Chinn and Ferrara,
2024). A possible explanation relates the flattening of the curve, with also
a decrease in the yields volatility, to the ZLB (Opschoor and van der Wel,
2024). A related andgrowing literature documents howconventionalmod-
els often lose explanatory power in ZLB environments (Rossi, 2021; Wu
and Xia, 2016). Therefore, extracting the relevant information from the
yield curve is a crucial task for several purposes, and the challenge con-
cerning whether there is a decreasing predictive power of the yield curve
is open and difficult. That said, it is quite natural to think that, if the added
value of such information is linked to its ability to capture agents’ expecta-
tions, its importance should increase in times of economic turmoil.

In order to check for this possibility, we ran a very simple preliminary
experiment, using 30 selectedmaturities from the US yield curve and com-
puting the first three principal components.4 For this analysis, we rely on
the standard Nelson-Siegel model with a dynamic factor structure (For
the notation, we refer the reader to Section 3). The results conform very
well with economic intuition: the first three principal components contain
99.96% of the total information and the structure of the loading matrix is
strikingly close to what one would expect for the “level”, “slope” and “cur-
vature” factors in the Nelson-Siegel model, as shown in Table 1.5 It would
seem that the Nelson-Siegel factors may in fact provide an excellent sum-
mary of the information contained in the yield curve.

Next, we used the estimated factors in a forecasting model like

yt = µ+
12∑
1=1

αiyt−1 +
12∑
1=1

β′
iFt−i + εt (1)

where yt is a macroeconomic variable and Ft are the three principal com-
ponent extracted above. Model (1) was estimated on a rolling window
of 240 months and the p-value for the Granger-causality hypothesis β1 =
β2 = . . . = β12 = 0 was computed, mainly as a descriptive statistic of the
predictive power of Ft for yt, where of course smaller values imply greater
predictive power.

Results for a few US macroeconomic series (taken from FRED), are
shown in Figure 1. It is quite evident that the predictive power of principal
components is very high during the main episodes of economic instability:

4The data are available from Jing Cynthia Wu’s website, as reported in Section 4.
5In principle, even if the Nelson-Siegel model was exactly true, principal components

would just be a basis for the space spanned from the three factors. This distinction, how-
ever, is immaterial for the results in this section.
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PC1 PC2 PC3
3 months 0.176 0.290 0.458
6 months 0.178 0.280 0.341
9 months 0.179 0.266 0.238
12 months 0.180 0.250 0.145
15 months 0.181 0.230 0.063
18 months 0.182 0.208 -0.004
21 months 0.183 0.187 -0.056
24 months 0.183 0.166 -0.099
27 months 0.184 0.146 -0.134
30 months 0.184 0.126 -0.161
33 months 0.185 0.108 -0.179
36 months 0.185 0.091 -0.192
42 months 0.186 0.058 -0.209
48 months 0.186 0.028 -0.213
54 months 0.186 -0.001 -0.205
60 months 0.186 -0.026 -0.189
66 months 0.186 -0.049 -0.173
72 months 0.185 -0.071 -0.150
78 months 0.185 -0.091 -0.123
84 months 0.185 -0.111 -0.093
90 months 0.184 -0.130 -0.062
96 months 0.184 -0.145 -0.033
102 months 0.184 -0.160 -0.006
108 months 0.183 -0.173 0.022
120 months 0.182 -0.201 0.085
132 months 0.181 -0.225 0.138
144 months 0.180 -0.244 0.179
156 months 0.179 -0.257 0.211
168 months 0.179 -0.267 0.235
180 months 0.178 -0.273 0.246

Table 1: PC loadings on US yields, 30 maturities.

the 2008 financial crisis, the COVID outbreak and the Russia-Ukraine con-
flict. This effect is not uniform across all the macro series, but the fact that
for all macro series the predictive power of PCs was rather limited during
the 2012–2018 period is apparent.

These observations give rise to two fundamental questions, which con-
stitute the central research questions addressed in this article.

1. Is there an optimal way to condensate the information contained in
the yield curve so as tomake it useful formacroeconomic forecasting?

2. Is it possible to devise a metric for the effectiveness of these factors as
predictors that takes into account its possibly time-varying nature?

The first question will be explored next, in Section 3, while our ap-
proach to the second one will be described in subsection 5.3.
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Figure 1: Predictive power of principal components

3 The rotated Nelson-Siegel model

3.1 The classic Nelson-Siegel model
TheNelson-SiegelNelson and Siegel (1987)model describes the yield curve
for a set of risk-free bonds as a function of their maturity. In the Diebold-Li
fashion (Diebold and Li (2006); Diebold et al. (2006)), the yield of a bond
with maturity τ is expressed as

y(τ) = β0l(τ) + β1s(τ) + β2c(τ), (2)
where the three components are known as “level”, “slope” and “curva-
ture”. Each is a nonlinear function of τ as follows:

• β0 = 1: constant across the maturity spectrum, models parallel yield
curve shifts (long-term factor).

• β1 = 1−e−λτ

λτ
: loading starts at 1 but decays to 0 with maturity. In-

terpreted as the (negative of the) slope of yield curve (short-term
factor).

• β2 = 1−e−λτ

λτ
− e−λτ : loading starts at 0, increases, and then decays to

zero. It gives maximumweight to intermediate maturities (medium-
term factor).
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The representation of yields via a Dynamic Factor Model (DFM) is:

yt = Λ(λ)ft + et, (3)

where ft is a 3-element vector containing the three factors:

f ′
t =

[
Lt St Ct

]
,

and the matrix of loadings Λ, in which the only unknown parameter is λ,
has a precise structure:

Λ =


1 1−e−λτ1

λτ1
1−e−λτ1

λτ1
− e−λτ1

1 1−e−λτ2

λτ2
1−e−λτ2

λτ2
− e−λτ2

...
1 1−e−λτn

λτn
1−e−λτn

λτn
− e−λτn

 .

The fact that yt ∼ I(1) in most cases has been traditionally handled
by differencing variables. However, as shown by Barigozzi and Luciani
(2019); Casoli and Lucchetti (2022), unit roots can be accommodated if
cointegration relationships are present.

3.2 The rotated model
As the (local) expectation hypothesis theory of the term structure of inter-
est rates entails,6 we assume yt to be cointegrated, with one common trend
and n− 1 spreads.7 Although the yields are I(1), spreads are stationary by
definition. This idea has been pursued in countless empirical applications,
especially in the late 1990s, with an equally impressive number of varia-
tions on the theme. In this paper, we simply postulate the existence of a
valid VECM representation for yt as

Γ(L)∆yt = µ0 +αβ′yt + εt, (4)

where the spreads are st = β′yy.
6See eg Brand and Cassola (2004), p. 819.
7To check if yields are in fact I(1), we implemented a set of ADF tests for unit roots,

which confirmed our hypothesis. However, there is not consensus on whether the in-
terest rates should be considered as stationary or non-stationary processes. In a recent
contribution, Rogoff et al. (2024) argue that they should be stationary over the long term.
However, when persistence in finite sample data is very high, it may be a better choice
to impose the unit root even if the DGP is in fact I(0) with high persistence (see Di Iorio
et al., 2016, for a similar discussion on near-I(2) stochastic processes).
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In principle, there are two main ways to represent β:

β1 =


1 1 · · · 1
−1 0 · · · 0
0 −1 · · · 0
... ... . . . ...
0 0 · · · −1

 β2 =



1 0 · · · 0
−1 1 · · · 0
0 −1 · · · 0
... ... ... ...
0 0 · · · 1
0 0 · · · −1


,

that is, all spreads are computed with respect to one yield, or the spreads
are expressed as difference between bonds of similar maturity. In this pa-
per, we use β2, which gives rise to what we call “adjacent” spreads. The
other choice is possible, but was found to yield less satisfactory results.

Using representation (4), a “common trend” termmt can be defined by
combining the yields yt with a vector φ that does not belong to the space
spanned by the cointegration matrix β:

mt = φ′yt

There are two possible alternatives for φ, based on popular choices for
trend-cycle decomposition in the cointegration literature.

• The Kasa (1992) decomposition: in this case, φ = β′
⊥. Under the

stationarity assumption for the spreads, β′
⊥ is a multiple of ι, andmt

is the simple average of all the rates.
• The Gonzalo and Granger (1995) decomposition, whereφ = α′

⊥. We
have two choices:
1. assume that one of the rates is weakly exogenous so that α⊥ is

just a selection vector picking up that rate;
2. estimate α via OLS and compute α⊥ from there; in this case,

mt is a weighted average of all the rates (possibly, with negative
weights).

We use the Kasa decomposition, which produces more interpretable
results and mitigates possible inferential problems when estimating α: to-
gether with the theory-based choice we make for β, this means that the
long-run matrix Π = αβ′ in equation (4) contains no estimated elements.

Note that Equation (2) can be used to represent the spreads and the
trend as

st = β′yt = β′Λft + vt (5)
mt = φ′yt = φ′Λft + ut (6)
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so as to formulate a rotated DFM as a state-space model as

[
st
mt

]
= Λ∗(λ)ft + e∗t , (7)

ft = µ+ Φft−1 + ηt (8)

where
Λ∗ =

[
β′

φ

]
Λ

and

Φ = I +

α∗
11 α∗

12

α∗
21 α∗

22

α∗
31 α∗

22

[
0 1 0
0 0 1

]
=

1 α∗
11 α∗

12

0 1 + α∗
21 α∗

22

0 α∗
31 1 + α∗

22


so as to ensure that Lt is I(1) and St and Ct are I(0).

At this point, the question is: is there an advantage in choosing represen-
tation (7) instead of (3)? At first sight, it would seem that the two repre-
sentations should be equivalent. However, any transformation of the ob-
servables in a Dynamic Factor Model has consequences on the structure of
covariance matrix of the idiosyncratic shocks: the approximate DFM dis-
cards by construction the information from the off-diagonal element of the
idiosyncratic shocks (et and e∗t , for the two models, respectively); since it
may be conjectured on theoretical grounds that thesemay be smaller in the
rotated system, then one representation could be more efficient at picking
up the signal than the other one.

Althoughwe cannot pinpoint analytically the statisticalmechanism that
should lead to an improvement of the estimates, we consider it quite sen-
sible that a representation which makes the “approximate factor model”
less approximate should bring about an advantage. Moreover, the cross-
correlation issue has be proven to be important for inference on the esti-
mated factors (see Fresoli et al., 2023).

Moreover, Casoli and Lucchetti (2022) show that, in the case of coin-
tegrated systems, a transformation that separates I(0) and I(1) variables
can have beneficial effects on the quality of the reconstruction of the space
spanned by the factors ft. Note that, differently from Casoli and Lucchetti
(2022), we do not consider mt in differences. Instead, we assume that
mt ∼ I(1) and adjust the state-space model accordingly, in the spirit of
Barigozzi and Luciani (2019).

In a nutshell, we extract two different sets of factors: one from the clas-
sic Nelson-Siegel model (3) and one from the rotated model (7). In the
rest of the paper, we will refer to the two procedures as the “classic” and
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the “rotated” method, respectively. The two equations are considered, al-
ternatively, as the observation equation in parallel state-space models. The
state transition equation for the classic model is an unrestricted VAR(1).
For the rotated model, instead, we use equation (8), so as to force the level
factor to be I(1) and the other two factors to be I(0).

4 The data
Our main analysis considers the monthly constant maturity zero-coupon
yields for the major economy of the world: the US. We consider a large set
of 30 maturities, ranging from 3 to 180 months (15 years). The maturities
are: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96,
102, 108, 120, 132, 144, 156, 168 and 180months. We use the Treasuries data
as reconstructed by Liu andWu (2021). The dataset includes a wide set of
maturities, spanning from 1 to 360months, and samples from January 1972
to December 2024.8

Given that in the initial period the yields exhibit substantial volatility
and that Liu and Wu (2021) evidence high pricing errors for constructing
the yield curve, we decided to not to use data before January 1986. This
also allows us to focus on a period that is more uniform and financially
stable.

Moreover, we restrict our analysis to a set of maturities for whichwe are
more confident about the quality of the raw data. For instance, we discard
maturities shorter than 3months because of potential noise, as well as very
longmaturities (i.e., more than 15 years) where the data are too sparse and
the maturity distribution is characterized by relevant gaps (see Liu and
Wu, 2021).

In an additional analysis, we extend our model to the European case
(see Section 6 for a full description of the Euro area dataset). Figures 2
report the selected US and Euro area yields over time.

5 Results
As discussed in Section 3, we carry out estimation of the two DFMs: the
classic and the rotated representation, and we compare the smoothed esti-
mates of the factors ft from the two setups.

8The data are available from Jing CynthiaWu’s website: https://sites.google.com/
view/jingcynthiawu/yield-data.
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Figure 2: Monthly US (left) and European (right) yields to different ma-
turities.

In both cases, estimation is carried out by Quasi Maximum Likelihood,
assuming normality. It should be noted that, since we estimate the param-
eter λ rather than fixing it to a calibrated value (see subsection 5.1 below), a
straightforward implementation of the EMalgorithmas inDoz et al. (2012)
is not easily feasible, because the elements of the loading matrix Λ∗(λ) are
nonlinear functions of the scalar λ. Therefore, theQMLprocedure employs
standard numerical optimisation algorithms, such as Newton-Raphson or
BFGS.

5.1 Estimation of λ
A key ingredient in estimating the state-space representation (2) is the nu-
merical value of the scalar parameter λ, which determines the shape of the
function linking the loadings to the maturities.

However, for a given value of λ, themodel becomes linear and inference
is much simplified. Therefore, it is very common in the literature to rely
on previous findings on λ: for example, Diebold and Li (2006) perform a
grid search on a range of values and set λ = 0.0609 by optimising an ad-
hoc criterion. The same value that they fix is then re-used in many other
papers, such as for example Inoue and Rossi (2021); Opschoor and van der
Wel (2024).

In this paper, λ is instead estimated by ML along with all the other pa-
rameters in the model. By using this method, we first attempt to replicate
the results of Diebold and Li (2006) and find a ML estimate for λ equal to
0.0586, with a 95% confidence interval equal to [0.0571, 0.0602]. This im-
plies that the value used in Diebold and Li (2006) is broadly comparable
in terms of orders of magnitude, but slightly outside the 95% confidence
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band.
Estimating the models with our extended sample, the λ values we find

are considerably smaller that the traditionally used ones: the estimates we
obtain are reported in Table 2.

Method Estimate Std.Err. 95% CI
classic 0.0402 0.0001 0.0401 0.0404
rotated 0.0382 0.0001 0.0379 0.0385

Table 2: Estimates of λ - US data
This result suggests that, at least if considering a sample including the

late 2000s and onward, the structure of the loadings is in fact very much
flatter than how often assumed by a relevant part of the literature. The
value of λ set at 0.0609 is just not consistent with more recent observations,
given that a relevant part of the sample includes the ZLB period.

5.2 Factor extraction
Unsurprisingly, the twomethods we compare provide fairly similar results
from most points of view, so we concentrate on the differences.
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Figure 3: Correlation matrix of the idiosyncratic shocks - US data: classic
method (left) vs rotated method (right)

The first difference is that the rotated model seems to perform much
better at picking up the cross-correlations between the idiosyncratic dis-
turbances of the observation equations (3) and (7). The sample correla-
tion matrices of the idiosyncratic shocks for the two models, which are es-
timated as the “smoothed disturbances” from the state-space models (see
Durbin and Koopman, 2012, sec. 4.5), are markedly different from one an-
other, with the rotated model yielding a correlation matrix which is much
closer to being diagonal.
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In order to quantify this impression numerically, we compute the ratio

rmax =
µmax

n
,

where µmax is the largest eigenvalue of the correlation matrix; clearly, this
value ranges between 1/n and 1, with the minimum corresponding to an
identity matrix and the maximum corresponding to a rank-1 matrix. This
index equals 0.4014 for the classic model and 0.2264 for the rotated model.
Figure 3 displays heatmaps of the two correlationmatrices, fromwhich the
superiority of the rotated model is evident.
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Figure 4: Estimated factors for the classic and the rotated model - US data

Another reason for preferring the rotated model comes from the obser-
vation that the correlationmatrix for the classic model appears to be nearly
block diagonal, with boundaries between blocks occurring at certain ma-
turities, which is probably an artifact of the nonparametric procedure used
by Liu and Wu (2021) for building the dataset and of the raw pricing data
structure. Such suspicious regularity is less evident in the right-hand pane.

Figure 4 displays the estimated factors for the two methods. As antic-
ipated, the results are visually very similar. However, the differences be-
tween the two estimates appear more evident by considering Figure 5, in
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which the time path of the difference between estimated factors is shown.
Interestingly, it is possible to note that the difference between the two sets
of factors is larger in some periods and negligible in others. In particular,
the differences become more remarkable in conjunction with economic in-
stabilities, such for instance the period of turmoil following the US stock
market crash in 1987, the early 2000s recession after the dot-com bubble,
the Great Recession and the post-Covid period.
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Figure 5: Differences between the factors - US data

It could be surmised that, although the estimated factors are somewhat
different from one another, they in fact span exactly the same space. How-
ever, this seems not to be the case: we computed the traceR2 index, defined
as

TR = 1− tr [E′E]

tr [F′F]
,

where F is the matrix of rotated factors, C is the matrix of classic factors
and E = MCF, that is the residuals from an OLS regression of F on C. If
the two sets spanned exactly the same space, that index would be exacly
one, while in fact it equals 0.9967. Of course here the TR statistc is just
used as a convenient descriptive statistic, but it is easy to see that the two
sets of factors do in fact carry information that, although very similar, is
partly different.
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Results for a restricted set of yields, using 18 maturities instead of 30,
are qualitatively similar and are available upon request.

5.3 Forecasting performance
In this subsection, we compare the performance of the factors extracted
via the classic and the rotated technique for predicting a selected set of
macroeconomic variables.

We begin with a preliminary remark: given the evident similarities be-
tween the two sets of factors (see Section 5.2), we do not expect dramatic
differences in the forecasting power between the two methods. However,
the fact that the two sets of factors are not exactly the same makes the ex-
ercise worthwhile. More specifically, we observe that known periods of
economic turbulence, such as the 2007–2008 financial crisis and the subse-
quent downturn in economic activity, or the outbreak of the Ukraine war
in 2022 seem to be reflected in the differences between the two estimates.

Therefore, we will use a comparison strategy in which we may focus
on comparing the predictive power of the two factor extraction methods at
particular points in time. In order to do so, we compare their accuracy on
the basis of the log density of the forecasts (see eg Clements and Hendry,
1998, sec. 3.7).

The basic model we use to ascertain the forecasting power of the ex-
tracted factors is a block-triangular forecasting VAR:

A11(L)zt = µ1 + A12(L)Ft + εt (9)
A21(L)Ft = µ2 + + ηt; (10)

where zt is a vector of macroeconomic variables and Ft are the estimated
factors.

We concentrate on themost standard key indicators: real monthly GDP
growth, the year-on-year inflation rate computed from the Consumer Price
Index, and the Federal Funds effective rate.9

The system (9) can be thought of as a VARmodel in which the absence
of Granger causality from zt to Ft is assumed, so that multi-step forecast
is feasible given Ft; we also assume the the order of the three lag polyno-
mials is the same and we choose it by minimising the Hannan and Quinn
(1979) information criterion on the unrestricted VAR. The system is then
estimated via SUR on a sample of size H , from t − H + 1 to t − 1 and

9All data are sourced from FRED (see https://fred.stlouisfed.org/). The
monthly measure of GDP growth is derived in Brave et al. (2019).
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the k-step-ahead forecast ẑt+k is computed, together with the associated
covariance matrix Σt,k.

Given equation (9), we compute the marginal predictive likelihood by
assuming normality as

MPLt,k = −1

2
log

[
|Σt,k|+ e′t,kΣ

−1
t,ket,k

]
where et,k ≡ zt+k − ẑt+k is the k-step-ahead prediction error. The intu-
ition is that a superior model should yield a forecast such that the density
evaluated at the prediction error is, on average, higher.

By computing the quantity above on a rolling sample, we obtain two
series of marginal predictive likelihoods, so we have MPLc

t , in which the
factors extracted with the classic method were used as Ft, and MPLr

t for
our alternative (rotated) method. This indicator can be interpreted as the
difference between the two models in terms of entropy:

PLLt,k = MPLr
t,k −MPLc

t,k = log
φ(zrt+k)

f ∗(zt+k)
− log

φ(zct+k)

f ∗(zt+k)

where f ∗(·) is the true unobservable density. Therefore,

E(PLLt,k) = E

[
log

φ(zrt+k)

f ∗(zt+k)

]
− E

[
log

φ(zct+k)

f ∗(zt+k)

]
which can be interpreted as a (log) Kullback-Leibler divergence, where
positive value indicate a better performance of the rotated model.

The approach above, therefore, makes it possible to judge the difference
in forecasting power between the two approaches at any given point in time
t. As argued above, however, we consider it quite important to be able
to weight the differences using a metric that somehow reflects the degree
of economic instability. To this aim, we adopt the approach proposed in
Amisano and Giacomini (2007) and use a weighted likelihood ratio test.10
Differently from the original proposal, the weight function we use is not
based on the distributional characteristics of the variable to forecast (which
would be problematic anyway, given that zt is a vector), but rather on the
VIX index, a commonly-used indicator of economic turmoil.

10Standard tests such as the Diebold and Mariano (1995) are not suited to compare the
predictive ability in this framework for two main reasons. First, both the Diebold and
Mariano (1995) and the fluctuation test of Giacomini and Rossi (2010) are designed to
evaluate point forecasts, typically at the mean, rather than the entire predictive distribu-
tion. Second, these tests aggregate performance over the evaluationwindow, so very short
episodes of instability may be smoothed out and remain undetected, as also discussed in
Iacone et al. (2025).
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In practice, the weight function we use is a suitable transformation of
the VIX index. The results reported here use as weights a variable wt de-
fined as

V̄t = ρ · V IXt + (1− ρ) · V̄t−1

wt =
V̄t

maxs=1...T V̄s

,

that is, a rescaling on the 0–1 interval of an exponentially weightedmoving
average of the VIX index (with ρ = 1 ourweight variable is just the rescaled
VIX index). We experiment with various values of ρ to reflect the fact that
economic uncertainty may in fact be a smoother phenomenon than what
the relatively volatile VIX index indicates.

The indicator we use for our purpose can therefore be written as
WLRt,k = wt · PLLt,k (11)

and we check the hypothesis of equal forecasting power via the Amisano
and Giacomini (2007) t-statistic, that is

tk =
WLRk

σ̂
√
n

where σ̂2 is a heteroscedasticity and autocorrelation consistent (HAC) es-
timator of the asymptotic variance of (√n WLRk

). Under the null hypoth-
esis of equal predictive power, this statistic has an asymptotic N(0, 1) dis-
tribution.

To give the reader a pictorial example of the results, Figure 6 depicts
the time paths of PLLt, wt andWLRt for k = 3 and ρ = 0.5.

Table 3 displays the results of the Amisano-Giacomini test for various
values of the forecasting horizon and the smoothness parameter ρ.11 As it is
shown, results indicate uniformly that the rotated model performs better
than the classic one, with significantly better results at shorter horizons.
The degree of smoothness of the weighting variable does not seem to affect
the results very much.

6 The Euro Area yield curve
For the Euro area, we rely on Eikon Refinitiv data, where the Euro zero-
coupon yield curve is reconstructed on a monthly basis, with maturities

11We set the rolling window size to 240 months; results with a shorter window of 180
months are slightly worse, but qualitatively similar.
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Figure 6: Amisano-Giacomini test – US data

horizon ρ = 0.2 ρ = 0.5 ρ = 1
1 2.5443 2.4158 2.3924
2 2.0927 2.0377 2.0217
3 1.8438 1.8053 1.7884
6 1.7506 1.8555 1.9043
12 1.4498 1.4421 1.3326

Table 3: Amisano-Giacomini test at different k – US
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ranging from 1 month to 50 years. To be consistent and provide a direct
comparison in the results, we select the same maturities used for the US
yield curve, spanning from 3 to 180 months. In this case, our sample starts
from January 1999, that is the official start of the Euro currency.

It should be noted that, unlike the US yield curve, the European one
is in fact a swap zero curve. Unfortunately, recovering a European zero-
coupon curve based on risk-free bonds would be possible only by using
the ECB data, which is unfeasible for two main reasons. First, yields are
available only starting from 2004, making the sample’s dimension not suf-
ficient. Second, the ECB uses parametric methods to estimate the yield
curve (see Svensson, 1994), which would make the data useless for our
purposes: since the yield curve is reconstructed by assuming a factor rep-
resentation, estimation of a DFM (either rotated or not) just ends up pro-
ducing the same factors that were used for producing the data and, most
importantly, yielding idiosyncratic errors that are almost pure numerical
noise. Unfortunately, this is the case for yield curves as published by most
central banks: a comprehensive, albeit not very recent list, is contained in
BIS (2005).12

With these data, we performe an analysis similar to the one in Section 5,
with a twofold aim. First, we want to make sure that our results hold for a
different setting, and second, we provide evidence on a different economy
to highlight similarities and disparities between the yield curve’s forecast-
ing ability in the US and the Euro area. We select, again, 30 yields, ranging
from 3 to 180 months as for the US, with the difference that the selection
for the Eurozone includes more short maturities and fewer long ones. Un-
fortunately, this choice is motivated by data availability.13

Most results for the US are confirmed also when analyzing European
data, although the evidence for the difference between the two methods is
somewhat weaker. It should be noted, however, that the dataset we have
for the Euro area is considerably smaller in terms of its time span (312
monthly observations versus 468 observations for the US).

Estimated values of λ for the Euro area, shown in Table 4, resemble very
much the ones for the US, with a flatter yield curve than the one implied
by conventional values (in fact, even flatter than the US).

Figure 7 shows the heatmap for the idiosyncratic residuals for themodel
12For this same reason, using other datasets such as the one provided by Gürkaynak

et al. (2007) would be problematic.
13We carefully evaluated the possibility of selecting the samematurities for the US (i.e.,

picking the available yields for the Euro area and then use these also for the US), but we
believe, at least when possible, it is better to pick a balanced structure including a wider
set of long maturities.
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Method Estimate Std.Err. 95% CI
classic 0.0308 0.0002 0.0305 0.0311
rotated 0.0304 0.0002 0.0299 0.0309

Table 4: Estimates of λ – Euro data
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Figure 7: Correlationmatrix of the idiosyncratic shocks - Euro data: classic
method (left) vs rotated method (right)

with 30 maturities. The rmax index equals 0.498 for the classic method and
0.2989 for the rotated one. Again, there is evidence of a lesser degree of
cross-correlation for the rotated model, albeit perhaps not as striking as
with the US data.

A visual comparison of the estimated factors (Figures 8 and 9) leads
to conclusions broadly similar to those for the US, although the peak in
dissimilarity around the 2008 financial crisis is less pronounced. Other
periods displaying notable divergences include the sovereign debt crisis
and the recent phase of uncertainty linked to the Russia–Ukraine conflict.
This is confirmed by the trace R2 index, equal to 0.998. In the Euro area
case, the similarity between the spaces spanned by the two sets of factors
is much higher, although some differences are still noticeable.

For the forecasting exercise, we estimate the block-triangular VAR of
Equation (9) with the inclusion of European macroeconomic variables,
then focus on theAmisano-Giacomini test for assessing the predictive power
of the classic and rotatedmodels. To be consistent with the US analysis, we
set a rolling window of size 240 observations.

The Europeanmacroeconomic data are taken from the ECB andOECD,
selecting each time the most complete alternative in terms of observations.
We consider the Hamilton-filtered Euro area monthly GDP, the year-on-
year inflation rate obtained from theHarmonised Index ofConsumer Prices,
and the ECB’s Main Refinancing Operations (MRO) rate.14

14In this case, we construct monthly GDP by temporally disaggregating the quarterly

20



 0

 1

 2

 3

 4

 5

 6

 7

 8

 2000  2005  2010  2015  2020  2025

Le
ve

l_
c3

0

-5

-4

-3

-2

-1

 0

 1

 2

 2000  2005  2010  2015  2020  2025
Sl

op
e_

c3
0

-5

-4

-3

-2

-1

 0

 1

 2000  2005  2010  2015  2020  2025

Cu
rv

at
ur

e_
c3

0
 0

 1

 2

 3

 4

 5

 6

 7

 2000  2005  2010  2015  2020  2025

Le
ve

l_
r3

0

-5

-4

-3

-2

-1

 0

 1

 2

 2000  2005  2010  2015  2020  2025

Sl
op

e_
r3

0

-5

-4

-3

-2

-1

 0

 1

 2000  2005  2010  2015  2020  2025

Cu
rv

at
ur

e_
r3

0

Figure 8: Estimated factors for the classic and the rotatedmodel - Euro data
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Figure 9: Differences between the factors - Euro data

series from ECB. To obtain our monthly time series, we rely on the method proposed by
Fernández (1981) and use industrial production as anchor.
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For the considered time span, European uncertainty and economic in-
stability reflect a combination of financial turmoil and geopolitical shocks,
unlike the US. To take this into account, we select two potential weights for
the likelihood ratio test: the VSTOXX, chosen for consistency with the VIX
used for theAmerican analysis, and theGeopolitical Risk Index (GPRI) de-
veloped by Caldara and Iacoviello (2022). Since it is unclear which weight
is more appropriate, we remain agnostic and report results for both, as
well as for a combined weight function defined as the geometric mean of
the two.

Horizon VSTOXX GPRI Geometric mean
ρ = 0.2 ρ = 1 ρ = 0.2 ρ = 1 ρ = 0.2 ρ = 1

1 1.7359 1.7200 1.6096 1.3412 1.7112 1.6395
2 1.2292 0.9499 1.2017 0.9958 1.2435 1.0512
3 0.9397 0.5806 1.1084 1.0723 1.0460 0.8979
6 0.4898 0.0012 1.0265 0.9562 0.7884 0.5567
12 1.3097 1.0044 1.9202 2.0468 1.6659 1.6823

Table 5: Amisano-Giacomini test at different k – Euro Area

Table 5 summarises the results of theAmisano-Giacomini test for differ-
ent horizons and values of ρ. In the European case, the rotated and classical
forecasts produce broadly similar results, unlike in the US case. This is not
surprising, as the two sets of factors for Europe are more similar. The ro-
tated model shows statistically significant improvement at the 10% level
only for 1-step-ahead forecasts with VSTOXX, and for 12-step-ahead fore-
casts with the GPR index.15 For all other horizons, the differences remain
not significant, although they are consistently positive, indicating a slight
advantage for the rotated model.

7 Conclusions and extensions
In this article, wepropose a new transformation of theNelson-Siegelmodel,
extended by Diebold and Li (2006), that incorporates cointegration. Our
approach expresses the yield curve as a function of spreads and a com-
mon trend, and adjusts the state-space representation of the dynamic fac-
tor model accordingly. To assess the validity of our model, we compare
estimates based on the original Diebold and Li (2006) representation with

15With the weight function constructed including both the series, the rotatedmodel has
a higher predicted likelihood for 1 month- and 1 year-ahead forecasts.
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those obtained from our cointegration-based rotation using US yield curve
data.

Our results show that, for most periods, the factors extracted by the ro-
tatedmodel are very similar to those from the classical specification. How-
ever, the rotation improves themodel’s ability to capture cross-correlations
among idiosyncratic components, which translates into amore efficient ex-
traction of the Nelson-Siegel factors during periods of financial and eco-
nomic crisis. This suggests that incorporating cointegration into the model
can provide additional predictive power and better reflect the information
contained in the yield curve.

We then compare the forecasting ability of the two models by estimat-
ing a block-triangular VAR including standard macroeconomic variables
(namely GDP growth, inflation, and the interest rate) and evaluate the
differences in terms of predictive log-likelihoods. In order to do so, we
rely on the Amisano and Giacomini (2007) test, which evaluates predic-
tive accuracy at the density level. We find that the rotated model generally
improves density forecasts, especially during episodes of economic stress,
such as after the 2008 financial crisis and the Covid-19 recession.

The analysis on Euro area yields similar butmilder improvements, thus
reflecting the closer similarity between factor sets and the more limited
volatility of European yields compared to the US.

Finally, we provide evidence that the parameter governing the evolu-
tion of the level, slope, and curvature factors (λ) is smaller than the value
estimated in Diebold and Li (2006) and commonly used in the empirical
literature. This may reflect a shift in the behavior of the term structure of
interest rates following the ZLB period. This aspect, however, is not the pri-
mary focus of the present paper and will be investigated more thoroughly
in further research.

Future research may also consider the application of the same tech-
niques to economies where suitable data on the yield curve are available,
and the possible gains from estimating a time-varying λ parameter.
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