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Abstract 
 

This paper investigates the interdependence among prices in the commodity 
and natural resource market segment. The analysis is performed using a 
large dataset made of about 50 commodity prices observed with monthly 
frequency over a period of almost half a century (1980-2024). These 
different commodities are clustered in five groups (energy, metals, 
agriculture, food, other raw materials) in order to discriminate the 
interdependence within and between groups. The adopted method consists 
in building a Commodity Price Network (CPN) defined via Granger 
causality tests. These tests are performed with two alternative empirical 
strategies: pairwise VAR models estimation (pairwise Granger Causality) 
and sparse VAR models estimation (sparse VAR Granger Causality). Both 
price levels and price first differences are considered in order to take the 
possible non-stationarity or price series into account. Network analysis is 
performed on the different networks obtained using these alternative series 
and modelling approaches. Results suggest relevant differences across 
series and methods but some solid results also emerges, particularly 
pointing to a generalized interdependence that still assigns a central role to 
some metals and agricultural products.      
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Abstract 

This paper investigates the interdependence among prices in the commodity and natural resource 
market segments. The analysis is performed using a large dataset comprising approximately 50 
commodity prices observed at a monthly frequency over a period of almost half a century (1980-
2024). These different commodities are clustered in five groups (energy, metals, agriculture, food, 
and other raw materials) in order to discriminate the interdependence within and between groups. 
The adopted method consists in building a Commodity Price Network (CPN) defined via Granger 
causality tests. These tests are performed using two alternative empirical strategies: pairwise VAR 
model estimation (pairwise Granger Causality) and sparse VAR model estimation (sparse VAR 
Granger Causality). Both price levels and price first differences are considered in order to take the 
possible non-stationarity or price series into account. Network analysis is performed on the different 
networks obtained using these alternative series and modelling approaches. Results suggest relevant 
differences across series and methods but some solid results also emerge, particularly pointing to a 
generalized interdependence that still assigns a central role to some metals and agricultural 
products.      

Keywords: Commodity Prices, Price Interdependence, Granger Causality, Network Analysis, Sparse 
VAR Models. 

JEL Classification: C32, Q02, O13 

1. Introduction 

The magnitude and direction of interdependence (or connectedness) among commodity prices is a 
research field that received considerable attention over the past few decades (Boako et al., 2020; 
Esposti, 2021, 2024a,b; Fry-McKibbin et al., 2023; Kozian et al., 2025, just to mention a few recent 
studies). The relevance of this subject is twofold. From the real economy perspective, since most of 
these commodities enter many production processes and at different stages of the supply chains, such 
interdependence affects the linkage across sectors and this makes price shocks transmit along supply 
chains finally spreading through the whole economy. Understanding the interdependence across 
commodity prices thus allows to assess how individual price shocks may transmit over the whole 
economy making it more vulnerable and more exposed to inflation risks and business cycle 
downturns. In addition, several countries regard some of these commodities as critical or strategic for 
their own national security (European Union, 2024), which highlights their vulnerability to shocks 
and fluctuations in the respective prices. From the point of view of the financial markets, 
understanding the integration and connectedness among commodity prices is essential for risk 
management and portfolio allocation and this may contribute, in turn, to global financial stability 
(Boako et al., 2020; Ding et al., 2021). 
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Besides its relevance, however, this topic has attracted the attention of researchers also because it is 
methodologically challenging. In general terms, commodities may be connected either directly along 
the same supply chains (or networks) or indirectly via other commodities or through economy-wide 
(or system) linkages. Therefore, interdependence may also occur among very different commodities. 
Some can behave as pivotal/hubs/central nodes since they affect many others but are not affected by 
any or very few. On the contrary, some commodities are peripheral or marginal: affected by few, not 
affecting any. So, the number of commodities involved in this interdependence may be large and the 
relationship may be complex. 
The quantification and qualification of this interdependence within such complexity is the main focus 
of the present paper. Two methodological issues, in particular, seem relevant here. One problem 
concerns the dimensionality, that is, the number of commodities involved within the analysis. The 
typical investigation of interdependence is based on estimation VAR models and consequent Granger 
causality testing. But large VAR models may raise problems both from the computational point of 
view and  in terms of result interpretability. Therefore, dimensionality is often reduced ex-ante by 
limiting the analysis to a subgroup of commodities (selected by homogeneity or relevance) or by 
relying on some rank reduction technique (jut to mention a few and depending on the data under 
analysis: Principal Component Analysis, PCA; latent Factor Analysis, FA; Cointegration; Machine 
Learning techniques), namely collapsing the original set of commodities to a much smaller number 
of factors, or indexes, statistically capturing the common part of the variability of the original series 
(Esposti, 2021, 2024a,b). This dimensionality reduction may be arbitrary and, in any case, may result 
in the loss of information by oversimplifying the complexity of the abovementioned relationships. 

The second methodological problem concerns the stochastic properties of this set of commodities. 
Even when interdependent, these prices may still show heterogenous stochastic features. 
Consequently, finding a common data generation process Data Generating Process (DGP) over a 
large set of prices can be challenging if not unfeasible and this may prevent the use of an unifying 
methodology to investigate the commonality across commodities.  

To deal with these two methodological challenges, the present paper proposes an approach also 
known as Granger Causality Networks (GCN) and consisting in a Network Analysis (NA) grounded 
on Granger Causality (GC) tests. On the basis of the latter, a Commodity Price Network (CPN) is 
constructed. On the basis of the former, the complex interdependence occurring within this CPN is 
investigated. At the time of writing this article, to the best of our knowledge, this is the first attempt 
to exploit the potentials of NA to investigate the complex interdependence across commodity prices. 
Therefore, this methodological proposal represents the main original contribution this paper aims to 
provide to the literature in the field.   

NA by itself, however, does not solve the problem of dimensionality. Performing GC tests on a wide 
set of time series would imply the estimation of a very large VAR. In practice, this estimation is 
unfeasible whenever high-frequency data (monthly in the present case) requires a large number of 
lags. To make GC test feasible two empirical strategies can be adopted. The first consists in 
performing pairwise VAR (PW-VAR) estimation and consequent GC tests. The second consists in 
estimating sparse VAR (S-VAR) models then followed GC tests. Both solutions allow a significant 
reduction of the dimensionality but substantially differ in terms of statistical justification and in terms 
of pros and cons. For the sake of comparison, both approaches are adopted here. 

In order to evaluate the potentially distinct stochastic properties of the price series, appropriate testing 
procedures can be implemented, particularly to investigate their stationarity. However, when multiple 
series are considered, it is highly unlikely that a common DGP can be identified. Therefore, the 
aforementioned dual approach to constructing the NA is replicated here for the price series in both 
levels and first differences, aiming to highlight evidence that remains robust regardless of stationarity 
properties. 

This empirical strategy is here applied to a set of 49 commodity prices grouped in five categories: 
energy, metals, agriculture, food, and other raw materials. Prices are observed monthly over a period 
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of 45 years, from January 1980 to December 2024. The dataset thus consists of 540 observations for 
any commodity and generates a 49x49 matrix representing the network connection across prices.   

The rest of the paper is structured as follows. Section 2 introduces the topic of commodity price 
interdependence focusing on the relevant recent literature in the field and the main stylised facts it 
highlights. Section 3 illustrates the adopted methodological approach and discusses its advantages 
and novelty. Sections 4 details the adopted dataset and provides some descriptive evidence. Results 
are illustrated in Section 5, where their robustness is also examined by comparing evidence emerging 
from different sets of series and different constructions of the network. Section 5 concludes by 
drawing some methodological and policy implications.   

2. Commodity price interdependence and network analysis: methodological issues and 
literature review 

Over the years, a substantial body of empirical literature has emerged on the multivariate analysis of 
commodity prices (Byrne et al., 2020). Especially after the 2007–2008 price turmoil, many empirical 
studies have investigated the common determinants of commodity price dynamics. These 
contributions point to several possible sources of co-movement in prices. However, not all of these 
sources necessarily imply interdependence among commodity prices, as they may simply reflect 
general common drivers related either to the real economy (e.g., population and economic growth on 
the demand side; increasing resource scarcity on the supply side) or to financial markets (e.g., 
growing speculative activity, exchange rate volatility, etc.) (Piot-Lepetit and M’Barek, 2011). More 
recent studies also highlight an additional general driver that may generate common dynamics across 
commodity prices—when expressed in nominal terms, as in the present study—namely, the rapid 
change in the inflation rate (Amaglobeli et al., 2022; Garzón and Hierro, 2022; Esposti, 2024a). 

However, genuine cross-market interdependence—i.e., causal relationships across commodity 
prices—extends beyond simple price co-movement. Interdependence implies a deeper commonality 
driven by causation: it occurs when a shock to one price affects the dynamics of another (Listorti and 
Esposti, 2012). This study aims to quantify and characterize these causal relationships, identifying 
which commodity prices are causally connected and how such links generate indirect and complex 
interdependencies. To uncover these relationships, recent studies have developed various 
methodological approaches. Kozian et al. (2025, Appendix A) offer a comprehensive review and 
comparative evaluation of these methods. 

Among the stylized facts emerging from this literature, three aspects are particularly worth 
emphasizing. The first concerns the complexity of the dynamics of these price series, and thus their 
stochastic properties. Complex dynamics at the individual series level give rise to complex 
dependencies. As a result, identifying a common data-generating process (DGP) across commodities 
that captures interdependence within these intricate dynamics often proves challenging. In this regard, 
recent methodological advances emphasize the need to account for non-linearities and their potential 
causes—such as bubbles, volatility clustering, structural breaks, or regime shifts (Esposti and Listorti, 
2013; Esposti, 2021, 2024a,b; Lin et al., 2024). Machine learning and Bayesian approaches are also 
increasingly employed to develop more flexible and accurate models capable of capturing these 
complexities (Boakye et al., 2024; Drachal et al., 2024). 

The second stylized fact is that, despite the complexity of the underlying stochastic processes, both 
simple visual inspection and more sophisticated analyses confirm that commodity prices tend to move 
together, as repeatedly demonstrated during periods of rapid surges in commodity prices, such as in 
2007 and 2021. This co-movement can involve closely related commodities (such as coal and crude 
oil) as well as seemingly unrelated ones (like wheat and gold) (Esposti, 2024a,b). 

As a consequence, the third stylized fact is that price interdependence may involve a wide range of 
commodities. Whether directly or indirectly, and with short or longer lags, shocks or fluctuations in 
the price of a single commodity can be transmitted to many others. This transmission can itself 
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generate a form of amplification or reverberation of the original shock. The dimensionality of 
commodity price interdependence thus makes it resemble a network, whose structure and functioning 
reflect the aforementioned complexity and commonality. 

The economics of commodity price connectedness is ultimately what analysts care about (Diebold et 
al., 2017). First, most commodities are part of many—if not most—supply chains. These supply 
chains have become increasingly complex and global, and therefore increasingly interconnected. In 
addition, agent expectations and financial markets can link commodities that are only weakly 
connected in the real economy. As a result, beyond direct and simple linkages, the transmission of 
price shocks can also connect seemingly unrelated commodities. While direct connections are easily 
detectable and often widely studied (for instance, the corn–pork linkage; Quintino et al., 2021), 
indirect linkages are often barely visible, largely unknown, and difficult to define ex ante. The 
network perspective not only highlights the complexity and multifaceted nature of this economic 
system, but—more importantly—offers valuable insights into its underlying structure. 

This investigation requires an appropriate methodological framework. Recent literature in the field 
has emphasized that NA can offer a promising methodological approach. The paper widely regarded 
as the origin of this field of study (Diebold and Yilmaz, 2014) employs a weighted dynamic network 
to examine time-varying connectedness. This is achieved through VAR modelling combined with 
variance decomposition. and subsequently investigate connectedness using NA. Forecast Error 
Variance Decomposition (FEVD) concentrates on long-term connectedness and, therefore, requires 
some arbitrary structural identification restriction (Zhang and Broadstock, 2020). Moreover, the 
Diebold and Yilmaz (2014) analysis is limited to just 16 nodes, and it raises serious doubts about the 
scalability of their approach to more complex networks, as dimensionality increases rapidly with the 
number of nodes. 

Granger Causality Networks (GCN) have recently attracted attention (Sun et al., 2018) and can be 
considered a variant of that original approach. GC is still based on VAR modelling1 and estimation 
but does not require identifying assumptions on the long-term structural linkages and, consequently, 
does not distinguish between short and long-run causality (Dufour and Renault, 1998; Dufour and 
Taamouti, 2010). Just to mention a couple of recent applications of this GCN approach, Larrosa et al. 
(2024) investigate price leadership in the Argentinian retail tea market by considering a GCN sorted 
by the 2 statistic of each pairwise estimation considering the lag structure of 8 periods. Wang et al. 
(2021) propose a GCN in the time domain and frequency domain to investigate the 
interconnectedness of Chinese financial institutions. Carlos-Sandberg and Clack (2021) analyse the 
interdependence of oil prices across different regions and qualities adopted within a dynamic GCN, 
highlighting shifts in market influence, geopolitical events, or supply-demand dynamics. 

GCN seems a natural approach to investigating price connectedness, as this ultimately involves 
identifying first-moving prices—those at the core of supply chains whose shocks trigger responses in 
other prices (Esposti, 2024a). In time-series econometrics, this concept is typically captured by 
Granger Causality (GC) (Shi et al., 2018; Shi et al., 2020; Baum et al., 2023), an econometric tool 
used to assess whether one time series can help forecast another. A variable is said to Granger-cause 
another if past values of the former improve the prediction of the latter. Granger Causality thus helps 
uncover directional causal relationships, revealing which commodities directly influence others over 
time. 

At the same time, Network Analysis (NA) models relationships among multiple commodities by 
analysing causality and dependencies across assets (Schweitzer et al., 2009; Newman, 2010). These 
methods help to identify "central" commodities (those exerting the greatest influence on others) and 
"peripheral" commodities in price dynamics. NA allows commodity prices to be represented as nodes 

 
1 The notion of Granger causality can be extended beyond the confines of the linear VAR framework, allowing for its application in 
nonlinear dynamical systems and more general statistical models (Shojaie and Fox, 2021). 
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within a graph, where the connections (edges) between nodes represent interdependencies among 
commodity prices. These edges can be either directed or undirected, depending on the nature of the 
relationship—for example, directional or bidirectional correlations. 

A network of N nodes can be represented by an N×N adjacency matrix, where each element indicates 
the presence and strength of a connection between nodes. In unweighted networks, the matrix 
elements are binary (binary adjacency matrix): 1 if a connection exists between two nodes, and 0 
otherwise. In weighted networks, the elements can assume any positive value, reflecting the intensity 
or strength of the connection between the corresponding nodes (weighted or valued adjacency 
matrix). NA enables the visualization and quantification of the connections and interdependencies 
among commodity prices, allowing for: the identification of central commodities (hubs) that exert a 
greater influence on others; the detection of driver commodities—those that act as key market 
influencers (e.g., oil)—which affect a wide range of other prices, with significant implications for 
investment strategies and planning; the study of the system’s topology (Diebold and Yilmaz, 2014) 
and the identification of clusters of commodities that tend to move together.  

GCNs allow to map the direction and strength of price influence among commodities, leading to 
insights into how price shocks in one market propagate through others (e.g., crude oil influencing 
metal prices). In GCNs these causal relationships among commodities are modelled as directional 
links (directed edges) between nodes (commodities). 

The Granger causal relations can actually be described via two different network (and graphical) 
models (Eichler, 2012). The first consists of a network with N nodes but whose arcs may change over 
time depending on the estimated coefficients of the corresponding lags of the VAR model. 
Consequently, a VAR(N,K) model (with K indicating the number of lags) will generate K different 
NxN adjacency matrices representing the time-varying network, i.e., a dynamic network. This 
representation is similar to that in dynamic Bayesian networks (Ghahramani, 1998). By applying 
Granger causality networks to both time domain and frequency domain, Wang et al. (2021) 
investigate connectedness at different frequencies, thus providing evidence also on the dynamics of 
these linkages. By adopting five distinct methods, Carlos-Sandberg and Clack (2021) investigate the 
dynamics of connectedness by assessing how causality structures evolve over time. 

The second kind of network is a compact representation, combining arcs from different lags of the 
VAR(N,K) model. This network is thus expressed by a NxN adjacency matrix that remains time-
invariant. This static network indicates Granger causality whenever coefficients of some of the K lags 
point to a connection between two nodes. Here, we follow this latter idea as the network model is 
more parsimonious and the consequent NA less computationally demanding (Ahelegbey et al., 2021), 
though it does not necessarily imply lower dimensionality in the estimation stage.  

A static GCN approach is adopted here to investigate price connectedness among a large set of 
commodities. Although GCN may seem a rational and informative strategy to investigate price 
interdependence across a large set of commodities, it is worth stressing that, whether static or 
dynamic, the main empirical challenge of the GCN approach lies in handling high dimensionality—
namely, a large number of nodes. The aim of this study, therefore, is to begin with a static network 
to compare different empirical strategies for GCN under high dimensionality, in order to identify the 
most feasible, reliable, and robust solution—if any. For this reason, we do not consider weighted or 
dynamic networks at this stage. However, once the most effective empirical strategy is established, 
extending the proposed approach to these more complex cases represents a promising direction for 
future research in the field.    

The dimensionality issue arises not only for the large number of commodities involved but also 
because the GCN approach encounters some major issues about VAR modelling and estimation. First 
of all, VAR modelling by itself tends to exacerbate the dimensionality problem. In a VAR(N,K) model 
the number of parameters to be identified and estimated  is NxKxN. In this respect, the higher the 
frequency the longer is the lag to be admitted in VAR modelling since indirect interdependence may 
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take time and seasonal or in-year cycles can occur. The consequence is that, if N is already large and 
many lags must be admitted, the number of parameters explodes and estimation may become 
unfeasible given the available observations T. According to Bernanke et al. (2005), for instance, in 
order to save degrees of freedom, standard VARs are typically limited to a small number of 
endogenous variables (namely, N), usually less than ten, due to the curse of dimensionality. 

Due to this high dimensionality a GCN requires a more parsimonious VAR model specification. For 
the sake of comparison, two empirical strategies are considered here. The first consists in performing 
pairwise VAR (PW-VAR) estimation and consequent GC tests. The second consists in estimating 
sparse VAR (S-VAR) models, followed by GC tests. Both solutions allow a significant reduction of 
dimensionality but substantially differ in terms of statistical justification and of pros and cons.  

Pairwise GC may be problematic for two major reasons. First of all, PW-VAR estimation ignores 
interactions among other variables while focusing on pairs, which can simplify the model fitting but 
may overlook multivariate dependencies. Granger causality based on only two variables severely 
limits the interpretation of the findings: without adjusting for all relevant covariates, a key assumption 
of Granger causality is violated. This limitation has been well documented (see, e.g. Lütkepohl, 1982; 
Shojaie and Fox, 2021) and eventually implies inconsistent VAR estimates due to omitted relevant 
variable bias. In spite of their limitations, bivariate tests of Granger causality continue to be widely 
used in many application areas, from economics (Chiou-Wei et al., 2008) and finance (Hong et al., 
2009) to neuroscience (Seth et al., 2015) and meteorology (Mosedale et al., 2006).  

A second issue with the PW-VAR GC approach is that it risks not being sufficiently parsimonious as 
it may generate many false positives (namely, spurious causal links are detected), especially when 
many lags are included. This occurs because, when many pairwise GC tests are performed in high-
dimensional settings, each of these tests carries a certain probability of rejecting the null hypothesis 
of no causality, or connection, by chance. As the number of tests increases,2 the probability of at least 
one false positive approaches 1. The expected proportion of false positives is known as the False 
Discovery Rate (FDR) (Runge, 2018; Seth et al., 2025; Uematsu and Yamagata, 2025). 

Sparse VAR (S-VAR) modelling offers an effective alternative to PW-VAR when dealing with high-
dimensional time series. By applying sparsity-inducing penalties, it reduces overfitting and simplifies 
the model structure. This approach jointly considers all variables, capturing complex 
interdependencies, while shrinking weaker connections to zero. The result is a sparse and 
interpretable Granger Causality Network (GCN), where only the most significant causal links are 
retained.  

Earlier contributions in this area, such as Litterman (1986) and Leeper et al. (1996), adopted a 
Bayesian framework with shrinkage priors to obtain stable estimates in moderately sized VAR 
models. Granger causality was then typically assessed using classical hypothesis testing methods, 
such as the F-test. More recent works (Lozano et al., 2009; Chudik and Pesaran, 2011; Basu and 
Michailidis, 2015) have increasingly focused on directly selecting the nonzero entries via sparsity-
inducing penalties, often by augmenting the VAR loss function. These works introduce sparsity-
inducing penalties by adopting LASSO (Least Absolute Shrinkage and Selection Operator) as the 
regularization technique (Tibshirani, 1996; Yuan and Lin, 2006). LASSO estimation of S-VAR 
models is adopted here. But Bayesian approaches continue to be considered as an alternative to 
regularization methods for analysing large VAR processes (George et al., 2008; Banbura et al., 2010; 
Ahelegbey et al., 2021).  

While promoting sparsity, LASSO estimation can still capture complex interactions among multiple 
variables. However, it typically requires greater computational resources and careful tuning of penalty 
parameters. In addition to its computational cost, LASSO introduces a degree of arbitrariness, as 

 
2The number of variable pairs grows quadratically: for N variables, N(N-1) tests are performed.  
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sparsity can be achieved through various regularization strategies, with the final choice often left to 
the analyst’s discretion (see Section 3).   

For the sake of comparison, we employ both PW-VAR and S-VAR approaches to construct the 
Granger Causality Network (GCN) of a large set of commodity prices. While both methods address 
high dimensionality, the PW-VAR approach does not inherently ensure sparsity in the resulting GCN. 
At the same time, P-VAR models can be considered a more intuitive, interpretable, and simpler 
method for detecting Granger causality, albeit at the cost of potential estimation inconsistency. In 
contrast, large VAR models with sparsity-inducing penalties offer a more parsimonious, 
comprehensive and theoretically grounded framework for high-dimensional settings, though they 
may be less immediately interpretable. In practice, however, the degree of sparsity obtained via S-
VAR depends on the penalization which is eventually established by the analysist. Also in the PW-
VAR approach more sparsity can be induced by adopting a more selective significance level or testing 
procedure to accept Granger causality (see Section 3). In this respect, PW-VAR can still be regarded 
as a reliable approximation of a GCN based on the more sophisticated S-VAR approach, with the 
sparsity and structure of the former ideally converging to that of the latter. This may explain why, 
even just for comparative purposes, several recent contributions continue to adopt this approach (Sun 
et al., 2018; Zhang and Broadstock, 2020; Larrosa et al, 2024).  

A further complication in applying VAR modelling to GCN analysis, particularly in high-dimensional 
settings, concerns the stochastic properties of the time series under consideration—most notably, their 
stationarity. VAR models require that all variables be stationary, a condition that is increasingly 
difficult to satisfy as the number of series (N) grows. Stationarity tests may yield inconclusive or 
conflicting results for individual series, depending on the specific testing procedures and specification 
used. 

When N is large, it becomes exceedingly difficult to establish a common stochastic property across 
all series—namely, that they share the same order of integration. This lack of conclusiveness poses a 
problem not only for the S-VAR approach, where a VAR(N, K) must be estimated consistently, but 
also for the PW-VAR framework. In the latter case, it is highly unlikely that none of the N×(N–1) 
estimated VAR(2, K) models would involve pairs of commodities with differing integration orders. 
One potential solution for dealing with I(1) series is cointegration analysis, leading to the specification 
of Vector Error Correction Models (VECMs). However, this approach requires that all involved series 
can be unambiguously classified as I(1), and moreover, the number of cointegrating vectors may 
increase substantially as N grows, posing additional estimation challenges.3 

As the number of time series increases, stationarity and integration testing become increasingly 
unreliable or inconclusive due to test size distortions, power loss, and cross-sectional dependencies. 
In such high-dimensional environments, it is often more pragmatic to assume a common integration 
order—either I(0) or I(1)—and proceed with modelling strategies accordingly (Stock and Watson, 
2002; Lütkepohl, 2005). It follows that when N is large, it is reasonable to abandon the idea of 
conclusively determining a common order of integration across all series. A more pragmatic approach 
is to consider both possible configurations: either all (or most) of the series are I(0), or they are 
predominantly I(1). I(0) series imply VAR models in levels, whereas I(1) series require VAR models 
in first differences of prices.  

Investigating price connectedness within GCNs using price levels versus first differences is clearly 
not equivalent. While price levels may capture both long-term and short-term interdependencies, they 
carry the risk of identifying spurious causal relationships. In contrast, first differences emphasize 

 
3 Granger causality testing among non-stationary series can also be performed within a Lag-Augmented VAR (LA-VAR) modelling 
framework (Dolado and Lütkepohl, 1996; Yamada and Toda, 1998). Some applications of this extended Granger causality testing have 
already been presented (Baum et al., 2023), also with specific reference to commodity prices (Shahzad et al., 2021; Adeosun et al., 
2023; Aharon et al., 2023; Esposti, 2024b). It remains questionable, however, whether LA-VAR modelling may be appropriate under 
high-dimensionality so this solution is not considered here but could represent an interesting extension of the approach proposed in this 
study.  
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short-term dynamics and help mitigate this risk. However, the goal here is to identify the most 
effective empirical strategy for conducting GCN analysis on a large set of commodity prices. 
Therefore, we do not seek to determine whether using price levels is preferable or more appropriate 
than using first differences—or vice versa. Rather, we aim to highlight robust findings and any 
differences that emerge from comparing the two cases. 

A further issue concerning the VAR framework underlying GCN analysis, which recent literature has 
begun to explore, is the presence of possible nonlinearities in price dynamics and, consequently, in 
their interdependence. VAR models—whether PW-VAR or S-VAR—are linear by design: each 
variable (i.e., a commodity price) is modelled as a linear function of its own past values and those of 
other commodities in the network. As a result, this framework may overlook persistent or transient 
nonlinear patterns in commodity price behaviour. 

A possible way to capture connections across prices in a more sophisticated—and specifically 
nonparametric—manner that also admits nonlinearities is the adoption of Machine Learning (ML) 
techniques (Kozian et al., 2025). Nonlinear correlation among prices can also be investigated through 
wavelet analysis (Boako et al., 2020; Nigatu and Adjemian, 2020; Kirikkaleli and Güngör, 2021; 
Mastroeni et al., 2022; Mutascu et al., 2022). As with other nonparametric techniques, wavelets are 
flexible tools for investigating nonlinearities such as cycles or structural breaks in price series. They 
can thus offer a more realistic representation of interactions among commodity prices. In particular, 
Wavelet Cross-Correlation (WCC) allows for the analysis of price interdependence at different time 
scales, which makes it possible to include or exclude long-term trends and short-term cycles. 
However, the WCC’s sensitivity to the filtering process—returning different correlation values 
depending on how the signal is decomposed—implies that the corresponding elements in the matrix 
defining the Commodity Price Network (CPN) may lack uniqueness. Moreover, WCC is still a 
pairwise method, and may therefore overlook complex indirect linkages among multiple 
commodities. Additionally, wavelet techniques may struggle to fully account for nonstationarity, 
potentially leading to spurious or misleading correlations. To address such limitations, various 
extensions of the VAR model to nonlinear or nonparametric forms have been proposed, such as 
kernel-based VAR, neural network-based VAR (NN-VAR), and Gaussian process VAR (Signoretto 
and Suykens, 2015). 

Ultimately, all solutions proposed in the recent literature to address the linearity assumption tend to 
be computationally intensive and, in practice, become infeasible in high-dimensional settings (i.e., 
when N is large). Therefore, while not suitable for the present analysis, these approaches nonetheless 
represent a promising direction for future research. Also in this respect, we prefer here to adopt a 
more pragmatic, namely feasible, approach. Though maintaining the linear structure of VAR models, 
nonlinearities may still be admitted in the behaviour of the original series via logarithmic 
transformation. Given the inherently linear structure of VAR models, applying a logarithmic 
transformation to the variables may help in capturing more complex dynamics and nonlinear 
relationships in levels, such as multiplicative or power-law dynamics. 

This strategy is widely adopted in empirical studies (Lütkepohl, 2005; Enders, 2014) and can be 
applied here to both price levels and their first differences. For instance, a log-linear model in first 
differences implies that the original price levels follow a multiplicative and path-dependent process. 
Consequently, even though the differenced model is linear, the relationship among price levels is 
nonlinear and cumulative (van Garderen, 2023). Repeating the GCN analysis on these different series 
and comparing the respective results can therefore help identify evidence that appears robust 
regardless of the underlying dynamics of the price series and their interdependence. 

3. The methodological approach 

Our approach is based on the Granger Causality Network (GCN) analysis. The core idea lies in 
representing the interdependencies among N commodity prices as a directional, unweighted 
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adjacency matrix of size N×N, which we refer to as the Commodity Price Network (CPN). 
Each element of this matrix takes a value of 0 or 1, depending on whether the commodity in the 
column Granger-causes the price response of the commodity in the corresponding row. In this 
context, connectedness means Granger causality. Thus, the matrix is constructed based on Granger 
causality tests performed within a VAR model. The matrix is unweighted, as connections are binary 
and do not capture the intensity of the relationship. It is also directional, since a causal effect from 
commodity i to commodity j does not imply a reverse effect. As such, the matrix is non-symmetric 
by construction. 

The proposed methodology thus consists of a three-stage approach. The first stage detects the 
elements of the adjacency matrix via Granger causality testing. Depending on how the VAR model 
is specified (PW-VAR or S-VAR) the first stage has two alternative versions, each with different GC 
testing procedures. In the second stage, these variants generate different and alternative possible 
CPNs. The third stage performs the Network Analysis on these alternative CPN versions by making 
use of various indicators expressing the network structure as well as the degree and nature of 
interdependence across prices and groups of prices.  

3.1. Granger causality testing 

Consider N commodities whose price is observed over T time periods (months in the present case). 
Assume that the stochastic DGP representing the i-th price movement follows an autoregressive (AR) 
process:  

(1)   𝑝௜௧ = 𝛼௜ + 𝛿௜𝑡 + ෍ 𝑏௜௞𝑝௜௧ି௞

௄

௞ୀଵ

𝜀௜௧, ∀𝑖 ∈ 𝑁; ∀𝑡, 𝑘 ∈ 𝑇; 𝐾 < 𝑇 

where 𝑝௜௧ is the i-th commodity price at time t, 𝛼௜, 𝛿௜, 𝑏௜௞ are commodity-specific unknown 
parameters to be estimated. 𝛼௜ expresses the drift while 𝛿௜ the deterministic trend coefficient. Thus, 
𝛼௜ and 𝛿௜ indicate the long-term fundamental price level or the long-term deterministic trend, 
respectively, to which the actual price is expected to revert. 𝑏௜௞ are autocorrelation coefficients. 𝜀௜௧ is 
a disturbance term assumed to be normally, independently and identically distributed, 𝜀௜௧~NID(0, 𝜎௜

ଶ). 

Under price interdependence, (1) is an incomplete representation of the underlying DGP. This latter 
has to include cross-price correlation terms as follows: 

(2)    𝑝௜,௧ = 𝛼௜ + 𝛿௜𝑡 + ෍ ෍ 𝑏௜௝௞𝑝௝,௧ି௞

ே

௝ୀଵ

+

௄

௞ୀଵ

𝜀௜௧, ∀𝑖, 𝑗 ∈ 𝑁; ∀𝑡, 𝑘 ∈ 𝑇;  𝐾 < 𝑇 

As (2) applies to all commodity prices, the actual stochastic process generating price series can be 
represented in a vector form, i.e., as a Vector AutoRegression process VAR(N,K): 

(3)             𝐩௧ = 𝐀 + 𝐃𝑡 + ෍ 𝐁௞𝐩௧ି௞

𝑲

𝒌ୀ𝟏

+ 𝛜𝑡 

where 𝐩௧ is the Nx1 vector of prices and 𝜺௧ the Nx1 vector of the i.i.d. disturbance terms at time t. 𝐀 
is the Nx1 vector of drift coefficients, 𝐃 is the Nx1 vector of deterministic trend coefficients, 𝐁௞ is 
the NxN matrix of price correlation coefficients at generic lag k. 

Provided that the series are stationary (i.e., I(0)), the VAR model in equation (3) can be consistently 
estimated in levels, as is standard practice (Enders, 2014). Alternatively, if the series are I(1), equation 
(3) can be specified in first differences. As previously noted, while preserving the linear structure of 
equation (3), it is also possible to capture potential non-linear relationships among prices by 
estimating the model in a log-linear form. In practice, equation (3) can be estimated using different 
specifications of the price vector 𝐩௧: levels of commodity prices, first differences, logarithms of price 
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levels, and the first differences of the logarithms of prices. All these alternatives will be explored in 
the present study. 

Once the model coefficients have been estimated, price 𝑝௝ is said to Granger-cause price 𝑝௜ if the past 
values of 𝑝௝ have predictive power for the current value of 𝑝௝, conditional on the past values of 𝑝௜. 
Formally, the null hypotheses of no Granger causality from 𝑝௝ to 𝑝௜ involves testing whether all lag 
coefficients 𝑏௜௝௞ are jointly equal to zero, 𝐻଴: 𝑏௜௝ଵ = 𝑏௜௝ଶ = … = 𝑏௜௝௄ = 0. Granger causality is 
assessed using a heteroskedasticity-consistent Wald test, whose test statistic asymptotically follows 
a chi-squared distribution with K degrees of freedom (Baum et al., 2023). It is worth noticing that 
GC, unlike the Pearson correlation coefficient, does not quantify the strength of the relationship 
between time series. Instead, it only indicates whether a causal link exists. Consequently, GC-based 
networks typically result in unweighted (binary) adjacency matrices.4 To populate this N×N 
adjacency matrix (see Section 3.2), we assign 𝐺𝐶௜௝ = 1 if the null hypothesis of no Granger causality 
from 𝑝௝ to 𝑝௜ is rejected at the chosen significance level. If accepted, we assign 𝐺𝐶௜௝ = 0. Since the 
network is directional, whatever the value 𝐺𝐶௜௝, it can be either 𝐺𝐶௝௜ = 0 or 𝐺𝐶௝௜ = 1. 

In practice, however, performing this battery of GC tests can be highly computationally demanding. 
First of all, in a VAR(N,K) model the number of parameters to be estimated (excluding drift and 
deterministic trend coefficients) is NxNxK (Morana, 2012). Second, a VAR(N,K) implies performing 
Nx(N-1) GC tests which entails estimating the model Nx(N-1)+1 times (1 unrestricted and Nx(N-1) 
restricted models). Third, for any equation of the model, NxK parameters must be estimated. 
Therefore, the number of available observations T must be sufficiently large to ensure identification 
and robust estimation, i.e.,  T>>NxK. In the present case, where N = 49 and K = 4 (see Section 4) the 
total number of parameters to be estimated becomes 9604. The number of GC tests to be performed 
becomes 2352 which, in turn, implies estimating the model 2353 times. For each equation of the VAR 
model, 196 parameters must be identified and estimated with a number of observations T=540.    

To address this high-dimensionality problem in VAR models, one solution consists in estimating each 
pair of Granger causality measures, 𝐺𝐶௜௝ and 𝐺𝐶௝௜, using pairwise VAR models, i.e. VAR(2, K) 
models: 

(4)            

𝑝௜௧ = 𝛼௜ + 𝛿௜𝑡 + ෍ 𝑏௜௜௞𝑝௜௧ି௞

௄

௞ୀଵ

+ ෍ 𝑏௜௝௞𝑝௝௧ି௞

௄

௞ୀଵ

+ 𝜀௜௧

𝑝௝௧ = 𝛼௝ + 𝛿௝𝑡 + ෍ 𝑏௝௝௞𝑝௝௧ି௞

௄

௞ୀଵ

+ ෍ 𝑏௝௜௞𝑝௜௧ି௞

௄

௞ୀଵ

+ 𝜀௝௧

      

It means estimating Nx(N-1)/2 models each with 2K parameters and this seems much more feasible 
given the available T observations. This PW-VAR approach estimates bivariate models for each pair 
of variables, reducing complexity. However, this approach may fail to capture the joint dynamics of 
the full system, potentially leading to omitted variable bias and spurious causal links arising from 
indirect effects. Furthermore, it is prone to generating false positives and, more generally, to 
overpopulating the adjacency matrix of the Granger Causality Network (GCN), resulting in a 
representation that lacks sufficient sparsity (see Section 3.2). 

An alternative strategy to address high dimensionality is sparse VAR (S-VAR) modelling. S-VAR 
models are a variant of VAR models in which parsimonious restrictions are imposed on the model 
structure, meaning that many coefficients (and thus potential causal relationships) are set to zero. As 
a result, the number of parameters to be estimated is reduced, leading to a sparser coefficient matrix 
(Uematsu and Yamagata, 2025). S-VAR models aim to identify only the most relevant relationships 
among variables in a multivariate dynamic system, enhancing interpretability and efficiency, 

 
4 In Zhou et al. (2022) a weighted directed GCN is established using lag correlation between prices as weight. 
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particularly when dealing with a large number of variables or long time series. Sparsity is achieved 
through variable selection techniques. In particular, during estimation, S-VAR models impose 
penalization or regularization constraints to shrink or eliminate insignificant coefficients, enabling 
full-system estimation while avoiding overfitting and preserving interpretability. One of the most 
widely used techniques, and the approach adopted in this study, is the Least Absolute Shrinkage and 
Selection Operator (LASSO) regularization. 

LASSO regularization can be described as follows. For each i-th price equation of the whole 
VAR(N,K) model, parameter estimation is performed according to a least square logic augmented by 
a penalization term. Considering generic equation (2), the following optimization problem is solved 
(Shojaie and Fox, 2021): 

(5)   min
൛௕೔ೕೖൟ

൞
1

𝑇
෍ ቌ𝑝௜,௧ − 𝛼௜ − 𝛿௜𝑡 − ෍ ෍ 𝑏௜௝௞𝑝௝,௧ି௞

ே

௝ୀଵ

௄

௞ୀଵ

ቍ

ଶ
்

௧ୀ௄ାଵ

+ ෍ ෍ห𝑏௜௝௞ห

ே

௝ୀଵ

௄

௞ୀଵ

ൢ   

where >0  is the regularization or penalization scalar parameter that applies to the sum of the absolute 
values of all the NxK estimated coefficients (196 in the present case) of the individual i-th equation. 
In the context of LASSO, this sum is used as a penalty term in order to shrink many coefficients 
exactly to zero, inducing sparsity, and to automatically select the most relevant lagged variables for 
each equation. From this LASSO estimate it is thus possible to directly deduce whether price 𝑝௝ GC 
price 𝑝௜ (therefore, whether 𝐺𝐶௜௝ = 1 or 𝐺𝐶௜௝ = 0) if 𝑏௜௝௞ ≠ 0 for at least one k.  

The lambda (λ) parameter is the key parameter in LASSO estimation, as it controls the amount of 
penalization applied to the model coefficients. A larger value of λ results in stronger penalization, 
reducing the number of variables selected in the model and inducing greater sparsity, whereas a 
smaller value leads to weaker penalization, allowing more variables to remain in the model and thus 
limiting sparsity. λ is not estimated jointly with the model coefficients ൛𝑏௜௝௞ൟ but is instead selected 
through an external procedure. Two alternative procedures are adopted in this study (see Section 3.2).  

An interesting combination of the PW-VAR and S-VAR approaches could consist of first performing 
pairwise Granger causality tests and then using the resulting p-values to inform the LASSO estimation 
of the S-VAR model. This approach would require an extension of the standard LASSO that employs 
variable-specific penalty weights, a method commonly referred to as adaptive LASSO or weighted 
LASSO (Takada and Fujisawa, 2023). Such a strategy would allow the regularization process to 
incorporate statistical evidence of predictive relevance, potentially enhancing model interpretability 
and forecasting performance. However, since the objective here is to compare alternative PW-VAR 
and S-VAR constructions of the GCN, this option is not pursued in the present analysis, although it 
may represent a promising direction for future research in this field. 

3.2. Building the Granger Causality Network  

A GCN is represented by an adjacency matrix like the following (Sun et al., 2018): 

(6)    𝐆𝐂𝐍 = ൥
𝐺𝐶ଵଵ = 0 ⋯ 𝐺𝐶ଵே

⋮ ⋱ ⋮
𝐺𝐶ேଵ ⋯ 𝐺𝐶ேே = 0

൩  

In this matrix rows represent the effects of causality while columns represent the sources of causality. 
In other words, the element in row i and column j indicates whether the price i is influenced (i.e., is 
Granger predicted) by price j, namely that a fluctuation of node j can be transmitted to node i. If such 
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a causation occurs than 𝐺𝐶௜௝ = 1; otherwise, it is 𝐺𝐶௜௝ = 0.5 An additional key insight from the 
network structure is the role of indirect linkages, which, through direct Granger causality (GC) 
connections, allow price shocks to propagate across all other commodities in the network. This 
characteristic is commonly referred to as Network Topology. Section 3.3 provides details how this 
topology can be investigated.     

Given this common methodological framework based on GCN, the objective here is to find the most 
suitable way to define the network and have the best insight into commodity price interdependence. 
Five different adjacency matrices are considered and compared. Three are associated to PW-VAR 
models, two are obtained via S-VAR estimation. GCNs based on PW-VAR modelling differ for the 
underlying GC testing logic. The first (henceforth, GCN1) populates the adjacency matrix by 
rejecting the null hypothesis of GC at a 5% confidence level. A second GCN (GCN2) adopts a more 
selective rejection criteria, namely 1% confidence level as in Larrosa et al. (2024). Nonetheless, even 
this latter criterion might not guarantee enough sparsity of the matrix. The main reason consists in 
the very large numbers of binary GC tests, Nx(N-1), to be performed to populate the matrix. When 
conducting such multiple hypothesis tests, the chance of obtaining false positives increases. To 
address this issue, the False Discovery Rate (FDR) offers a balance between discovery and reliability.  

FDR is a statistical method used to correct for multiple comparisons when performing many 
hypothesis tests simultaneously. It controls the expected proportion of "false discoveries" (incorrectly 
rejected null hypotheses) among all the rejected hypotheses. The most common procedure for 
controlling FDR is the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995), which is 
followed here. First all p-values from the multiple tests are sorted in ascending order and ranked from 
1 to Nx(N-1) (the total number of tests). For a desired FDR level α, representing the maximum 
acceptable proportion of false positives among the rejected hypotheses, a threshold value pR is 
computed for any position in the rank, R: 𝑝ோ = (𝛼𝑅) [𝑁(𝑁 − 1)]⁄ . Only null hypotheses with p-
values less than or equal to 𝑝ோ  are rejected and enter the network with value 1. A third GCN (GCN3) 
is thus generated by applying this FDR procedure with 𝛼 = 0.01 in order to get a sparser network 
after PW-VAR estimation. It thus follows that moving from GCN1 to GCN3 via GCN2 we obtain a 
decreasing density, or increasing sparsity, of the network. 

As anticipated, however, GCNs obtained via PW-VAR modelling may lead to inconsistent estimation 
of direct linkages and may miss relevant indirect linkages among prices. Inducing sparsity through a 
stricter rejection criterion does not necessarily resolve these issues. Therefore, GCN1-3 should be 
regarded as approximations of the true, but unknown underlying GCN. To better approximate this 
latent structure, the GCN is alternatively derived from S-VAR modelling using the LASSO estimation 
described in above. In this case, as well, two different CGNs are considered, depending on the 
procedure used to select the regularization parameter .      

In one case (GCN4),  is selected via cross-validation (CV), aiming to balance the trade-off between 
prediction accuracy and model sparsity. A grid of candidate λ values is considered. For each 
candidate, the model is trained on a subset of the data and validated on the remaining portion. The 
value of λ that minimizes the prediction error, measured by the mean squared error (MSE), is 
eventually selected. Alternatively, λ is selected using a conventional information criterion. Here, the 
Bayesian Information Criterion (BIC) is adopted. BIC tends to select a larger λ, as it imposes a 
stronger penalization on model complexity. Consequently, the CGN obtained using BIC (GNC5) is 
expected to be sparser than the one generated via CV (GCN4). 

The comparison across this sequence of networks, from CGN1 to CGN5, is performed using the 
different time series. Commodity price levels are considered first. Then, to account for potential non-
stationarity and non-linearity, the same sequence of networks is generated,and the comparison 

 
5 Dufour and Renault (1998) introduced an interpretation of GC distinguishing between short- and long-run causality. This concept is 
called h-step causality where one-step (h=1) causality indicates a direct effects while indirect effects are expressed by h-step (with h>1) 
causalities (see also Uematsu and Yamagata, 2025). 
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repeated,using the first differences of prices, the logarithm of price levels and the first differences 
of the logarithm of prices.   

3.3. Performing Network Analysis: the economics of connectedness  

The five GCNs are investigated and compared via the same battery of network indicators (Diebold et 
al., 2017). In order to comprehensively describe the structure and functioning of the network, these 
indicators are here divided in four different dimensions: network topology; leader nodes; clusters and 
communities; network correlation.  

3.3.1. Network topology  

Network topology refers to the physical or logical arrangement of nodes (namely, commodities) 
within the network. It defines how nodes are interconnected and how shocks and fluctuations flow 
among them. Graphical visualization often represents the easiest way to express network topology: 
nodes and arcs are plotted as a graph with alternative layout algorithms determining the respective 
positioning. Nonetheless, besides visualization, topology can be more formally investigated via 
numerical indicators expressing the general structure of the network. 

A first general indicator of the network topology concerns its density, D. Usually, density is expressed 
as the ratio of the number of connections (or arcs) in the network to the number of possible arcs. So, 
D indicates how close the network is to the maximum possible density.  

As all GCNs here considered are directed networks, this indicator can be computed as  𝐷 =
∑ ∑ ீ஼೔ೕ

ಿ
ೕసభ

ಿ
೔సభ

ே(ேିଵ)
, where 𝐺𝐶௜௝ indicates the generic element of the adjacency matrix representing the 

network. The main implication of this indicator, from a more economic perspective, is that the lower 
the D the sparser the network which eventually implies that the network shows, in relative terms, less 
direct and more indirect linkages. 

A second set of indicators that synthetically captures the incidence of direct versus indirect 
connections is based on distance analysis. Within a network, distance is usually expressed by the 
shortest path between two nodes in the network (dij). dij  expresses the number or arcs of the path that 
connects them with the fewest number of arcs. Consequently, a first distance indicator expressing the 
overall network topology is the average of the shortest paths (or average path length): 𝐴𝑃𝐿 =
∑ ∑ ௗ೔ೕ

ಿ
ೕసభ

ಿ
೔సభ

ே(ேିଵ)
 with ij. A second distance indicator is the longest shortest path: 𝐿𝑃𝐿 = max 𝑑௜௝ with ij. 

This latter indicator is also called the “diameter” of the network as it gives an indication of how "far 
apart" the more peripheral network's nodes are. 

Another aspect of network topology, also known as granularity, concerns the presence of micro-level 
structures. An easy way to investigate this aspect is the census of dyads and triads. A dyad consists 
of two nodes and the connection between them. It is the simplest relationship in a network and 
represents a direct link between two individuals or entities. A triad consists of three nodes and the 
connections among them. 6 The frequency of dyads (i.e., the proportion of mutual connections) within 
the network measures how often pairs of nodes have reciprocal ties and, therefore, it also known as 
reciprocity. This feature can also be expressed in relative terms, that is, as a ratio between the 
observed reciprocity and the expected reciprocity in a random network of the same size and density. 
The frequency of closed triads is also often used as an indicator of the tendency of the network to 
form small groups or clusters. It is called transitivity. In the context of network analysis, transitivity 

 
6 Triads can be open or closed. A closed triad is when all three nodes are connected to each other, forming a triangle. An open triad is 
when only two of the three nodes are connected to each other.   
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expresses the likelihood that the adjacent nodes of a node are connected and it is measured as the ratio 
of the number of closed triplets (or triangles) to the number of connected triplets of nodes. 

The topology of a network can also be characterized relatively by quantifying its structural differences 
with respect to reference networks of known topology (synthetic networks). This aspect will be 
explored in Section 3.3.4. 

3.3.2. Leader nodes  

Identifying key nodes, or leader nodes, within a network is crucial for understanding the network's 
structure and dynamics. To investigate this aspect, a sequence of centrality measures can be 
computed. They help to identify the most important nodes in a network based on their connections 
and positions according to different perspectives (Sun et al., 2018; Zhou et al., 2022; Marra et al., 
2024): degree centrality emphasizes local connectivity; betweenness centrality and closeness 
centrality concerns control and efficiency of shocks’ transmission within the network, respectively; 
eigenvector centrality focuses on influence based on connections. 

Degree centrality (DCi) is the simplest measure of node importance, indicating the number of direct 
connections (arcs) a node has. A node with high degree centrality has many connections and is often 
considered a key player in the network. In directed networks, DCi is distinguished in out-degree and 
in-degree centrality (ODCi and IDCi respectively). Here, ODCi measures how many prices are 
Granger caused by the i-th price, while IDCi represents how many prices Granger causes the i-th 
price. The usual interpretation, therefore, is that ODCi captures the relevance or influence of the i-th 
price within the network, that is, its transmission range. IDCi, on the contrary, captures the 
dependence of the i-th price within the network. It is also designated as price sensitivity as it measures 
how much a given price is affected by price fluctuations of other prices.  

Betweenness centrality (𝐵𝐶௜) is a measure that quantifies how often a node acts as a bridge along the 
shortest path between two other nodes. It indicates the influence a node has over the flow of 
information in the network: 𝐵𝐶௜ = ∑ ൫𝜎௝௛

௜ 𝜎௝௛ൗ ൯ே
௝ஷ௛ஷ௜ , where 𝜎௝௛ indicates the total number of shortest 

paths from generic node j to generic node h, and 𝜎௝௛
௜  the number of those paths that pass through the 

node of interest i. 𝐵𝐶௜ is used to measure the intermediation capacity and identifies transmission hubs. 
In the price transmission network, the stronger the betweenness centrality of price, the more it acts as 
the intermediary of causality among other prices. Nodes with high 𝐵𝐶௜ control information flow and 
act as bridges connecting different parts of the network. A node that has both high DCi  and high 𝐵𝐶௜ 
is likely to be a key node both in terms of local connections and network-wide influence.  

Closeness centrality (𝐶𝐶௜)  measures how close a node is to all other nodes in the network. It reflects 
the ability of a node to quickly interact with all others. It measures the average length of the shortest 
path from each node to the others: 𝐶𝐶௜ = 1 ∑ 𝑑௜௝

ே
௝ஷ௜⁄ . In the present study, 𝐶𝐶௜ represents the 

transmission speed of price fluctuations. The greater the closeness centrality of a price, the shorter 
the transmission path between that price and other prices. This means that fluctuations in that price 
can be transmitted more quickly across the network. Nodes with high closeness centrality are typically 
well-positioned—often referred to as 'influencers'—because they can efficiently disseminate shocks 
throughout the network 

Finally, eigenvector centrality (𝐸𝐶௜) measures a node’s influence based on the idea that connections 
to high-scoring nodes contribute more to a node’s relevance than equal connections to low-scoring 
ones. If a node is connected to other high-centrality nodes, it will have a higher eigenvector centrality. 
It is a sort of “second-level centrality” because it takes into account not just the number of connections 
(like degree centrality), but also the quality of those connections. For a given node i, its eigenvector 
centrality is given by the i-th element of the principal eigenvector, i.e., the eigenvector corresponding 
to the largest eigenvalue, λmax, of the following eigenvalue equation: 𝐆𝐂𝐍 ⋅ 𝒙 = 𝜆𝒙, where  𝐆𝐂𝐍 is 
the NxN adjacency matrix, 𝒙 is an Nx1 eigenvector of 𝐆𝐂𝐍 and 𝜆 is the respective eigenvalue.  
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3.3.3. Clusters and communities 

In previous sections, we illustrated indicators suitable for investigating network properties from two 
opposite perspectives: the network as a whole and individual nodes. An intermediate level worth 
considering is that of clusters or groups of nodes. In this regard, the analysis can be approached from 
two different angles.  

The first involves using indicators that detect the network’s tendency to form local clusters, that is, 
the propensity to concentrate arcs in specific areas of the network, as opposed to a homogeneous 
distribution of arcs throughout the entire structure. The key concept and corresponding indicator in 
this context is the clustering coefficient (CL), which quantifies the extent to which nodes in a network 
tend to form tightly knit groups. It provides insight into the local cohesiveness of the network. In the 
present analysis, CL is calculated as the proportion of closed triads relative to all possible triads in 
the network. The main focus of the analysis might not be on the clustering tendency of the network 
per se, but rather on its implications for systemic risk. Highly segregated clusters tend to localize the 
transmission of risk within themselves, thereby limiting the spread of shocks across the entire 
network. In other words, the presence of well-defined clusters may act as a buffer, containing 
systemic disturbances within specific segments of the network. In terms of the systemic risk 
associated to a network, it is possible to use the eigenvalue equation not just to measure individual 
node influence, but also to understand the system-wide capacity for shock transmission.7 The 
maximum eigenvalue λmax (or spectral radius) of the adjacency matrix reflects the network's capacity 
to propagate and amplify shocks. In dynamic systems, if λmax>1, a small initial shock can grow over 
time thus representing an unstable system and indicating a higher systemic risk (Acemoglu et al., 
2012). 

The second analytical perspective on the role of groups of nodes within the network concerns the 
degree to which a network can be partitioned into distinct communities, namely groups larger than 
small local clusters, characterized by dense intra-community connections and sparse inter-community 
links. This network feature is often designated as modularity. Here, this indicator is computed as the 
ratio between intra-group and inter-group density, based on either incoming or outgoing connections. 
For instance, a value of 1.5 indicates that for every connection going outside the group, there are 1.5 
connections remaining within the group. In the present study, communities of interest are represented 
by pre-determined commodity groups (see Section 4 for details). Accordingly, we do not use network 
analysis to identify emerging communities; rather, we aim to investigate whether, and how, the 
properties and performance of these ex-ante communities differ, as well as the nature of the 
connections within and between them. 

3.3.4. Network correlation  

The topology of a network can also be described in relative terms, by assessing how its structure 
differs from that of other networks. This comparison is often made with synthetic networks, namely 
networks with the same number of nodes but well-understood structural properties. In particular, five 
synthetic models are commonly considered as extremes along the structural spectrum (see also 
Section 5.3.1 and Annex 5): geodesic, lattice, ring, random, and small-world networks (Watts, 2004).  

The geodesic network exhibits high density and regularity, minimal local clustering and moderate 
global clustering due to its structured connectivity. The lattice network, typical of physical 
infrastructure, has a highly regular, grid-like structure, with nodes connected to their immediate 
neighbours in a fixed, repeating pattern. This results in high local clustering but low global clustering. 
In a ring network, each node is connected to two neighbours, forming a closed loop. This leads to 
very low clustering, as only immediate neighbours are connected, and to a lack of core structures. In 

 
7 Meng et al. (2014), for instance, propose using the sum of the eigenvalues of the GCN matrix, divided by the number of nodes (N), 
as a measure of systemic risk.  
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a random network, connections among nodes are created randomly, usually resulting in low clustering 
at both the local and global levels. A small-world network starts from a lattice or ring structure and 
then reconnects some links randomly. This produces mixed properties: most connections remain 
local, but some long-range links are introduced, enhancing overall connectivity. 

Correlation analysis can also be useful to compare the five GCNs considered in this study, as well as 
to assess the similarity between networks derived from different data transformations, such as price 
levels, first differences, and logarithmic transformations. In general, GCN1–3 are expected to be 
highly correlated, as are GCN4–5, since they are generated using the same estimation strategies (PW-
VAR and S-VAR, respectively), with the only difference being the degree of sparsity achieved. 
However, the correlation between these two groups of GCNs can provide insight into the extent to 
which the estimation strategy influences the identification of connectedness among commodity 
prices. 

Correlation between different price-based GCNs may also be informative. GCNs computed on price 
levels are expected to be highly correlated with those based on first differences, especially when long-
term linkages, which are not captured in the differenced series, are either negligible or simply mirror 
short-term dynamics. In such cases, GCNs based on first differences may appear sparser, but not 
qualitatively different from those based on levels. Similarly, if GCNs constructed from log-
transformed prices show high correlation with their linear counterparts, this would suggest that the 
assumption of linearity in price connectedness does not substantially alter the network structure. 

In any case, to measure the correlation between two networks, the Quadratic Assignment Procedure 
(QAP) is adopted (Borgatti et al., 2018). Each adjacency matrix must first be flattened into a vector 
(row-wise or column-wise). A Pearson correlation coefficient is then computed between any pairs of 
resulting vectors. This approach is analogous to standard statistical correlation, but applied to the 
structural patterns of the networks. Similarly to a standard Pearson correlation test, it is also possible 
to assess the statistical significance of the observed correlation. After computing the correlation 
between two adjacency matrices, one of the matrices is randomly permuted (typically by shuffling 
rows, columns, or arcs) multiple times. For each permutation, the correlation is recalculated. The p-
value is then estimated as the proportion of permutations in which the correlation is as extreme as, or 
more extreme than, the observed one. 

4. Price series under scrutiny  

We consider the price of 49 commodities, which are grouped into five main categories (EMAFO): 
Energy (3 commodities), Metals (12), Agriculture (13), Food (12), and Other raw materials (9). All 
price series are monthly and span the period from January 1980 (1980M1) to December 2024 
(2024M12), resulting in 540 time observations. Therefore, the dataset has dimensions N = 49 
(commodities) and T = 540 (time periods), for a total of 26460 observations.8 

All series are sourced from the International Monetary Fund (IMF) commodity price dataset. Table 
A1 (Annex 1) provides further details on the data sources, particularly regarding the specific product 
qualities represented and the markets from which the prices are collected. The IMF aims to reflect 
global price dynamics through these market prices; therefore, the selected markets are typically 
among the most important globally and are commonly used as reference prices, even by agents 
operating in more localized markets. As such, these prices can be legitimately considered as proxies 
for otherwise unavailable global market prices. Nonetheless, it is acknowledged that some commodity 
prices may exhibit a more regional character than others (e.g., agricultural commodities compared to 
energy commodities). While not all price series are based on U.S. markets, all prices are denominated 

 
8 The availability of monthly price series of natural gas starts in 1985M1. The previous period has been thus recovered by interpolating 
backward the 1980-1985 US yearly natural price series as provided Energy Information Administration (EIA).  
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in U.S. dollars. This ensures that the dataset is not affected by commodity price fluctuations driven 
by exchange rate movements (Garzón and Hierro, 2022). 

The relevance of the selected commodities is further underscored by the fact that six of them are 
included among the 34 Critical Raw Materials (CRMs), and four are listed among the 17 Strategic 
Raw Materials (SRMs), as defined by the European Union (2024). It is important to note that all 
SRMs are also CRMs, but not all CRMs qualify as SRMs. For instance, aluminium is classified as 
both a CRM and an SRM. More broadly, many of the commodities considered here are crucial for 
key industries, defence, infrastructure, and overall economic stability. Ensuring a prompt response to 
potential supply crunches, often signalled by sudden price spikes, is increasingly urgent for 
contemporary economies. 

The novelty of the present contribution lies partly in the methodology, which, while not entirely new, 
builds on recent approaches and includes a comparative assessment of alternative solutions. However, 
the main innovation stems from the high-dimensional nature of the dataset, which includes nearly 50 
individual commodities spanning diverse groups and a long period of time with relatively high-
frequency observations. Unlike Zhang and Broadstock (2020), who also consider a broad range of 
commodities but aggregate them into seven price indexes (Metal, Food, Precious, Oil, Raw, 
Beverage, Fertilizer), this study focuses on disaggregated commodity-level data, allowing for a more 
granular analysis of price dynamics across heterogeneous markets. 

The commodity grouping indicated above (EMAFO) may be somewhat arbitrary. For instance, food 
commodities are distinguished from agricultural commodities because the former require a degree of 
industrial processing starting from agricultural raw materials. While this assumption may clearly 
separate wheat from olive oil, it is not so obvious in the case of beef and coffee. Moreover, several 
other sub-groups of commodities could also be proposed. The “agriculture” group could be 
subdivided into “colonial” (Banana, Coffee, Cocoa, Tea) and “non-colonial” (Barley, Beef, Corn, 
Lamb, Pork, Poultry, Rice, Sorghum, Soybean, Wheat) products. The latter can also be further divided 
into “animal products” and “crops”. Moreover, colonial products can also be found in the 'Food' 
group, as is the case with coffee and tea. 

Colonial products are exemplary of commodities that are produced by a limited group of countries. 
They are mostly export-oriented commodities and, for this reason, they are expected to be less and 
differently connected with other (i.e., non-colonial) commodities. They may also involve another 
possible source of price interdependence that has nothing to do with some supply-chain connection 
or financial market connection. Since they mostly come from a limited number of countries, 
macroeconomic shocks in one of these economies may transmit to a whole range of apparently 
unrelated commodities, not necessarily colonial. 

Besides the geographical provenience, “agriculture” and “food” groups themselves could be crossed 
and reassembled on the basis of prevalent use, like “cereals”, “edible oils”, “feed” just to give some 
examples. The group of “other raw materials” is characterised by having neither energy nor food use, 
but could be further disarticulated depending on the use itself like, for instance, “fertilizers”, “fibres”, 
“forest or wood products”. However, the key argument here is that while any ex-ante grouping could 
be questionable, the one here proposed can simply help to better interpret the results and assess the 
advantages of the proposed approach. At the same time, results emerging from NA can provide ex-
post empirical support on whether the actual commodity prices clustering tends to be consistent with 
the adopted groups. Replications on other grouping logic can represent an interesting extension of the 
present study in future research. 

Following Esposti (2024a,b), here commodity prices are neither deflated nor adjusted for the possible 
presence of seasonality, particularly in the case of agricultural prices (Crain and Lee, 1996). The logic 
behind this choice is that we prefer to analyse the price series that economic agents really confront 
and on which they take decisions without possibly introducing artificial transformations. It remains 
true, however, that indirect effects and, more generally, complex structural dynamics only become 
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apparent after a sufficient number of periods. When adopting a monthly frequency, considering a lag 
length of 12 months (K=12) in the present case (N=49) would require estimating 564 parameters for 
each equation in the VAR model, resulting in a total of 26508 parameters for the entire system. 
Therefore, from the perspective of model parsimony, the use of monthly data calls for an appropriate 
empirical strategy that balances potential seasonal effects with the need to limit model complexity 
(see Section 3.2). 

5. Results    

The results of the analysis are presented following the sequence of steps outlined in Section 3 (see 
also Sun et al., 2018; Ahelegbey et al., 2021; Zhou et al., 2022). All tests, estimations, and calculations 
were performed using STATA version 19.5. 

5.1. Stochastic properties of the price series 

Granger causality is assessed within a multivariate representation of the commodity price 
formation process, namely a VAR model. This requires that all series share the same order of 
integration and, in particular, that they are all I(0) (stationary processes). Prior to constructing the 
GCNs, unit root testing must therefore be performed to verify this condition. Here, the standard 
Augmented Dickey-Fuller (ADF) test is adopted (Sun et al., 2018; Zhou et al., 2022) whose null 
hypothesis is that the series have a unit root, i.e. I(1) (non-stationary) processes. The test is applied 
to the 49 price series, and its specification is selected for each series using a sequential general-to-
specific approach (Enders, 2014). This consists of a stepwise testing strategy that begins with the 
most general specification (including both a trend and a drift, as in (1)) and simplifies it step by step 
by removing unnecessary deterministic components (trend and drift) based on their statistical 
significance. Moreover, for any test (i.e., commodity), the selection of the lag order is made using the 
Bayesian Information Criterion (BIC). This criterion helps to balance the trade-off between model fit 
and parsimony, both avoiding overfitting and enhancing the power of the test. 

Table A2 (Annex 2) summarizes the unit root test results. It reports only the p-values, while the full 
test outputs are available upon request. P-values greater than 0.1 are shown in bold, indicating cases 
in which we reasonably accept the null hypothesis of a unit root, that is, the series is I(1). In all other 
cases, we reject the null hypothesis and conclude that the series is I(0), possibly around a drift and/or 
a trend. In order to assess the robustness of these stationarity properties and, if necessary, identify the 
appropriate transformation to achieve stationarity, ADF tests are repeated on four different sets of 
series: price levels, first differences of prices, logarithms of price levels, and first differences of the 
logarithm of prices.  

With few exceptions, results are largely correspondent across the 49 commodities: all price series can 
be considered I(0). They behave like mean-reverting processes, possibly around a drift and/or a 
deterministic trend eventually determined by the respective long-term market fundamentals (Esposti, 
2024a). The few exceptions to this consistent I(0) evidence are found in both price levels and price 
logarithms. These involve 7 commodities (about 14% of the total set), concentrated among metals 
(Copper, Gold, Silver, Tin) and colonial agricultural products (Bananas and Cocoa beans). Beef is 
the only other case. For these commodities, the null hypothesis of a unit root should be accepted. 
These exceptions disappear when the first differences (or the logarithm of the first differences) are 
considered: all unquestionably behave as I(0) series. To assess whether, and to what extent, the 
presence of non-stationarity in a few price series may affect the network analysis, the latter will 
henceforth be conducted on both sets of series: price levels and first differences of prices. Since, as 
expected (Esposti, 2024a,b), the logarithmic transformation does not alter the evidence emerging 
from the tests, these transformed series will only be considered in Section 5.4 to assess the robustness 
of the network analysis compared to potentially non-linear relationships among commodity prices. 
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5.2. Granger causality 

As detailed in Section 3, the CPN is constructed here as a GCN, that is, based on Granger Causality 
(GC) across prices. GC testing is conducted using five alternative approaches, each corresponding to 
a different VAR modelling strategy. From pairwise VAR (PW-VAR) estimation, with GC accepted 
at the 5% confidence level, we obtain GCN1. Applying a stricter 1% confidence level yields GCN2. 
When the 1% level is further adjusted for false discovery rate (FDR), we obtain GCN3. GCN4 is 
derived from LASSO estimation of the sparse VAR (S-VAR) model, with the regularization 
parameter (λ) selected via cross-validation (CV). Finally, GCN5 is obtained by selecting λ based on 
the Bayesian Information Criterion (BIC). 

Due to the high dimensionality of the dataset and space limitations, the VAR estimates are not 
reported here but are available upon request. In the following sections, we report and discuss only the 
GCNs derived from these estimates.   

5.2.1. Pairwise VAR models 

To generate GCN1–GCN3, we separately estimate a battery of 1176 VAR(2, K) models. For each 
model, the inclusion of a drift and/or trend is determined based on the specification adopted in the 
ADF tests: if either of the two price series includes a drift and/or trend in its ADF specification, the 
same component is included in the corresponding VAR model. Regarding the lag order K, it is 
selected for each equation using the BIC, subject to the constraint that K ranges from a minimum of 
4 to a maximum of 12. 

Figures 1 and 2 display the network topology for all PW-VAR GCN variants. As expected, the GCN 
becomes progressively sparser (i.e., less dense) both when moving from GCN1 to GCN3 and when 
transitioning from networks based on price levels to those constructed from the first differences of 
prices. Eventually, among the networks obtained through PW-VAR modelling, GCN1 based on price 
levels emerges as the densest case, while GCN3 based on the first differences of prices is the sparsest. 
In all cases, the network topology reveals some core-periphery structure, with a group of central 
commodities strongly connected among themselves, and with all others and another body of 
commodities being relatively peripheral if not entirely isolated. This core-periphery structure 
becomes more evident moving from GCN1 to GCN3 and from networks based on price levels to 
cases based on the first differences of prices. 

This is made explicit in Annex 3 (see also Table 2), where the number of arcs is reported for each 
node (i.e., commodity) and for the whole network. This number reaches its maximum in GCN1 based 
on price levels, with 1049 arcs, corresponding to an average of about 21 linkages per node. 
Conversely, it is at its minimum in GCN3 based on the first differences of prices, with only 172 arcs 
and an average of 3.5 linkages per node, making it nearly seven times sparser than the former. 
Between these two extremes, we find, for instance, GCN3 based on price levels, with 496 arcs and 
an average of about 10 linkages per node, and GCN1 based on the first differences of prices, with 472 
arcs and 9.6 linkages per node, respectively. In practice, switching from networks based on price 
levels to those based on first differences reduces the number of connections, therefore the network 
density, to a similar extent as adopting a stricter significance threshold for Granger causality. 
However, while the latter mainly affects the number of connections, the former may also alter the 
nature and structure of the network itself and this aspect deserves further investigation. 

5.2.2. Sparse VAR models 

To generate GCN4 and GCN5, we estimate a single VAR(49, K) model. Due to the high 
dimensionality of the system, the specification of deterministic components (drift and trend) and the 
selection of the lag order K cannot be based on an optimizing procedure. Therefore, both a drift and 
a trend are systematically included, allowing the penalized LASSO procedure to determine their 
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relevance. The lag order is fixed at K=4, as this is the most frequently selected specification in the 
PW-VAR estimations. 

Figures 3 and 4 display the network topology for all S-VAR GCN variants. Also in this case, the 
extreme values in terms of sparsity are found with GCN4 based on price levels, with arcs 1034 and 
an average of about 21 arcs per node, and with GCN5 based on the first differences of prices, with 
201 arcs and an average of 4.1 arcs per node (Annex 3). In practice, PW-VAR modelling allows to 
obtain at least the same range for sparsity of the S-VAR approach. Nonetheless, as previously noted, 
they may lead to a network with a different nature and structure. 

To better assess whether and how the GCN variants structurally differ, beyond sparsity, Table 1 
reports the Pearson correlations of the adjacency matrices corresponding to the different network 
versions. As expected, correlations are positive across all GCNs, but not all correlations are 
statistically significant at the 5% or 10% level, indicating that some networks share structural 
similarities, while others differ substantially. On the one hand, a strong correlation emerges among 
GCN1, GCN2, and GCN3, both in terms of price levels and first differences. This confirms that 
adopting a stricter significance level increases sparsity but does not substantially alter the network 
structure. A similar pattern is observed in the GCNs obtained when switching from CV to BIC 
penalization: sparsity is affected, but the overall structure tends to be preserved. This holds for both 
price levels and first differences, although the effect appears more pronounced in the latter case. 

On the other hand, what truly affects the network structure is the underlying VAR modelling 
approach, as PW-VAR and S-VAR GCNs rarely exhibit statistically significant correlations, except 
for a weak correlation between GCN3 and GCN5 in the case of price levels. Particularly surprising 
and interesting is the significant correlation between GCN1–3 for price levels and GCN4–5 for the 
first differences of prices. Transitioning from price levels to first differences appears to substantially 
alter the network structure, as indicated by the lack of significant correlations between analogous 
GCNs across the two sets of series. Conversely, when this transformation is combined with a shift 
from PW-VAR to S-VAR modelling, the network structure seems to be substantially preserved, as 
suggested by the presence of significant, albeit mild, correlations in this case. 

5.3. Network analysis 

5.3.1. Network-wide metrics 

The indicators illustrated in Section 3 provide a summary of network characteristics and highlight 
structural differences across GCNs. Table 2 reports these network-wide metrics. A geodesic network 
is used for comparison; it is an undirected network in which points are connected by geodesics, i.e., 
the shortest paths between two points on a curved surface or within a geometric space. 

Three general aspects of the network topology deserve attention and appropriate indicators: density, 
granularity, and peripherality. Concrrning the former aspect, the density indicator confirms that 
sparsity increases when moving from GCN1 to GCN3, from GCN4 to GCN5, and from price levels 
to first differences of prices. In any case, the densest variant (GCN1 with price levels) is still less than 
half as dense as the geodesic network. Table 2 also reports three conventional distance-based metrics 
that reflect the overall connectivity level of the network.  

The “Paths (Largest Component)” refers to the total number of unique shortest paths that exist 
between all pairs of nodes. “Diameter (Largest Component)” expresses the length (in number of arcs) 
of the longest shortest path between any two nodes in the largest component. It indicates the 
maximum distance between the most distant nodes, providing a measure of the network's "size" in 
terms of connectivity. “Average Shortest Path (Largest Component)” is the average length of the 
shortest paths between all pairs of nodes in the largest component. It reflects how efficiently 
information or influence can travel across the network. In the present study, only for GCN2-5 with 
first differences of prices, the largest component of the path is lower to 2352 since these cases are the 
only ones that present isolated nodes (see also Table A5 in Annex 4). The diameter and the average 
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shortest path, as expected, increase with the increase of sparsity. Therefore, it passes from 3 of GCN1 
to 5 of GNC3 for both price levels and first differences, and from 2 of GCN4 to 3 of GNC5 and from 
3 of GCN4 to 4 of GNC5 for levels and first differences, respectively. A similar gradient is observed 
in the average shortest path, which ranges from a minimum of 1.32 in GCN4 (based on price levels) 
to a maximum of 2.33 in GCN3 (based on first-differenced prices). 

However, as discussed in Section 3, density alone does not offer sufficient insight into network 
granularity, that is, how connectivity is unevenly distributed depending on the presence of local 
structures or clusters. A network exhibits high granularity whenever it has several tightly connected 
subgroups and a heterogeneous distribution of link densities. Reciprocity and transitivity are helpful 
concepts in this respect and can be expressed with appropriate indicators. In practice, reciprocity is 
measured as the proportion of mutual connections (dyads) relative to all directed ties. In the present 
case, reciprocity varies between a maximum of 0.371 (GCN1 obtained with price levels) and a 
minimum of 0.061 (GCN5 obtained with the first differences of prices), values that are much lower 
than the hypothetical reciprocity within a geodesic network whose value is 1. Eventually, reciprocity 
behaves very much like density and like the number of arcs, with the value of indicator declining 
from GCN1 to GCN3 and from GCN4 to GCN5, as well as passing from GCNs obtained with price 
levels to analogous networks obtained for first differences.  

Reciprocity is just one of several dyadic properties and a deeper investigation of these latter may be 
informative on network granularity (Table 3). A dyad consists of two nodes and the connection 
between them. It is the simplest relationship in a network and represents a direct link between two 
individuals or entities. While in a geodesic network only mutual dyads are observed, so no form of 
granularity occurs, in none of the present GCNs this configuration is prevalent even though it is 
evidently associated with density and its presence declines moving from GCN1 to GCN3 and from 
GCN4 to GCN5, as well as moving from networks obtained with price level to those obtained with 
the first differences of prices.. In all GCNs obtained with the first differences of prices, the null 
configuration is prevalent. Only in denser networks obtained with price levels (GCN1 and GCN2) 
the prevailing configuration is the asymmetric dyad, that is, a pair of nodes connected by a one-way 
relationship, where the tie goes from one node to the other but not vice versa. 

Granularity may be investigated further via another indicator, transitivity. Formally, transitivity is 
measured as the ratio of closed triads (or triangles) to all possible triads in the network. It gives an 
indication of the degree to which nodes in a network tend to form local clusters: a high transitivity 
indicates a network showing tightly-knit clusters. The geodesic network has value 1 also for 
transitivity. The GCNs here considered show a gradient which is less regular and not fully 
correspondent with that observed for density and reciprocity. It seems that transitivity increases with 
sparsity since it increases from GCN1 to GCN5 but also declines when passing from networks 
obtained with levels to networks obtained with first differences. Eventually, the largest transitivity is 
found for GCN5 with price levels while the lowest is for GCN5 with the first differences of prices. 
The main implication of this evidence is that the adoption of different VAR modelling strategies, as 
well as of different data transformations, has an impact not only on the network sparsity but also, and 
more importantly, on its internal structure (granularity).  

As for reciprocity, transitivity is just one of several triadic properties. The triad census classifies all 
possible configurations of triads in a directed network. There are 16 possible configurations and they 
are detailed in Table 4. It emerges that, while in the geodesic network only one triadic configuration 
occurs (that designated with 300, a triangle with all three arcs bidirectional) as an expression of 
homogenous density, all GCNs show a more articulated set of triadic configurations. In general terms, 
for GCN obtained with price levels, the prevalent configuration is that designated with 012 indicating 
one arc between two nodes, while the third node is isolated. The rarest is that indicated either by 030C 
(a triangle with one directed arc missing, but with an additional directed arc forming a "T") or the 
abovementioned 300. In the case of GCN based on the first differences of prices, the prevalent 
configuration is that of either no triads (003: no arcs between the three nodes), if the exclude the case 
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of GCN1 behaving like networks obtained with price levels. To further confirm the structural 
difference compared to a geodesic network, in all cases the less frequent configuration is 300. 

A final synthetic indicator of network-level granularity is the overall clustering coefficient of a 
network (see Section 3.3.3). At the node level, this coefficient measures the tendency of nodes to 
form triads (Section 5.3.2). At the network level, the clustering coefficient expresses the average 
node-level clustering value reported at the bottom of Table 7. It thus indicates how much the nodes 
in a network tend to cluster together, forming local clusters. Results obtained indicate that the average 
clustering coefficient follows the same gradient observed for density: it decreases from GCN1 to 
GCN3 and from GCN4 to GCN5 for both levels and first differences of prices, but it also decreases 
passing from a GCN with levels to the analogous network with first differences of prices. This 
correspondence between density and the clustering coefficient of the network is confirmed by the fact 
that the geodesic network takes a value of 1, which is the theoretical maximum and it is about double 
the maximum value observed for a GCN (0.584), more or less the same ratio observed for density 
(Table 2).  

Positioned conceptually between granularity and peripherality, Table 2 presents the network-level 
centralization indicators (see Sections 3.3.2 and 5.3.2). They measure how much a network is 
organized around its most central nodes, reflecting the overall inequality in node centrality across the 
network. High values of betweenness centrality indicate that a few nodes act as key bridges in the 
network. In a geodesic network, betweenness centralization is 0, because all nodes are equally central. 
In the present case, betweenness centralization appears to follow the opposite trend of density for 
levels, while for the first differences of prices, GCN2 shows a higher value than GCN3. However, 
for both levels and first differences, GCN5 is the network version with the highest value (about 0.1), 
indicating a mild tendency to form a core-periphery structure compared to the geodesic network. 

Indegree centralization measures the extent to which incoming connections are concentrated on a few 
nodes. In a geodesic network it takes the value 0, since every node receives the same number of 
incoming links. Here, indegree centralization replicates the gradient of the density indicator with its 
value increasing going from GCN3 to GCN1 and from GCN5 to GCN4 in both levels and first 
differences of prices. The highest value (0.417) is found for GNC1 for price levels. A more mixed 
relationship with the density, or sparsity, of the network is observed for outdegree centralization that 
measures the extent to which outgoing connections are concentrated on a few nodes. Also in this case, 
in a geodesic network it takes the value 0 (all nodes have the same number of outgoing links). Here, 
in the case of levels, the indicator increases passing from GCN1 to GCN3 but also passing from 
GCN5 to GCN4, the latter being the largest observed value (0.508). In the case of the first differences 
of prices, the gradient returns to what was observed for the indegree centralization, with and higher 
value passing from GNC3 to GCN1 and from GCN5 to GCN4. Also in this case, the highest value 
(0.359) is found for GCN4.      

The investigation of peripherality within a network is usually performed by looking at the number 
and frequency of global and local bridges. The latter indicator also serves as a conceptual shift from 
network-level to node-level analysis (see next section). A bridge is a link between two nodes that, if 
removed, prevents one from reaching the other. It is therefore essential for maintaining connectivity 
between them. A link is considered a local bridge if its endpoints share no common neighbours. In 
contrast, a global bridge is a link whose removal splits the network into two disconnected parts. 
Global bridges are crucial for preserving the overall connectivity of the network.9 

Table 5 presents the global and local bridges across GCN variants, along with the nodes involved 
(isolated nodes are reported in detail in Table A5, Annex 4). Geodesic network does not present either 
local or global bridges as all nodes are connected to all other nodes. Since this indicator expresses the 
tendency of a node to be isolated or peripheral, the number of global bridges tends to increase passing 
from GCN1 to GCN3 for both levels and first differences of prices. The same occurs passing from 

 
9 Local bridges are always more numerous than global ones since only a few local bridges are also global.   
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GCN4 to GCN5 and, for all GCNs, from networks obtained with price levels to networks obtained 
with the first differences. However, it is not necessarily true that networks obtained with PW-VAR 
modelling present less peripherality than those obtained with S-VAR modelling: for both price levels 
and first differences the GCN showing the largest number of global bridges, therefore the largest 
tendency to peripherality of groups of nodes, is GCN3. In this latter case, the frequency of global 
bridges, indicating how often the global bridging condition is met across all node pairs, is 20% and 
33% for the network obtained with levels and first differences, respectively. Nodes more often 
affected by this peripherality tendency are also reported in Table 5 and mostly, though not 
exclusively, concern the group of other raw materials, while the group that seems less involved is 
clearly that of metals.       

It is finally worthwhile to explore potential similarities between these GCNs and synthetic networks, 
i.e., networks with known properties and structures. These networks are usually very regular and 
well-organized, resulting in a structure with highly homogeneous density (or sparsity).10 This 
comparison thus allows for the analysis and comparison of the fundamental structural properties of a 
real-world network. Since each synthetic model has specific topological characteristics, it provides 
an interesting baseline to assess whether, and to what extent, the observed GCNs result from non-
random mechanisms or specific system dynamics. In particular, real-world networks are characterized 
by emerging patterns resulting from self-organization within the network, patterns that are typically 
lacking in synthetic networks. 

In order to assess the similarity between our GCNs and the synthetic cases, Table 6 reports the 
respective pairwise Pearson correlations. The results provide clear and concordant evidence. Despite 
the previously mentioned quantitative and qualitative (i.e., structural) differences among the ten GCN 
variants resulting from different VAR models and data series, all GCNs show very low correlation 
(always below 0.05 in absolute value) with all synthetic networks, with the sole exception of the 
geodesic model. In this latter case, by contrast, all GCNs exhibit a similar, statistically significant 
(except for GCN3 based on the first differences of prices), and negative correlation. This correlation 
is particularly strong for all GCNs derived from price levels. 

Ultimately, no synthetic network provides even a mild approximation of our commodity price 
networks. The emergent properties of the latter cannot be synthetically reproduced through a 
mechanical generation of connections among nodes. The case of the geodesic model actually suggests 
that, while its synthetic structure offers some insight into the structure of the GCNs, it does so by 
highlighting what GCNs are not: they do not exhibit the highly dense and organized structure typical 
of the geodesic model. In fact, it is in the denser GCNs that the negative correlation with the geodesic 
model is strongest, indicating that this density does not result from a mechanical repetition of links 
among all nodes, but rather from the spontaneous emergence of both local and global clusters. 

5.3.2. Node-level metrics 

The objective of this section is investigating which are the more relevant, critical or central nodes, 
namely commodities. This can be achieved firstly and easily by counting the connections of a single 
node. Then, by adopting more sophisticated indicators (see Section 3.3.2). Figures 5-8 report the 
number of arcs per node in the various GCN variants. They present the same data as Tables A3 and 
A4 (Annex 3), but grouped by commodity type and arranged in descending order. Moreover, in 
addition to incoming and outgoing arcs, the figures also report the node-by-node balance. Due to 
space constraints, we only present the sparsest networks, namely, GCN3 and GCN5 for both levels 
and first differences. These are arguably the cases that exhibit the most robust connections. All other 

 
10 Figure A1 (Annex 5) displays the topology of these synthetic networks generated with 49 nodes (i.e., the commodity prices under 
consideration).   
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networks (GCN1, GCN2, and GCN4) are available upon request and provide largely consistent 
evidence. 

It emerges that the node-level metrics significantly differ across the GCNs and this further 
demonstrates that adopting alternative VAR modelling and datasets does not only imply a quantitative 
difference within the network, namely density, but also a qualitative difference, namely the role of 
single nodes and groups of nodes. This may explained by the fact that looking for more sparsity also 
brings about a selection of the most relevant linkages within the network. It is also worth noting that 
a node, or a group of nodes, can emerge either through its capacity to generate a shock (outgoing 
causality) or through its propensity to be affected by one (incoming causality). Core nodes typically 
exhibit high values in both dimensions, as transmitting a shock within a network requires the ability 
to both receive and propagate the signal. However, the balance between outgoing and incoming 
connections reveals the extent to which a node can be considered a net generator of shocks within the 
network, rather than merely a transmitter. 

Besides the abovementioned differences emerging across the GCNs, some regularities are worth 
noting. Regarding the five groups of commodities, one somewhat unexpected result is that energy 
commodities are not particularly critical within the network. They appear to act more as transmitters 
than as sources of shocks, as indicated by the balance between outgoing and incoming connections, 
which is predominantly negative and, in any case, lower than that of most other groups. Conversely, 
the group of metals emerges more as a source rather than a transmitter of price shocks within the 
network. In most GCNs, their balance is not only largely positive but also typically the highest among 
all groups. For the other three groups, the picture is more mixed. They appear to be, at least for several 
of their respective commodities, more peripheral to the core of the network, with lower average values 
for both outgoing and incoming connections, and a balance that tends to be closer to zero compared 
to energy commodities and metals. 

The behaviour of commodity groups, however, does not rule out the possibility that core and critical 
nodes may emerge within each of them. When core or leader nodes are identified not only based on 
the number of outgoing and incoming connections but also on their positive balance, some robust 
evidence emerges across the different GCNs. Among energy commodities, natural gas appears to act 
as a leader node more consistently than oil and coal. Copper, gold, iron, and tin seem to be the key 
commodities among metals, while cereals, particularly wheat, rice, and corn, emerge as critical nodes 
among agricultural commodities. Edible vegetable oils, especially palm and sunflower oils, also stand 
out as leader nodes among food products. Finally, within the group of other raw materials, fertilizers, 
notably potassium and diammonium phosphate, appear to behave as more central nodes. 

As discussed in Section 3, however, the centrality of commodities within the network cannot be fully 
captured by simply counting and categorizing local connections. In a network, a node’s importance 
is not determined solely by its immediate neighbors, that is, the nodes directly connected to it, but 
also by its position within the entire structure. Specifically, a node’s ability to connect, directly or 
indirectly, to all other nodes enhances its potential to propagate and even amplify shocks throughout 
the system. To investigate this more comprehensively, global centrality measures can be employed. 
In this context as well, the main objective remains to identify results that appear robust across 
different network configurations. 

Table 7 reports the node-level clustering coefficient that expresses the capacity of a node to a act an 
aggregator. A high clustering coefficient means the node’s neighbours are well connected (forming 
tight-knit communities). A low clustering coefficient suggests the node’s neighbours are not well 
connected. Slightly higher values tend to concentrate in the groups of metals and energy commodities. 
However, particularly when moving towards less dense GCNs, nodes with high values are found 
across al groups. The highest value usually concerns metals, when price levels are concerned, while 
in the case of the first differences of prices the highest values are found also for commodities 
belonging to agricultural and food products or to other raw materials. The lowest values are most 
frequently found in this latter category.   
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But the influence of a single node within the network can be better expressed by degree centrality 
indicators (Tables 8-10). As discussed in section 3.3.2, different indicators can be computed at the 
node level: the betweenness, the closeness, the farness and the eigenvector centrality. They provide 
more or less complementary and largely concordant evidence. A higher betweenness centrality score 
(Table 8) indicates that the node plays a more crucial role in connecting different parts of the network. 
It is confirmed that the group of metals tends to show higher betweenness centrality but, also in this 
case, commodities with the highest values can be found in all groups. In particular, when passing 
from GCNs based on price levels to those based on the first differences, these highest values tend to 
shift from metals and energy commodities to the other groups, including other raw materials. In this 
latter group, though not exclusively, we also find the commodities with the lowest value of this 
centrality indicator. 

Higher closeness centrality (Table 9) indicates that a node is more central, meaning it can reach other 
nodes more quickly. It clearly emerges here how passing from GCNs based on price levels to those 
based on the first differences of prices may substantially modify the evidence about centrality. In the 
former case, it is confirmed that metals show the highest values. In the latter case, however, this 
leadership is contested by the group of other raw materials in which, nodes with high centrality are 
found usually among the group of fertilizers or wood products. Farness centrality (Table A6, Annex 
4) is a similar indicator to closeness centrality (it is essentially the inverse): nodes with higher farness 
centrality are less central, meaning they are farther away from other nodes in the network. This 
indicator provides evidence that largely corresponds to what has been illustrated for the closeness 
centrality.  

Eigenvector centrality is a more sophisticated concept and measure, as it evaluates the importance of 
a node within the network not only based on its direct connections, but also by considering the 
importance of the nodes it is connected to. A node with a high eigenvector score is therefore linked 
to influential and well-connected nodes, whereas a lower score indicates connections to less important 
commodities. Since eigenvector centrality is only defined for connected networks, i.e., those without 
isolated nodes, this indicator is available and reported for all GCNs based on price levels, and only 
for GCN1 when based on first differences in prices. Table 10 clearly shows that, on average, minerals, 
and to a lesser extent, energy commodities, are more central than commodities in other groups, which 
tend to exhibit similar average performance. However, highly central individual commodities can be 
found across all groups, notably copper among metals, rice among agricultural products, sunflower 
and palm oils among food commodities, and fertilizers, particularly potassium and diammonium 
phosphate, among other raw materials. 

As mentioned in Section 3.3.3, the eigenvalue equation associated with any GCN can be interpreted 
not only at the node level, but also at the network level. Specifically, the maximum eigenvalue, λₘₐₓ, 
of the adjacency matrix reflects the overall network’s capacity to propagate and amplify shocks. This 
value is reported in the last column of Table 2 for all GCNs under consideration. Interestingly, if we 
exclude the cases in which the presence of isolated nodes causes λₘₐₓ to equal 1 (namely, GCN2–4 
based on the first difference of prices), the networks with the highest eigenvalues are not necessarily 
the densest ones. On the contrary, λₘₐₓ increases from GCN1 to GCN3 and from GCN4 to GCN5, 
both in the case of price levels and for networks based on first differences. Notably, the networks 
with the highest λₘₐₓ tend to be the sparsest ones. In any case, λₘₐₓ is always well below 1, thus 
signalling substantial network stability and a tendency to attenuate rather than amplify signals 
throughout the network. The reference to the geodesic network is particularly interesting in this 
context, as λₘₐₓ takes a value very close to the theoretical maximum of 4. 

Eventually, a diffuse form of leadership emerges within the network, with critical nodes found across 
different commodity groups. Commodities that are central within their respective groups become 
critical in spreading shocks throughout the entire network via indirect connections. 
The relevance of both within-group and between-group connections, however, deserves further 
investigation. 
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5.3.3. Community structure 

Interacting nodes may give rise to a third layer of network characteristics beyond network-level and 
node-level properties. In this section, we aim to explore this additional layer represented by groups 
larger than small local clusters, also known as communities. In addition to density, granularity, and 
peripherality, the presence of communities of relatively homogeneous commodities contributes to a 
more complete understanding of the structure of the GCNs under analysis. Here we consider as 
potential communities not those possibly surfacing spontaneously from node interaction but the 
predetermined five groups of commodities illustrated in Section 4. Specifically, one key insight we 
are interested in is whether, and to what extent, interdependence is stronger within the five groups 
than between them.  

Table 11 examines this community structure across the GCN variants, using two indicators. The first 
is the proportion of within-group connections relative to the total number of connections for each 
group. However, this indicator may be biased by the fact that some groups contain fewer commodities 
(only three in the case of the energy group, thirteen in the case of agricultural products), which affects 
the proportion. To mitigate this effect, we also use modularity, as defined in Section 3. In practice, 
this metric captures the ratio between intra-group and inter-group density of connections, based on 
either incoming or outgoing links. 

The combination of these two indicators reveals substantial differences between GCNs based on price 
levels and those based on first differences of prices. In the former case, certain regularities emerge: 
metals tend to form a strong community in terms of incoming connections, while it is significantly 
weaker for outgoing linkages. The opposite pattern is observed for energy commodities, where 
community linkages are relatively strong for outgoing connections and weaker for incoming ones. 
For food commodities, community linkages are weak in both directions, whereas the evidence is more 
mixed and, in any case, the community structure is weaker for agricultural products and other raw 
materials. This suggests that metals play a key role in the network, as they tend to amplify incoming 
shocks within their group and subsequently transmit them to the rest of the network. In contrast, 
energy commodities appear to exhibit the opposite behaviour. 

When GCNs based on the first differences of prices are considered, the results show notable 
deviations from the previous picture. The modularity of metals weakens, while it increases, both for 
incoming and outgoing linkages, in the case of energy commodities, which emerge as the strongest 
nucleolus within the network. For other raw materials, within-group connections become 
significantly more relevant, at least when the sparser networks (GCN4 and GCN5) are taken into 
account. 

5.4. Robustness check: comparison with transformed series  

A final assessment that may help to evaluate the robustness of results obtained concerns repeating the 
analysis using the logarithmic transformation of the series (i.e., the logarithm of price levels and their 
first differences). As discussed in Section 2, a major challenge in studying commodity price 
interdependence is the presence, often temporary, of non-linear dynamics and linkages. Failing to 
account for these nonlinearities may lead to an inappropriate or incomplete reconstruction of the 
interdependence network. Since logarithmic transformations can capture certain nonlinear patterns, 
it is worth assessing whether using these transformed series leads to substantially different network 
structures. Table 12 presents descriptive evidence for selected GCNs based on the logarithm of prices 
(hereafter referred to as transformed GCNs). Due to space limitations, only the sparse networks 
(GCN3 and GCN5) are considered, as these are more likely to reveal structural diversity. For the 
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same reason, networks based on the first differences of the logarithm of prices are not reported. In 
any case, they lead to largely consistent conclusions.11  

A positive correlation emerges between the transformed GCNs and all other GCNs considered thus 
far. As expected, however, the correlation is stronger and statistically significant only when the same 
underlying VAR model and the same data series (namely, price levels) are used. Specifically, a high 
positive correlation is observed between the transformed GCN3 and the untransformed GCN1, 
GCN2, and GCN3, as well as between the transformed GCN5 and the untransformed GCN4 and 
GCN5. By contrast, no significant correlation is found between the two transformed GCNs and any 
of the untransformed GCNs based on the first differences of prices, confirming that first differencing 
alters the network properties more substantially than the logarithmic transformation. 

The lower part of Table 12 also presents some network-level metrics for the two transformed GCNs. 
When compared to their untransformed counterparts (GCN3 and GCN5), these networks exhibit 
broadly similar properties. Nonetheless, particularly in the case of GCN3, the transformed network 
appears slightly less dense and more granular, with a modest increase in the peripherality of some 
nodes. The motivations and implications of these slight differences, potentially associated with the 
logarithmic transformation and, by extension, with the presence of nonlinear dynamics, may therefore 
warrant further investigation in future research. 

6. Concluding remarks and policy implications 

This study investigates the interdependence within and among different groups of commodity prices. 
A substantial body of literature exists on this topic, with many recent contributions emphasizing the 
high complexity of such interdependence, partly due to the large number of diverse commodities 
involved. Properly investigating this interdependence, while accounting for this diversity, presents a 
major dimensionality challenge. To address this issue, the present study proposes a methodological 
solution based on the concept of Granger causality and subsequent network analysis. We therefore 
introduce a three-stage approach capable of generating several variants of the commodity price 
network. 

Applying this approach to a set of 49 commodities observed over 540 months (from 1980 to 2024) 
allows us to assess its ability to reveal the main structural features of complex price interdependence. 
At the same time, it helps to evaluate whether, and to what extent, these features are robust across the 
different network variants that the approach can generate. In this respect, the results indicate that 
alternative VAR modelling and, above all, the use of first-differenced series instead of price levels 
can significantly alter the network’s structure and properties. This suggests some role for real long-
term linkages, arguably driven by broad and shared macroeconomic conditions, which are typically 
disregarded when first differencing is applied. It also points to a significant discrepancy between 
short-term and long-term connections, which may be difficult to detect when using lower-frequency 
data. 

Nonetheless, some robust evidence appears to emerge. Price interdependence is widespread across 
the entire network, extending well beyond groups of homogeneous commodities (the abovementioned 
EMAFO groups). Within each of these groups, certain leader nodes seem to emerge, acting as both 
generators and propagators of shocks, both within their own group and across different groups. 
However, some nodes and groups appear to be more central to the overall network structure, with 
metals, more than energy commodities, standing out in this regard. 

Beyond the interpretation of the results, on which further investigation is clearly needed, the proposed 
approach and its empirical application point to some potential methodological improvements. In 
particular, this study highlights two possible enhancements across both stages of the analysis. In the 
first stage, alternative modelling approaches to the VAR framework adopted here, such as wavelet 

 
11 These further GCN variants are available upon request.    
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analysis or machine learning techniques, may help refine the identification of connections across 
nodes, especially under nonlinear multivariate dynamics. The second stage could benefit from a more 
refined definition and analysis of the network, particularly by leveraging the different timing of price 
interdependence as captured by Granger causality. This could lead to the construction of a weighted 
and/or dynamic network. Both solutions may significantly enhance the resulting network analysis, 
although they would also introduce substantial computational complexity. 

Besides the main methodological focus of the study, some policy considerations can also be drawn 
from the approach and results presented. The strategic relevance of certain commodities, combined 
with their increasing interdependence and the resulting rise in market instability, makes it urgent for 
policy decision-makers to be equipped with real-time surveillance or early-warning tools. These tools 
should be capable of identifying those prices whose movements may have a major systemic impact, 
potentially triggering widespread systemic risks. The approach proposed in this study, along with its 
possible future enhancements, may help to identify and continuously update the set of prices that 
behave like 'canaries in a coal mine,' signalling the onset of generalized commodity price shocks and, 
consequently, major inflationary pressures. This type of critical information could support early, 
targeted policy interventions in the most vulnerable markets, aimed at stabilizing them promptly and 
thereby preventing or mitigating the amplification of shocks across the entire network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



29 
 

Table 1 – Pairwise Pearson correlations across GCN variants. 

 
GCN1  

(price levels) 
GCN2  

(price levels) 
GCN3  

(price levels) 
GCN4  

(price levels) 
GCN5  

(price levels) 

GCN1 (price levels) 1     

GCN2 (price levels) 0.764** 1    

GCN3 (price levels) 0.576** 0.754** 1   

GCN4 (price levels) 0.107 0.119 0.121 1  

GCN5 (price levels) 0.207 0.228 0.245* 0.417** 1 

 
GCN1  

(price first differences) 
GCN2  

(price first differences) 
GCN3  

(price first differences) 
GCN4  

(price first differences) 
GCN5  

(price first differences) 

GCN1 (price first differences) 1     

GCN2 (price first differences) 0.691** 1    

GCN3 (price first differences) 0.561** 0.813** 1   

GCN4 (price first differences) 0.086 0.094 0.098 1  

GCN5 (price first differences) 0.075 0.077 0.079 0.687** 1 

 
GCN1  

(price levels) 
GCN2  

(price levels) 
GCN3  

(price levels) 
GCN4  

(price levels) 
GCN5  

(price levels) 

GCN1 (price first differences) 0.191     

GCN2 (price first differences) 0.177 0.173    

GCN3 (price first differences) 0.191 0.196 0.203   

GCN4 (price first differences) 0.314** 0.327** 0.332** 0.182  

GCN5 (price first differences) 0.288** 0.298** 0.306** 0.157 0.171 

 *,** Statistically significant at 10% and 5% confidence level, respectively. 
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Table 2 – Network-wide metrics across GCN variants compared to the corresponding geodesic network. 

 Arcs Density 
Paths 

(largest 
component) 

Diameter 
(largest 

component) 

Average 
shortest path 

(largest 
component) 

Reciprocity Transitivity 
Betweenness 
centralization 

Indegree 
centralization 

Outdegree 
centralization λmax 

GCN1 (price levels) 1049 0.446 2352 3 1.350 0.371 0.789 0.033 0.417 0.310 0.524 

GCN2 (price levels) 752 0.320 2352 3 1.528 0.290 0.764 0.051 0.397 0.354 0.616 

GCN3 (price levels) 496 0.211 2352 5 1.837 0.195 0.924 0.055 0.359 0.380 0.707 

GCN4 (price levels) 1033 0.439 2352 2 1.325 0.301 0.927 0.029 0.253 0.508 0.425 

GCN5 (price levels) 355 0.151 2352 3 1.741 0.077 0.955 0.096 0.164 0.376 0.574 

GCN1 (price first differences) 472 0.201 2352 3 1.719 0.192 0.504 0.059 0.391 0.220 0.513 

GCN2 (price first differences) 251 0.107 2162 4 2.053 0.106 0.464 0.096 0.380 0.125 0.539 

GCN3 (price first differences) 172 0.073 1980 5 2.327 0.096 0.612 0.088 0.223 0.117 0.745 

GCN4 (price first differences) 349 0.148 2256 3 1.757 0.104 0.573 0.060 0.231 0.359 0.498 

GCN5 (price first differences) 201 0.085 2162 4 2.077 0.061 0.433 0.116 0.168 0.274 0.749 

Geodesic (undirected net) 1176 1 1176 1 1 1 1 0 0 0 3.992 
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Table 3 - Dyadic configurations across GCN variants. 

 Mutual Asymmetric Null Total 
GCN1 (price levels) 284 (24%) 481 (41%) 411 (35%) 1176 

GCN2 (price levels) 169 (14%) 414 (35%) 593 (51%) 1176 

GCN3 (price levels) 81 (7%) 334 (28%) 761 (65%) 1176 

GCN4 (price levels) 239 (20%) 555 (47%) 382 (33%) 1176 

GCN5 (price levels) 24 (2%) 307 (26%) 845 (72%) 1176 

GCN1 (price first differences) 76 (7%) 320 (27%) 780 (66%) 1176 

GCN2 (price first differences) 24 (2%) 203 (17%) 949 (81%) 1176 

GCN3 (price first differences) 15 (1%) 142 (12%) 1019 (87%)  1176 

GCN4 (price first differences) 33 (3%) 283 (24%) 860 (73%) 1176 

GCN5 (price first differences) 11 (1%) 178 (15%) 987 (84%) 1176 

Geodesic (undirected net) 1176 0 0 1176 
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Table 4 – Triadic configurations across GCN variants. 

 003 012 021D 021U 021C 030T 030C 102 120D 120U 120C 111D 111D 201 210 300 Total 

GCN1 (price levels) 6.6% 17.6% 3.7% 5.4% 5.9% 7.1% 0.7% 9.3% 4.6% 4.8% 4.7% 7.9% 6.1% 2.2% 9.5% 3.9% 100% (18424) 

GCN2 (price levels) 16.4% 28.1% 3.9% 5.0% 6.0% 5.5% 0.5% 10.0% 2.3% 3.0% 2.6% 5.1% 4.3% 1.3% 4.5% 1.4% 100% (18424) 

GCN3 (price levels) 31.9% 33.4% 3.9% 4.6% 3.7% 4.4% 0.1% 7.4% 0.9% 2.0% 1.3% 1.9% 2.4% 0.5% 1.6% 0.3% 100% (18424) 

GCN4 (price levels) 5.3% 16.5% 8.3% 4.9% 7.2% 9.9% 0.9% 5.1% 3.2% 6.1% 5.4% 5.2% 9.5% 3.0% 7.6% 1.7% 100% (18424) 

GCN5 (price levels) 38.3% 38.8% 5.7% 4.0% 5.1% 2.0% 0.1% 3.0% 0.1% 0.3% 0.2% 0.7% 1.6% 0.1% 0.0% 0.0% 100% (18424) 

GCN1 (price first differences) 31.4% 34.8% 3.3% 4.7% 5.6% 2.1% 0.4% 7.2% 0.7% 0.6% 1.1% 3.7% 2.6% 0.9% 0.7% 0.1% 100% (18424) 

GCN2 (price first differences) 55.4% 29.9% 1.6% 3.4% 2.7% 1.0% 0.1% 3.2% 0.2% 0.1% 0.2% 1.4% 0.6% 0.1% 0.1% 0.0% 100% (18424) 

GCN3 (price first differences) 66.8% 24.6% 1.0% 1.6% 1.9% 0.3% 0.1% 2.4% 0.1% 0.1% 0.1% 0.7% 0.3% 0.0% 0.0% 0.0% 100% (18424) 

GCN4 (price first differences) 41.5% 35.6% 5.9% 3.2% 3.6% 2.0% 0.1% 4.0% 0.3% 0.3% 0.3% 1.1% 1.7% 0.2% 0.2% 0.0% 100% (18424) 

GCN5 (price first differences) 60.7% 29.6% 2.8% 1.6% 1.9% 0.6% 0.1% 1.7% 0.1% 0.1% 0.1% 0.3% 0.5% 0.0% 0.0% 0.0% 100% (18424) 

Geodesic (undirected net) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100% 100% (18424) 

LEGEND - 003: No arcs between the three nodes; 012: One arc between two nodes, the third node is isolated; 021D: Two directed arcs originating from the same node towards two distinct nodes; 021U: 
Two directed arcs arriving at the same node from two distinct nodes; 021C: A chain of two consecutive directed arcs; 030T: A triangle with one directed arc missing; 030C: A triangle with one directed 
arc missing, but with an additional directed arc forming a "T"; 102: One directed arc and one bidirectional arc between three nodes; 120D: Two directed arcs originating from the same node and one 
bidirectional arc between two nodes; 120U: Two directed arcs arriving at the same node and one bidirectional arc between two nodes; 120C: A chain of two consecutive directed arcs and one bidirectional 
arc between two nodes; 111D: A triangle with one directed arc missing and one bidirectional arc between two nodes; 111U: A triangle with one directed arc missing and one bidirectional arc between two 
nodes, but with the opposite direction compared to 111D; 201: Two bidirectional arcs and one directed arc between three nodes; 210: A triangle with two bidirectional arcs and one directed arc; 300: A 
triangle with all three arcs bidirectional. 
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Table 5 -  In-degree and out-degree global and local bridges across GCN variants. 

 
Global 
bridges 

Frequency 
Local  

bridges 
Nodes 

(Outgoing) 
Nodes 

(Incoming) 

GCN1 (price levels) 2 4% 8 Pork, Rubb Tea, Hide 

GCN2 (price levels) 8 16% 20 
Pork, Poul, Soyb, Shri, 

Dap, Logs, Rubb, Sawn 
Bana, Nuts, Pork, Coff, 

Shri, Tea, Hide, Logs 

GCN3 (price levels) 11 20% 33 
Alum, Nuts(2), Pork, 

Soyb, Shri, Suga, Tea, 
Dap, Hide, Sawn 

Silv, Bana, Lamb, Pork, 
Coff, Fish, Salm, Suga, 

Logs(2), Wool  

GCN4 (price levels) 0 0% 6 None None 

GCN5 (price levels) 1 2% 103 Lamb Pork 

GCN1 (price first differences) 4 8% 47 Barl, Sorg, Tea, Logs Bana, Fish, Sunf, Rubb 

GCN2 (price first differences) 11 22% 61 
Ngas, Bana, Barl, Coco, 

Lamb, Nuts, Sorg, 
Suga, Cot, Hide, Logs 

Ngas, Alum(2), Uran, 
Bana, Nuts, Suga, Tea, 

Dap, Rubb(2) 

GCN3 (price first differences) 16 33% 67 

Ngas, Coba, Gold, 
Lead, Bana, Coco, 

Nuts(2), Poul, Oliv, 
Cott(2), Hide, Pota(2), 

Urea  

Coal, Alum(2), Plat, 
Uran, Barl, Beef, Coco, 

Nuts, Soyb, Whea(2), 
Suga, Sunf, Tea, Cott 

GCN4 (price first differences) 7 14% 71 
Copp, Gold, Nick, 

Bana, Soym, Rubb, 
Wool  

Coal, Gas, Alum, Tin, 
Soyb, Hide, Wool 

GCN5 (price first differences) 13 27% 78 
Gold, Plat, Tin, Corn, 

Pork, Poul(3), Coff, 
Soym, Hide, Logs, Pota 

Coal, Iron, Uran, Pork, 
Soyb, Shri, Soym, Suga, 

Cott, Hide, Logs, 
Urea(2) 

Geodesic (undirected net) 0 0% 0 None None 
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Table 6 – Pairwise Pearson correlations across GCN variants and corresponding (49 nodes) 
synthetic networks. 

 Random network Ring network Small network Lattice network Geodesic network 

GCN1 (price levels) -0.0062 -0.0477 -0.0451 -0.0138 -0.6564** 

GCN2 (price levels) 0.0087 -0.0484 -0.0353 0.0010 -0.6645** 

GCN3 (price levels) 0.0042 -0.0352 -0.0277 -0.0139 -0.5557** 

GCN4 (price levels) -0.0046 0.0276 0.0214 0.0074 -0.6138** 

GCN5 (price levels) -0.0148 0.0061 0.0147 -0.0016 -0.6414** 

 Random network Ring network Small network Lattice network Geodesic network 

GCN1 (price first differences) 0.0093 0.0064 0.0102 0.0012 -0.6438** 

GCN2 (price first differences) 0.0290 -0.0046 -0.0046 0.0004 -0.2583* 

GCN3 (price first differences) 0.0093 -0.0020 -0.0020 -0.0018 -0.1551 

GCN4 (price first differences) -0.0272 -0.0349 -0.0393 -0.0043 -0.3643** 

GCN5 (price first differences) 0.0037 -0.0478 -0.0478 -0.0194 -0.2404* 

*,**Statistically significant at 10% and 5% confidence level, respectively. 
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Table 7 – Node-level clustering coefficients across GCN variants (maximum and minimum values in bold). 

 
GCN1  

(price levels) 
GCN2  

(price levels) 
GCN3  

(price levels) 
GCN4  

(price levels) 
GCN5  

(price levels) 

GCN1  
(price first 

differences) 

GCN2  
(price first 

differences) 

GCN3  
(price first 

differences) 

GCN4  
(price first 

differences) 

GCN5  
(price first 

differences) 

Coal 0.603 0.475 0.403 0.521 0.190 0.333 0.214 0.083 0.289 0.264 
Ngas 0.624 0.512 0.392 0.527 0.333 0.286 0.150 0.050 0.097 0.000 
Oil 0.690 0.550 0.408 0.450 0.157 0.314 0.322 0.350 0.278 0.107 
Alum 0.525 0.486 0.167 0.578 0.333 0.250 0.286 0.000 0.000 0.000 
Coba 0.708 0.633 0.486 0.722 0.194 0.347 0.167 0.000 0.291 0.178 
Copp 0.716 0.506 0.267 0.429 0.155 0.433 0.393 0.268 0.000 0.000 
Gold 0.524 0.357 0.150 0.500 0.333 0.357 0.196 0.000 0.000 0.133 
Iron 0.607 0.533 0.350 0.555 0.000 0.313 0.321 0.150 0.000 0.000 
Lead 0.735 0.518 0.250 0.466 0.000 0.386 0.350 0.000 0.367 0.333 
Nick 0.750 0.650 1.000 0.464 0.153 0.364 0.400 0.333 0.000 0.000 
Plat 0.704 0.577 0.452 0.438 0.156 0.409 0.350 0.100 0.000 0.000 
Silv 0.504 0.523 0.322 0.471 0.073 0.222 0.167 0.333 0.168 0.150 
Tin 0.602 0.508 0.462 0.500 0.190 0.364 0.250 0.200 0.417 0.000 
Uran 0.704 0.593 0.500 0.611 0.000 0.350 0.300 0.417 0.200 0.000 
Zinc 0.709 0.804 0.800 0.167 0.000 0.358 0.347 0.250 0.000 0.000 
Bana 0.431 0.476 0.333 0.437 0.200 0.333 0.000 0.000 0.000 0.000 
Barl 0.608 0.517 0.463 0.469 0.162 0.231 0.133 0.095 0.182 0.196 
Beef 0.507 0.482 0.238 0.350 0.500 0.286 0.000 0.000 0.200 0.000 
Coco 0.472 0.321 0.083 0.533 0.083 0.300 0.000 0.000 0.000 0.000 
Corn 0.595 0.554 0.467 0.515 0.214 0.244 0.268 0.167 0.218 0.196 
Lamb 0.673 0.767 0.500 0.438 0.000 0.167 0.000 0.000 0.143 0.000 
Nuts 0.548 0.415 0.197 0.458 0.143 0.097 0.000 0.000 0.000 0.000 
Pork 0.321 0.083 0.000 0.515 0.333 0.000 0.000 0.000 0.167 0.061 
Poul 0.655 0.521 0.381 0.439 0.140 0.319 0.150 0.333 0.154 0.082 
Rice 0.561 0.459 0.399 0.413 0.093 0.286 0.000 0.000 0.167 0.000 
Sorg 0.651 0.561 0.441 0.468 0.127 0.275 0.119 0.167 0.267 0.500 
Soyb 0.567 0.487 0.346 0.500 0.194 0.357 0.227 0.153 0.304 0.500 
Whea 0.654 0.562 0.508 0.476 0.167 0.373 0.300 0.350 0.167 0.000 
Coff 0.500 0.400 0.333 0.450 0.000 0.333 0.000 0.000 0.167 0.000 
Fish 0.562 0.482 0.333 0.454 0.083 0.273 0.333 0.167 0.143 0.167 
Oliv 0.655 0.333 0.000 0.544 0.500 0.214 0.300 0.167 0.000 0.000 
Palm 0.607 0.533 0.412 0.426 0.333 0.411 0.350 0.000 0.200 0.150 
Rape 0.604 0.580 0.517 0.489 0.067 0.321 0.264 0.196 0.500 0.333 
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Table 7 (continued)           

Salm 0.534 0.357 0.167 0.466 0.100 0.491 0.238 0.167 0.250 0.000 
Shri 0.581 0.310 0.000 0.417 0.000 0.250 0.100 0.000 0.125 0.074 
Soym 0.592 0.535 0.348 0.529 0.139 0.279 0.244 0.167 0.000 0.000 
Soyo 0.677 0.589 0.497 0.515 0.214 0.348 0.400 0.400 0.250 0.167 
Suga 0.575 0.471 0.233 0.460 0.000 0.095 0.000 0.000 0.000 0.000 
Sunf 0.575 0.534 0.422 0.439 0.125 0.429 0.300 0.300 0.300 0.250 
Tea 0.585 0.381 0.000 0.453 0.167 0.000 0.000 0.000 0.000 0.000 
Cott 0.621 0.516 0.458 0.431 0.143 0.250 0.250 0.000 0.300 0.333 
Dap 0.566 0.461 0.361 0.498 0.119 0.346 0.400 0.300 0.180 0.122 
Hide 0.591 0.470 0.250 0.451 0.000 0.100 0.000 0.000 0.145 0.114 
Logs 0.200 0.000 0.000 0.482 0.125 0.000 0.000 0.000 0.048 0.000 
Pota 0.639 0.567 0.439 0.690 0.262 0.304 0.196 0.133 0.300 0.500 
Rubb 0.431 0.379 0.400 0.483 0.167 0.286 0.350 0.000 0.149 0.097 
Sawn 0.333 0.000 0.000 0.486 0.143 0.000 0.000 0.000 0.250 0.333 
Urea 0.613 0.594 0.514 0.471 0.286 0.319 0.268 0.167 0.187 0.250 
Wool 0.645 0.500 0.500 0.507 0.000 0.167 0.000 0.000 0.200 0.119 
Avg. 0.584 0.478 0.346 0.481 0.155 0.277 0.192 0.122 0.158 0.117 

Avg. Energy 0.639 0.512 0.401 0.500 0.227 0.311 0.229 0.161 0.221 0.124 
Avg. Metals 0.649 0.557 0.434 0.492 0.132 0.346 0.294 0.171 0.120 0.066 
Avg. Agriculture 0.557 0.477 0.335 0.462 0.181 0.251 0.092 0.097 0.151 0.118 
Avg. Food 0.587 0.459 0.272 0.470 0.144 0.287 0.211 0.130 0.161 0.095 
Avg. Other raw materials 0.515 0.387 0.325 0.500 0.138 0.197 0.163 0.067 0.195 0.208 
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Table 8 – Node-level betweenness centrality across GCN variants (maximum and minimum values in bold). 

 GCN1  
(price levels) 

GCN2  
(price levels) 

GCN3  
(price levels) 

GCN4  
(price levels) 

GCN5  
(price levels) 

GCN1  
(price first 

differences) 

GCN2  
(price first 

differences) 

GCN3  
(price first 

differences) 

GCN4  
(price first 

differences) 

GCN5  
(price first 

differences) 
Coal 46.8 91.1 87.7 28.8 67.8 40.3 61.5 32.4 110.8 259.1 
Ngas 37.5 97.1 113.1 17.9 101.7 31.4 51.5 0.0 151.0 0.0 
Oil 27.8 29.8 5.9 19.0 92.2 94.7 54.2 27.7 26.2 44.3 
Alum 16.7 16.0 48.2 16.4 19.5 47.1 46.9 39.3 0.0 0.0 
Coba 19.4 35.5 79.9 5.2 50.3 37.1 36.0 50.8 165.3 207.7 
Copp 27.7 45.9 33.0 11.9 74.5 7.7 13.2 14.9 2.4 7.7 
Gold 31.1 47.9 18.5 7.2 63.2 91.5 173.9 164.1 1.3 82.9 
Iron 48.2 32.9 19.9 29.5 141.4 77.6 66.3 57.0 0.0 0.0 
Lead 15.1 37.2 20.5 64.3 56.2 35.0 47.1 28.6 36.9 33.1 
Nick 18.0 9.5 15.1 33.7 117.2 34.0 16.0 7.1 15.3 0.0 
Plat 18.0 43.3 50.7 46.5 127.5 18.4 14.4 30.8 0.0 21.7 
Silv 31.1 43.6 102.2 16.1 94.6 36.2 0.0 0.0 0.0 0.0 
Tin 38.3 75.1 106.4 16.2 71.8 53.8 79.5 58.9 118.8 156.0 
Uran 27.7 28.0 8.1 43.4 50.2 38.9 115.7 96.4 42.5 80.7 
Zinc 15.6 20.0 48.2 12.0 10.5 36.0 38.0 58.3 2.0 0.0 
Bana 63.5 85.6 0.2 53.1 145.8 1.0 0.7 0.0 3.8 0.0 
Barl 20.6 29.0 4.3 23.4 76.9 123.7 135.0 29.2 128.6 20.1 
Beef 43.7 23.7 14.6 2.6 4.8 24.0 8.0 0.0 50.2 60.6 
Coco 7.4 17.6 24.2 10.4 65.0 40.3 83.0 77.1 0.0 0.0 
Corn 57.7 33.0 49.8 17.2 6.0 51.0 66.4 94.5 139.5 312.4 
Lamb 12.1 6.9 2.5 80.0 8.6 45.1 2.9 0.0 50.7 0.0 
Nuts 2.3 1.2 0.0 15.2 34.2 21.0 46.4 73.1 0.0 0.0 
Pork 50.7 48.6 1.1 33.1 81.9 19.9 0.0 0.0 142.0 219.8 
Poul 43.1 52.8 85.5 40.3 157.4 48.1 102.5 100.7 118.6 320.0 
Rice 49.7 86.3 27.6 78.7 176.7 139.2 58.5 41.4 37.8 0.0 
Sorg 22.8 22.8 19.1 17.3 78.7 106.8 151.2 90.5 21.1 6.8 
Soyb 36.6 38.9 66.5 11.9 6.2 24.2 32.0 35.1 74.0 102.5 
Whea 31.0 54.9 57.6 14.4 10.7 39.7 133.3 180.9 53.1 33.5 
Coff 1.5 1.9 4.9 3.3 11.8 24.6 0.0 0.0 18.6 15.2 
Fish 10.3 22.4 0.0 41.1 48.4 2.6 0.0 0.0 1.8 8.3 
Oliv 14.4 6.9 0.0 51.5 130.9 73.0 98.1 118.8 0.0 0.0 
Palm 35.5 36.8 63.4 33.9 17.4 31.1 7.0 32.3 187.6 149.0 
Rape 47.8 21.0 44.6 9.7 23.9 54.1 96.7 142.7 12.4 8.5 
Salm 19.9 37.3 55.2 77.7 71.7 29.6 50.8 0.0 76.2 0.0 
Shri 2.5 48.1 0.0 8.1 21.1 33.8 33.0 0.0 79.5 107.3 
Soym 38.9 51.6 22.7 23.5 92.4 46.4 20.3 42.6 16.9 1.1 
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Table 8 (continued)           

Soyo 16.3 15.8 17.1 5.9 15.1 35.4 23.9 42.1 10.9 79.3 
Suga 26.7 37.1 2.8 47.5 39.1 74.6 5.6 0.0 0.0 0.0 
Sunf 51.4 44.2 71.8 18.6 29.0 95.8 217.3 177.6 25.2 112.2 
Tea 0.8 2.0 0.0 59.9 18.4 2.2 0.0 0.0 11.1 0.0 
Cott 53.6 60.2 8.7 21.5 90.8 63.9 43.1 39.0 172.6 107.1 
Dap 64.7 77.3 107.3 28.1 63.9 173.5 112.4 54.7 105.1 289.2 
Hide 3.0 11.6 0.0 12.8 0.0 54.1 0.0 0.0 18.2 89.5 
Logs 5.3 47.6 0.0 25.3 139.5 1.7 0.0 0.0 24.8 0.0 
Pota 44.8 62.7 66.2 6.2 77.0 163.0 272.5 195.2 76.5 5.5 
Rubb 10.5 16.2 11.8 26.7 28.5 67.9 133.6 0.0 174.3 76.4 
Sawn 11.2 20.2 0.0 17.6 85.9 4.3 0.0 0.0 18.8 0.0 
Urea 29.2 25.9 23.8 22.3 103.2 42.2 98.9 145.4 84.2 100.5 
Wool 5.5 3.0 2.4 26.2 2.4 88.4 0.0 0.0 50.1 20.4 
Avg. 37.37 72.66 68.91 21.90 87.22 55.45 55.73 20.01 96.03 101.11 
Avg. Energy 25.57 36.25 45.88 25.18 73.08 42.78 53.92 50.52 32.05 49.14 
Avg. Metals 33.93 38.57 27.15 30.60 65.61 52.63 63.05 55.57 63.05 82.74 
Avg. Agriculture 22.18 27.08 23.55 31.72 43.27 41.93 46.06 46.33 36.68 40.06 
Avg. Food 25.31 36.06 24.46 20.75 65.69 73.22 73.38 48.25 80.50 76.50 
Avg. Other raw materials 46.8 91.1 87.7 28.8 67.8 40.3 61.5 32.4 110.8 259.1 
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Table 9 – Node-level closeness centrality across GCN variants (maximum and minimum values in bold) 

 Geodesic 
GCN1  

(price levels) 
GCN2  

(price levels) 
GCN3  

(price levels) 
GCN4  

(price levels) 
GCN5  

(price levels) 

GCN1  
(price first 

differences) 

GCN2  
(price first 

differences) 

GCN3  
(price first 

differences) 

GCN4  
(price first 

differences) 

GCN5  
(price first 

differences) 

Coal 1.000 0.842 0.787 0.676 0.800 0.593 0.578 0.522 0.485 0.632 0.593 
Ngas 1.000 0.800 0.762 0.686 0.762 0.600 0.558 0.462 0.453 0.600 0.533 
Oil 1.000 0.842 0.727 0.615 0.787 0.615 0.658 0.578 0.500 0.578 0.527 
Alum 1.000 0.738 0.676 0.593 0.738 0.552 0.571 0.533 0.462 0.545 0.475 
Coba 1.000 0.738 0.706 0.640 0.667 0.578 0.585 0.495 0.429 0.615 0.578 
Copp 1.000 0.906 0.828 0.696 0.716 0.593 0.578 0.527 0.522 0.565 0.516 
Gold 1.000 0.800 0.738 0.552 0.632 0.578 0.640 0.565 0.485 0.480 0.511 
Iron 1.000 0.828 0.706 0.640 0.774 0.623 0.640 0.516 0.490 0.533 0.381 
Lead 1.000 0.828 0.727 0.640 0.814 0.578 0.600 0.511 0.471 0.571 0.527 
Nick 1.000 0.750 0.649 0.600 0.873 0.578 0.615 0.511 0.453 0.539 0.480 
Plat 1.000 0.800 0.716 0.600 0.941 0.608 0.565 0.505 0.480 0.585 0.511 
Silv 1.000 0.787 0.727 0.640 0.706 0.600 0.578 0.490 0.384 0.667 0.466 
Tin 1.000 0.873 0.762 0.686 0.658 0.608 0.632 0.558 0.527 0.640 0.539 
Uran 1.000 0.738 0.658 0.571 0.716 0.593 0.608 0.533 0.475 0.545 0.500 
Zinc 1.000 0.762 0.658 0.600 0.585 0.539 0.608 0.539 0.511 0.490 1.000 
Bana 1.000 0.738 0.593 0.453 0.706 0.558 0.462 0.393 0.333 0.527 0.432 
Barl 1.000 0.800 0.727 0.600 0.774 0.686 0.615 0.558 0.495 0.640 0.522 
Beef 1.000 0.750 0.658 0.545 0.608 0.522 0.558 0.485 0.358 0.585 0.466 
Coco 1.000 0.585 0.565 0.495 0.696 0.552 0.552 0.453 0.366 0.500 0.414 
Corn 1.000 0.842 0.716 0.640 0.738 0.511 0.623 0.565 0.539 0.667 0.571 
Lamb 1.000 0.615 0.545 0.440 0.889 0.558 0.565 0.453 0.403 0.565 0.471 
Nuts 1.000 0.716 0.632 0.558 0.706 0.558 0.539 0.393 0.397 1.000 1.000 
Pork 1.000 0.565 0.511 0.425 0.800 0.578 0.558 0.407 0.390 0.585 0.539 
Poul 1.000 0.800 0.706 0.615 0.923 0.667 0.578 0.516 0.500 0.623 0.593 
Rice 1.000 0.828 0.716 0.593 0.906 0.667 0.716 0.686 0.571 0.640 0.495 
Sorg 1.000 0.828 0.706 0.640 0.738 0.623 0.640 0.558 0.495 0.552 0.490 
Soyb 1.000 0.842 0.762 0.667 0.593 0.558 0.615 0.545 0.522 0.565 0.485 
Whea 1.000 0.814 0.716 0.623 0.750 0.571 0.608 0.571 0.565 0.585 0.516 
Coff 1.000 0.578 0.505 0.457 0.676 0.545 0.527 1.000 1.000 0.522 0.453 
Fish 1.000 0.706 0.623 0.485 0.941 0.500 0.565 0.485 0.449 0.565 0.490 
Oliv 1.000 0.696 0.558 0.505 0.800 0.545 0.623 0.527 0.527 0.516 0.425 
Palm 1.000 0.857 0.774 0.686 0.857 0.608 0.593 0.505 0.449 0.658 0.585 
Rape 1.000 0.857 0.716 0.593 0.696 0.552 0.615 0.571 0.558 0.565 0.500 
Salm 1.000 0.696 0.608 0.516 0.873 0.608 0.608 0.533 0.403 0.578 0.471 
Shri 1.000 0.608 0.527 0.407 0.738 0.565 0.571 0.466 0.407 0.632 0.608 
Soym 1.000 0.873 0.716 0.558 0.774 0.571 0.640 0.545 0.516 0.522 0.397 
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Table 9 (continued)            

Soyo 1.000 0.787 0.738 0.649 0.676 0.558 0.600 0.527 0.500 0.522 0.475 
Suga 1.000 0.750 0.658 0.516 0.762 0.552 0.571 0.361 0.293 0.495 0.390 
Sunf 1.000 0.828 0.774 0.667 0.787 0.623 0.696 0.658 0.585 0.585 0.527 
Tea 1.000 0.615 0.539 0.393 0.828 0.490 0.466 0.348 0.302 0.527 0.471 
Cott 1.000 0.727 0.667 0.545 0.787 0.593 0.565 0.500 0.414 0.600 0.558 
Dap 1.000 0.889 0.842 0.706 0.787 0.558 0.716 0.640 0.552 0.649 0.608 
Hide 1.000 0.632 0.565 0.462 0.923 0.545 0.527 0.364 0.327 0.676 0.571 
Logs 1.000 0.527 0.440 0.348 0.814 0.640 0.414 0.353 1.000 0.552 0.387 
Pota 1.000 0.828 0.774 0.686 0.696 0.578 0.716 0.676 0.552 0.608 0.545 
Rubb 1.000 0.762 0.649 0.545 0.750 0.565 0.565 0.527 0.417 0.658 0.539 
Sawn 1.000 0.565 0.485 0.259 0.696 0.522 0.429 1.000 1.000 0.522 0.393 
Urea 1.000 0.814 0.706 0.640 0.857 0.585 0.649 0.608 0.623 0.658 0.457 
Wool 1.000 0.623 0.533 0.432 0.774 0.527 0.571 0.397 1.000 0.565 0.500 
Avg. 1.000 0.755 0.669 0.567 0.765 0.577 0.589 0.531 0.509 0.588 0.551 
Avg. Energy 1.000 0.828 0.759 0.659 0.783 0.603 0.598 0.521 0.479 0.603 0.540 
Avg. Metals 1.000 0.796 0.713 0.621 0.735 0.586 0.602 0.524 0.474 0.565 0.538 
Avg. Agriculture 1.000 0.748 0.658 0.561 0.756 0.585 0.587 0.506 0.457 0.618 0.483 
Avg. Food 1.000 0.737 0.645 0.536 0.784 0.560 0.590 0.544 0.499 0.557 0.507 
Avg. Other raw materials 1.000 0.707 0.629 0.514 0.787 0.568 0.572 0.563 0.654 0.610 0.593 
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Table 10 – Node-level eigenvector centrality across GCN variants (maximum and minimum values in bold) 

 Geodesic 
GCN1  

(price levels) 
GCN2  

(price levels) 
GCN3  

(price levels) 
GCN4  

(price levels) 
GCN5  

(price levels) 

GCN1  
(price first 

differences) 

Coal 0.143 0.173 0.188 0.211 0.158 0.155 0.153 
Ngas 0.143 0.161 0.188 0.216 0.145 0.172 0.100 
Oil 0.143 0.169 0.181 0.173 0.152 0.183 0.174 
Alum 0.143 0.137 0.142 0.148 0.138 0.102 0.088 
Coba 0.143 0.145 0.162 0.182 0.110 0.136 0.155 
Copp 0.143 0.183 0.202 0.203 0.123 0.150 0.147 
Gold 0.143 0.156 0.163 0.112 0.082 0.136 0.172 
Iron 0.143 0.167 0.156 0.169 0.144 0.193 0.191 
Lead 0.143 0.164 0.166 0.187 0.154 0.135 0.164 
Nick 0.143 0.145 0.139 0.162 0.172 0.145 0.187 
Plat 0.143 0.160 0.167 0.136 0.185 0.169 0.132 
Silv 0.143 0.151 0.161 0.140 0.121 0.142 0.094 
Tin 0.143 0.178 0.185 0.199 0.106 0.177 0.198 
Uran 0.143 0.136 0.137 0.123 0.128 0.156 0.142 
Zinc 0.143 0.152 0.137 0.159 0.064 0.087 0.172 
Bana 0.143 0.123 0.075 0.024 0.118 0.115 0.029 
Barl 0.143 0.159 0.174 0.184 0.149 0.252 0.140 
Beef 0.143 0.139 0.127 0.089 0.074 0.088 0.091 
Coco 0.143 0.056 0.051 0.026 0.120 0.115 0.069 
Corn 0.143 0.172 0.177 0.196 0.134 0.096 0.176 
Lamb 0.143 0.078 0.062 0.018 0.176 0.109 0.103 
Nuts 0.143 0.133 0.111 0.070 0.123 0.103 0.048 
Pork 0.143 0.046 0.017 0.010 0.159 0.131 0.062 
Poul 0.143 0.162 0.155 0.149 0.183 0.228 0.129 
Rice 0.143 0.165 0.158 0.143 0.177 0.225 0.216 
Sorg 0.143 0.169 0.167 0.186 0.133 0.184 0.186 
Soyb 0.143 0.169 0.180 0.174 0.068 0.114 0.162 
Whea 0.143 0.167 0.170 0.191 0.140 0.151 0.157 
Coff 0.143 0.055 0.027 0.013 0.111 0.104 0.050 
Fish 0.143 0.124 0.094 0.035 0.188 0.059 0.107 
Oliv 0.143 0.118 0.055 0.036 0.153 0.096 0.142 
Palm 0.143 0.174 0.191 0.218 0.170 0.180 0.151 
Rape 0.143 0.175 0.169 0.171 0.119 0.111 0.179 
Salm 0.143 0.116 0.097 0.050 0.174 0.175 0.148 
Shri 0.143 0.081 0.031 0.009 0.136 0.124 0.097 
Soym 0.143 0.174 0.154 0.107 0.150 0.126 0.184 



42 
 

Table 10 (continued)        

Soyo 0.143 0.160 0.181 0.194 0.116 0.111 0.154 
Suga 0.143 0.139 0.120 0.042 0.143 0.102 0.063 
Sunf 0.143 0.169 0.196 0.209 0.152 0.186 0.213 
Tea 0.143 0.081 0.039 0.006 0.161 0.046 0.022 
Cott 0.143 0.132 0.143 0.108 0.152 0.161 0.099 
Dap 0.143 0.181 0.204 0.222 0.153 0.113 0.246 
Hide 0.143 0.086 0.064 0.030 0.185 0.110 0.041 
Logs 0.143 0.019 0.008 0.002 0.157 0.180 0.011 
Pota 0.143 0.168 0.189 0.209 0.122 0.127 0.239 
Rubb 0.143 0.138 0.116 0.098 0.137 0.109 0.078 
Sawn 0.143 0.045 0.018 0.000 0.116 0.071 0.014 
Urea 0.143 0.166 0.171 0.198 0.170 0.151 0.200 
Wool 0.143 0.082 0.041 0.023 0.148 0.081 0.081 
Avg. 0.143 0.14 0.13 0.12 0.14 0.14 0.13 
Avg. Energy 0.143 0.17 0.19 0.20 0.15 0.17 0.14 
Avg. Metals 0.143 0.16 0.16 0.16 0.13 0.14 0.15 
Avg. Agriculture 0.143 0.13 0.12 0.11 0.13 0.15 0.12 
Avg. Food 0.143 0.13 0.11 0.09 0.15 0.12 0.13 
Avg. Other raw materials 0.143 0.11 0.11 0.10 0.15 0.12 0.11 



43 
 

Table 11 – Community structure across GCN variants: within-group connectivity and modularity 

 Energy Metals Agriculture Food 
Other raw 
materials 

GCN1 (price levels)      

Incoming – Within (%)   5.2 33.3 24.0 17.2 15.4 

Outgoing – Within (%) 7.0 18.3 27.2 23.3 19.0 

Incoming – Modularity 0.833 1.361 0.904 0.700 0.838 

Outgoing – Modularity 1.150 0.746 1.027 0.950 1.037 

GCN2 (price levels)      

Incoming – Within (%)   4.4 37.9 20.3 17.2 14.2 

Outgoing – Within (%) 8.5 18.0 24.4 22.6 18.6 

Incoming – Modularity 0.705 1.546 0.765 0.703 0.772 

Outgoing – Modularity 1.390 0.736 0.920 0.924 1.014 

GCN3 (price levels)      

Incoming – Within (%)   5.6 43.8 16.2 16.7 9.9 

Outgoing – Within (%) 14.3 13.7 25.8 18.5 20.4 

Incoming – Modularity 0.902 1.790 0.611 0.681 0.539 

Outgoing – Modularity 2.333 0.558 0.973 0.755 1.111 

GCN4 (price levels)      

Incoming – Within (%)   7.8 26.5 27.4 27.8 18.1 

Outgoing – Within (%) 7.0 23.4 30.0 23.5 23.6 

Incoming – Modularity 1.299 1.084 1.034 1.133 0.988 

Outgoing – Modularity 1.150 0.957 1.132 0.961 1.286 

GCN5 (price levels)      

Incoming – Within (%)   11.8 52.6 27.2 24.2 19.7 

Outgoing – Within (%) 19.0 34.8 44.2 17.6 20.0 

Incoming – Modularity 2.044 2.149 1.025 0.988 1.071 

Outgoing – Modularity 3.111 1.420 1.664 0.721 1.089 
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Table 11 (continued) 

 Energy Metals Agriculture Food 
Other raw 
materials 

GCN1 (price first differences)      

Incoming – Within (%)   11.4 25.2 25.0 25.9 17.9 

Outgoing – Within (%) 13.8 27.3 23.8 26.4 15.6 

Incoming – Modularity 1.978 1.029 0.942 1.057 0.977 

Outgoing – Modularity 2.253 1.114 0.896 1.077 0.847 

GCN2 (price first differences)      

Incoming – Within (%)   18.2 21.8 27.6 23.7 17.6 

Outgoing – Within (%) 33.3 36.2 22.9 23.0 9.8 

Incoming – Modularity 3.407 0.890 1.040 0.969 0.961 

Outgoing – Modularity 5.444 1.477 0.862 0.937 0.536 

GCN3 (price first differences)      

Incoming – Within (%)   14.3 27.5 35.0 25.0 13.0 

Outgoing – Within (%) 28.6 36.8 26.4 26.8 9.1 

Incoming – Modularity 2.556 1.121 1.319 1.021 0.710 

Outgoing – Modularity 4.667 1.504 0.996 1.096 0.495 

GCN4 (price first differences)      

Incoming – Within (%)   7.1 25.5 29.0 18.3 19.5 

Outgoing – Within (%) 7.4 14.4 29.0 14.3 40.0 

Incoming – Modularity 1.179 1.039 1.094 0.749 1.060 

Outgoing – Modularity 1.210 0.589 1.094 0.583 2.178 

GCN5 (price first differences)      

Incoming – Within (%)   11.1 22.6 30.2 14.6 27.6 

Outgoing – Within (%) 11.8 11.9 34.0 14.3 44.4 

Incoming – Modularity 1.917 0.922 1.138 0.598 1.502 

Outgoing – Modularity 1.922 0.484 1.283 0.583 2.420 
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Table 12 – Main features of the GCN variants obtained with the logarithm of price levels. 

 
GCN3  

(logarithms of price levels) 
GCN5  

(logarithms of price levels) 

Correlation with other GCNs:   

GCN1 (price levels) 0.402** 0.149 

GCN2 (price levels) 0.480** 0.151 

GCN3 (price levels) 0.544** 0.158 

GCN4 (price levels) 0.099 0.251* 

GCN5 (price levels) 0.188 0.286** 

GCN1 (price first differences) 0.112 0.033 

GCN2 (price first differences) 0.087 0.015 

GCN3 (price first differences) 0.118 0.019 

GCN4 (price first differences) 0.218 0.063 

GCN5 (price first differences) 0.209 0.091 

Topology and centrality measures:   

Arcs 300 340 

Density 0.127 0.145 

Paths (largest component) 2256 2352 

Diameter (largest component) 5 3 

Average shortest path (largest component) 1.994 1.749 

Reciprocity 0.047 0.083 

Transitivity 1.133 0.573 

Betweenness centralization 0.141 0.247 

Indegree centralization 0.316 0.235 

Outdegree centralization 0.401 0.661 

 *,** Statistically significant at 10% and 5% confidence level, respectively. 



46 
 

Figure 1 – Network structure GCN1-GCN3 – price levels (dashed arcs indicate links across 
commodities and arrows indicate the direction). 

 

Figure 2 – Network structure GCN1-GCN3 – price first differences (dashed arcs indicate links across 
commodities and arrows indicate the direction).  
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Figure 3 – Network structure GCN4-GCN5 – price levels (dashed arcs indicate links across 
commodities and arrows indicate the direction).  

 

Figure 4 – Network structure GCN4-GCN5 – price first differences (dashed arcs indicate links across 
commodities and arrows indicate the direction).  
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Figure 5 – Number of arcs per node in GCN3 by group and in descending order (price levels).  
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Figure 6 – Number of arcs per node in GCN5 by group and in descending order (price levels).  
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Figure 7 – Number of arcs per node in GCN3 by group and in descending order (price first 
differences).  
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Figure 8 – Number of arcs per node in GCN5 by group and in descending order (price first 
differences).  
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ANNEX 1  

Table A1 – Description of the commodity data used in the analysis (source: IMF).   

Commodity Full Name Code Description Unit and Market Category 

Coal Coal Australian thermal coal, 6,300 
kcal/kg 

USD/metric ton, Australia Energy 

Natural Gas Ngas US Henry Hub natural gas USD/MMBtu, US Energy 

Crude Oil Oil Brent crude oil USD/barrel, Europe Energy 

Aluminum Alum LME aluminium, high grade USD/metric ton, LME Metals 

Cobalt Coba LME cobalt, standard grade USD/metric ton, LME Metals 

Copper Copp LME copper, grade A USD/metric ton, LME Metals 

Gold Gold London gold fix USD/troy ounce, London Metals 

Iron Ore Iron Iron ore fines, 62% Fe, CFR China USD/dry metric ton, China Metals 

Lead Lead LME lead, standard grade USD/metric ton, LME Metals 

Nickel Nick LME nickel, primary grade USD/metric ton, LME Metals 

Platinum Plat London platinum fix USD/troy ounce, London Metals 

Silver Silv London silver fix USD/troy ounce, London Metals 

Tin Tin LME tin, standard grade USD/metric ton, LME Metals 

Uranium Uran U3O8 uranium concentrate USD/pound, Global Metals 

Zinc Zinc LME zinc, standard grade USD/metric ton, LME Metals 

Bananas Bana Bananas, Central America USD/metric ton, US Agriculture 

Barley Barl Feed barley USD/metric ton, Global Agriculture 

Beef Beef Australian beef USD/kg, Australia Agriculture 

Cocoa Coco Cocoa beans USD/metric ton, Global Agriculture 

Corn Corn Yellow corn USD/metric ton, US Agriculture 

Lamb Lamb New Zealand lamb USD/kg, New Zealand Agriculture 

Nuts Nuts Tree nuts USD/metric ton, Global Agriculture 

Pork Pork US pork USD/kg, US Agriculture 

Poultry Poul US broiler chicken USD/kg, US Agriculture 

Rice Rice Thai 5% broken rice USD/metric ton, Thailand Agriculture 

Sorghum Sorg US sorghum USD/metric ton, US Agriculture 

Soybeans Soyb US soybeans USD/metric ton, US Agriculture 

Wheat Whea US hard red winter wheat USD/metric ton, US Agriculture 

Coffee Coff Arabica coffee USD/kg, Global Food 

Fish Fish Fishmeal USD/metric ton, Peru Food 

Olive Oil Oliv Extra virgin olive oil USD/metric ton, Europe Food 

Palm Oil Palm Malaysian palm oil USD/metric ton, Malaysia Food 

Rapeseed Oil Rape Canadian rapeseed oil USD/metric ton, Canada Food 

Salmon Salm Norwegian salmon USD/kg, Norway Food 

Shrimp Shri Asian white shrimp USD/kg, Asia Food 

Soybean Meal Soym Soybean meal, 48% protein USD/metric ton, US Food 

Soybean Oil Soyo US soybean oil USD/metric ton, US Food 

Sugar Suga World raw sugar USD/kg, Global Food 

Sunflower Oil Sunf Sunflower oil, crude USD/metric ton, Ukraine Food 

Tea Tea Average tea price USD/kg, Global Food 

Cotton Cott Cotton A Index USD/kg, Global Other Raw Materials 

Diammonium Phosphate Dap DAP fertilizer USD/metric ton, Global Other Raw Materials 

Hides Hide Heavy steer hides USD/piece, US Other Raw Materials 

Logs Logs Tropical logs USD/cubic meter, Malaysia Other Raw Materials 

Potash Pota Potassium chloride USD/metric ton, Global Other Raw Materials 

Rubber Rubb RSS3 rubber, Bangkok USD/kg, Thailand Other Raw Materials 

Sawnwood Sawn Sawnwood, Cameroon USD/cubic meter, 
Cameroon 

Other Raw Materials 

Urea Urea Urea fertilizer, bulk USD/metric ton, Global Other Raw Materials 

Wool Wool Australian wool, 64s USD/kg, Australia Other Raw Materials 
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ANNEX 2  

Table A2 – P-value of the unit root (ADF) tests on the commodity price levels, first differences, 
logarithms and logarithms of the first differences (1980M1-2024M12) (in bold p-values>0.1).  

 Price Levels Price First Differences Logarithm of Price Levels 
Logarithm of Price First 

Differences 

Coal 0.002 0.000 0.028 0.000 

Ngas 0.000 0.000 0.006 0.000 

Oil 0.045 0.000 0.080 0.000 

Alum 0.002 0.000 0.002 0.000 

Coba 0.000 0.000 0.001 0.000 

Copp 0.154 0.000 0.146 0.000 

Gold 0.936 0.000 0.521 0.000 

Iron 0.048 0.000 0.084 0.000 

Lead 0.068 0.000 0.091 0.000 

Nick 0.002 0.000 0.011 0.000 

Plat 0.085 0.000 0.082 0.000 

Silv 0.170 0.000 0.225 0.000 

Tin 0.110 0.000 0.165 0.000 

Uran 0.038 0.000 0.074                                                                                                                        0.000 

Zinc 0.002 0.000 0.014 0.000 

Bana 0.114 0.000 0.142 0.000 

Barl 0.003 0.000 0.010 0.000 

Beef 0.372 0.000 0.294 0.000 

Coco 0.524 0.000 0.168 0.000 

Corn 0.010 0.000 0.022 0.000 

Lamb 0.001 0.000 0.000 0.000 

Nuts 0.012 0.000 0.014 0.000 

Pork 0.000 0.000 0.000 0.000 

Poul 0.016 0.000 0.000 0.000 

Rice 0.013 0.000 0.016 0.000 

Sorg 0.027 0.000 0.029 0.000 

Soyb 0.026 0.000 0.029 0.000 

Whea 0.003 0.000 0.004 0.000 

Coff 0.034 0.000 0.011 0.000 

Fish 0.086 0.000 0.071 0.000 

Oliv 0.007 0.000 0.025 0.000 

Palm 0.015 0.000 0.011 0.000 

Rape 0.013 0.000 0.013 0.000 

Salm 0.007 0.000 0.011 0.000 

Shri 0.000 0.000 0.000 0.000 

Soym 0.040 0.000 0.033 0.000 

Soyo 0.015 0.000 0.018 0.000 

Suga 0.000 0.000 0.002 0.000 

Sunf 0.010 0.000 0.027 0.000 

Tea 0.003 0.000 0.004 0.000 

Cott 0.000 0.000 0.000 0.000 

Dap 0.002 0.000 0.042 0.000 

Hide 0.004 0.000 0.004 0.000 

Logs 0.006 0.000 0.011 0.000 

Pota 0.001 0.000 0.010 0.000 

Rubb 0.009 0.000 0.028 0.000 

Sawn 0.030 0.000 0.035 0.000 

Urea 0.001 0.000 0.016 0.000 

Wool 0.001 0.000 0.001 0.000 
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ANNEX 3  

Table A3 – Incoming and outgoing linkages (arcs) within GCN variants – Price Levels. 

 Incoming Outgoing 
 GCN1 GCN2 GCN3 GCN4 GCN5 GCN1 GCN2 GCN3 GCN4 GCN5 

Coal 36 32 27 28 15 22 17 10 21 2 
Ngas 33 32 28 14 4 24 16 12 28 13 
Oil 28 27 17 22 15 25 14 6 22 6 
Alum 16 9 4 10 3 22 17 17 28 8 
Coba 24 15 9 9 9 28 24 21 22 7 
Copp 18 13 6 23 11 41 34 25 9 6 
Gold 15 8 5 3 3 33 26 12 18 11 
Iron 24 14 5 11 4 31 26 22 26 15 
Lead 12 8 5 32 4 36 28 23 24 13 
Nick 8 5 2 34 10 30 20 20 21 10 
Plat 16 14 7 39 10 33 27 16 21 9 
Silv 16 12 10 20 11 29 24 17 17 7 
Tin 25 20 12 9 7 34 29 27 20 10 
Uran 16 14 3 18 2 26 19 15 21 13 
Zinc 14 8 5 3 2 29 20 19 12 6 
Bana 22 7 3 20 6 20 9 1 18 7 
Barl 25 22 17 27 25 24 14 9 20 2 
Beef 18 11 7 5 3 25 17 6 13 5 
Coco 9 8 4 6 4 8 4 3 24 7 
Corn 27 22 18 25 8 32 25 16 15 3 
Lamb 11 6 2 33 1 10 5 1 30 9 
Nuts 26 19 12 16 7 6 1 0 18 3 
Pork 8 4 1 17 3 6 1 1 31 11 
Poul 28 20 15 43 23 22 18 9 17 3 
Rice 35 27 18 35 21 23 15 6 27 8 
Sorg 27 20 18 19 11 25 18 12 15 8 
Soyb 27 20 17 10 9 26 22 12 6 2 
Whea 29 21 16 21 4 30 23 17 19 9 
Coff 10 5 3 5 2 3 1 1 23 7 
Fish 15 11 4 45 4 17 8 1 18 3 
Oliv 11 4 0 14 2 20 7 7 29 9 
Palm 28 18 14 22 3 32 26 22 30 15 
Rape 33 22 16 22 6 27 20 15 13 5 
Salm 20 14 3 30 5 15 8 7 33 12 
Shri 17 7 3 4 2 2 1 0 28 9 
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Table A3 (continued)           

Soym 32 22 12 20 9 22 16 7 23 6 
Soyo 25 22 18 19 7 27 21 13 12 3 
Suga 30 18 6 21 2 8 5 1 26 9 
Sunf 36 30 22 20 17 28 23 18 24 4 
Tea 17 7 1 23 3 1 1 0 30 3 
Cott 22 18 9 23 8 17 14 6 24 9 
Dap 36 32 28 31 7 29 27 15 18 7 
Hide 19 12 5 40 0 1 1 0 27 10 
Logs 5 2 0 24 16 3 2 2 21 7 
Pota 31 28 27 7 7 27 19 9 26 7 
Rubb 21 12 6 25 4 24 14 8 19 7 
Sawn 3 1 1 23 7 9 4 0 10 3 
Urea 34 26 23 39 8 25 14 8 15 7 
Wool 11 3 2 25 4 12 7 1 22 3 
Total 1049 752 496 1034 358 1049 752 496 1034 358 
Avg. 21.4 15.3 10.1 21.1 8.8 21.4 15.3 10.1 21.1 8.8 
Avg. Energy 32.33 30.33 24.00 21.33 11.33 23.67 15.67 9.33 23.67 7.00 
Avg. Metals 17.00 11.67 6.08 17.58 6.33 31.00 24.50 19.50 19.92 9.58 
Avg. Agriculture 22.46 15.92 11.38 21.31 9.62 19.77 13.23 7.15 19.46 5.92 
Avg. Food 22.83 15.00 8.50 20.42 5.17 16.83 11.42 7.67 24.08 7.08 
Avg. Other raw materials 20.22 14.89 11.22 26.33 6.78 16.33 11.33 5.44 20.22 6.67 

Legend: GCN1= PairwiseGC (5% confidence level); GCN2 = PairwiseGC (1% confidence level); GCN3= PairwiseGC (1% confidence level+FDR); GCN4 = SparseVAR (GC – CV); GCN5) = SparseVAR (GC – BIC). 
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Table A4 – Incoming and outgoing linkages (arcs) within GCN variants – Price First Differences. 

 Incoming  Outgoing 
 GCN1 GCN2 GCN3 GCN4 GCN5 GCN1 GCN2 GCN3 GCN4 GCN5 

Coal 15 7 4 10 10 7 3 2 10 6 
Ngas 7 5 5 9 0 7 1 0 12 9 
Oil 13 10 5 9 8 15 8 5 5 2 
Alum 9 7 3 0 0 4 2 2 9 6 
Coba 9 4 2 11 10 11 4 3 13 10 
Copp 10 8 8 2 2 6 4 3 9 5 
Gold 14 8 3 1 6 12 6 6 3 2 
Iron 14 8 5 0 0 12 3 2 7 1 
Lead 12 5 2 6 3 10 5 4 8 5 
Nick 11 5 3 1 0 13 4 2 9 6 
Plat 11 5 5 0 1 7 2 1 13 9 
Silv 9 6 3 23 5 6 0 0 0 0 
Tin 11 8 5 4 1 17 7 7 17 10 
Uran 5 5 4 5 3 15 6 5 6 5 
Zinc 16 9 8 2 0 8 4 3 3 0 
Bana 3 1 1 1 0 1 1 0 6 2 
Barl 13 10 7 20 8 9 4 1 4 3 
Beef 7 3 0 6 3 6 3 1 8 2 
Coco 5 2 1 0 0 6 2 1 5 3 
Corn 13 8 7 13 8 13 6 5 11 8 
Lamb 6 1 0 7 0 8 3 3 5 3 
Nuts 9 2 2 0 0 2 1 1 0 0 
Pork 2 0 0 10 12 9 3 3 6 1 
Poul 9 5 3 14 14 11 6 6 7 3 
Rice 7 2 2 4 0 28 23 14 18 7 
Sorg 16 7 3 6 2 12 6 6 5 3 
Soyb 15 11 9 8 2 6 2 2 5 4 
Whea 11 6 5 4 4 11 10 10 13 8 
Coff 3 0 0 3 2 4 0 0 3 2 
Fish 12 6 4 8 3 1 0 0 2 2 
Oliv 7 5 4 0 0 13 6 6 6 2 
Palm 10 5 4 11 5 11 3 3 16 12 
Rape 13 9 8 3 4 15 11 7 7 3 
Salm 11 7 3 5 0 7 4 0 9 3 
Shri 9 5 2 17 17 6 3 0 4 1 
Soym 20 10 9 1 1 7 3 3 6 1 
Soyo 12 5 5 4 4 10 7 6 7 5 
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Table A4 (continued)           

Suga 7 1 0 0 0 7 1 1 4 2 
Sunf 7 6 5 5 5 26 21 14 8 5 
Tea 1 0 0 3 0 3 2 1 5 4 
Cott 8 4 2 6 4 7 3 1 10 8 
Dap 18 6 5 17 13 23 18 9 9 6 
Hide 6 2 1 24 15 4 0 0 1 1 
Logs 1 1 0 7 1 2 0 0 4 2 
Pota 18 8 6 5 2 25 22 11 14 8 
Rubb 7 5 2 19 9 5 4 0 5 5 
Sawn 2 0 0 4 3 2 0 0 3 0 
Urea 9 8 7 20 4 17 12 12 6 4 
Wool 9 0 0 11 7 5 2 0 3 2 
Total 472 251 172 349 201 472 251 172 349 201 
Avg. 9.6 5.1 3.5 7.1 4.1 9.6 5.1 3.5 7.1 4.1 
Avg. Energy 11.67 7.33 4.67 9.33 6.00 9.67 4.00 2.33 9.00 5.67 
Avg. Metals 10.92 6.50 4.25 4.58 2.58 10.08 3.92 3.17 8.08 4.92 
Avg. Agriculture 8.92 4.46 3.08 7.15 4.08 9.38 5.38 4.08 7.15 3.62 
Avg. Food 9.33 4.92 3.67 5.00 3.42 9.17 5.08 3.42 6.42 3.50 
Avg. Other raw materials 8.67 3.78 2.56 12.56 6.44 10.00 6.78 3.67 6.11 4.00 

Legend: GCN1= PairwiseGC (5% confidence level); GCN2 = PairwiseGC (1% confidence level); GCN3= PairwiseGC (1% confidence level+FDR); GCN4 = SparseVAR (GC – CV); GCN5) = SparseVAR (GC – BIC). 
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ANNEX 4  

Table A5 - Topological properties across GCN variants: longest geodesic path and isolated nodes. 

 Longest path Isolated nodes 

GCN1 (price levels) 
Logs-Shri 

3 steps; 1 connections-links (0.1%); Most: Logs (1), Shri(1)   
0 

GCN2 (price levels) 

Oil-Logs, Nick-Logs, Plat-Logs, Tin-Logs, Uran-Logs, Bana-Coff, Corn-Logs, Lamb-Tea, Lamb-
Logs, Lamb-Sawn, Prok-Coff, Pork-Shri, Pork-Sawn, Sorg-Logs, Whea-Logs, Coff-Logs, Coff-
Sawn, Coff-Wool, Oliv-Logs, Salm-Logs, Shri-Logs, Hide-Logs, Salm-Sawn, Cott-Sawn, Hide-

Sawn, Logs-Wool, Sawn-Wool, Urea-Sawn   
3 steps; 28 connections-links (2.4%); Most: Logs (15), Sawn(8)   

0 

GCN3 (price levels) 
Lamb-Swan, Shri-Sawn, Hide-Sawn, Sawn-Wool  

5 steps; 4 connections-links (0.3%); Most: Sawn (4), Lamb, Hide, Wool (1)   
0 

GCN4 (price levels) 
[Too many connections] 

2 steps; 382 connections-links (32.5%); Most: Coff (17), Bana(16)   
0 

GCN5 (price levels) 

Coal-Tea, Alum-Fish, Copp-Tea, Lead-Corn, Lead-Coff, Nick-Suga, Nick-Tea, Zinc-Corn, Bana-
Corn, Barl-Sawn, Barl-Wool, Beef-Coff, Beef-Fish, Coco-Fish, Coco-Tea, Corn-Fish, Corn-Sawn, 
Fish-Suga, Fish-Hide, Oliv-Sunf, Oliv-Tea, Palm-Sawn, Rape-Tea, Rape-Sawn, Soym-Hide, Tea-

Dap    
3 steps; 26 connections-links (2.2%); Most: Tea (7), Fish(6)   

0 
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Table A5 (continued) 

 Longest path Isolated nodes 

GCN1 (price first differences) 

Nuts-Coal, Tea-Lamb, Tea-Coal, Tea-,Ngas, Tea-Copp, Tea-Zinc, Tea-Corn, Hide-Pota, Logs-
Coal, Logs-Ngas, Logs-Coba, Logs-Copp, Logs-Iron, Logs-Lead, Logs-Plat, Logs-Tin, 

Logs,Zinc, Logs-Bana, Logs-Beef, Logs-Corn, Logs-Cott, Logs-Dap, Logs-Hide, Pota-Hide, 
Sawn-Coal, Sawn-Coba, Sawn-Copp, Sawn-Iron, Sawn-Lead, Sawn-Nick, Sawn-Plat, Sawn-Tin, 

Sawn-Zinc, Sawn-Bana, Sawn-Beef, Sawn-Coco, Sawn-Lamb, Sawn-Cott, Urea-Logs  
3 steps; 39 connections-links (3.3%); Most: Logs (16), Sawn (14)   

0 

GCN2 (price first differences) 

Ngas-Suga, Ngas-Logs, Coba-Hide, Bana-Nuts, Bana-Tea, Coco-Tea, Lamb-Suga, Lamb-Tea, 
Lamb-Logs, Nuts-Pork, Nuts-Hide, Pork-Suga, Pork-Tea, Pork-Logs, Fish-Tea, Shir-Hide, Suga-

Tea, Suga-Hide, Suga-Wool, Tea-Logs, Tea-Wool, Logs-Urea.   
4 steps; 22 connections-links (1.9%); Most: Tea (8), Suga (6)   

2 (Coff, Sawn) 

GCN3 (price first differences) 
Bana-Tea, Bana-Suga, Pork-Suga, Soym-Suga, Suga-Hide, Tea-Hide 

5 steps; 6 connections-links (0.5%); Most: Suga (4), Bana, Hide. Tea (2)  
4 (Coff, Logs, Sawn, Wool) 

GCN4 (price first differences) 

Oil-Coco, Alum-Coco, Coba-Coco, Copp-Uran, Gold-Soym, Gold-Suga, Gold-Tea, Gold-Sawn, 
Gold-Wool, Iron-Zinc, Iron-Bana, Nick-Coco, Nick-Barl, Nick-Salm, Uran-Suga, Uran-Tea, 

Zinc-Shri, Zinc-Soym, Zinc-Logs, Zinc-Sawn, Bana-Coco, Bana-Soyo, Barl-Suga, Coco-Soyo, 
Coco-Sawn, Lamb-Soym, Sorg-Suga, Soyb-Suga, Whea-Oliv, Coff-Soyo, Oliv-Wool, Soym-

Sawn, Soyo-Tea, Soyo-Logs, Suga-Sunf   
3 steps; 35 connections-links (3.0%); Most: Coco (7), Suga (6)   

1 (Nuts) 

GCN5 (price first differences) 4 steps; 7 connections-links (0.6%); Most: Iron (3), Suga (3)   2 (Zinc, Nuts) 
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Table A6 – Node-level farness centrality across GCN variants (maximum and minimum values in bold) 

 Geodesic 
GCN1  

(price levels) 
GCN2  

(price levels) 
GCN3  

(price levels) 
GCN4  

(price levels) 
GCN5  

(price levels) 

GCN1  
(price first 

differences) 

GCN2  
(price first 

differences) 

GCN3  
(price first 

differences) 

GCN4  
(price first 

differences) 

GCN5  
(price first 

differences) 

Coal 48 57 61 71 60 81 83 92 99 76 81 
Ngas 48 60 63 70 63 80 86 104 106 80 90 
Oil 48 57 66 78 61 78 73 83 96 83 91 
Alum 48 65 71 81 65 87 84 90 104 88 101 
Coba 48 65 68 75 72 83 82 97 112 78 83 
Copp 48 53 58 69 67 81 83 91 92 85 93 
Gold 48 60 65 87 76 83 75 85 99 100 94 
Iron 48 58 68 75 62 77 75 93 98 90 126 
Lead 48 58 66 75 59 83 80 94 102 84 91 
Nick 48 64 74 80 55 83 78 94 106 89 100 
Plat 48 60 67 80 51 79 85 95 100 82 94 
Silv 48 61 66 75 68 80 83 98 125 72 103 
Tin 48 55 63 70 73 79 76 86 91 75 89 
Uran 48 65 73 84 67 81 79 90 101 88 96 
Zinc 48 63 73 80 82 89 79 89 94 98 48 
Bana 48 65 81 106 68 86 104 122 144 91 111 
Barl 48 60 66 80 62 70 78 86 97 75 92 
Beef 48 64 73 88 79 92 86 99 134 82 103 
Coco 48 82 85 97 69 87 87 106 131 96 116 
Corn 48 57 67 75 65 94 77 85 89 72 84 
Lamb 48 78 88 109 54 86 85 106 119 85 102 
Nuts 48 67 76 86 68 86 89 122 121 48 48 
Pork 48 85 94 113 60 83 86 118 123 82 89 
Poul 48 60 68 78 52 72 83 93 96 77 81 
Rice 48 58 67 81 53 72 67 70 84 75 97 
Sorg 48 58 68 75 65 77 75 86 97 87 98 
Soyb 48 57 63 72 81 86 78 88 92 85 99 
Whea 48 59 67 77 64 84 79 84 85 82 93 
Coff 48 83 95 105 71 88 91 48 48 92 106 
Fish 48 68 77 99 51 96 85 99 107 85 98 
Oliv 48 69 86 95 60 88 77 91 91 93 113 
Palm 48 56 62 70 56 79 81 95 107 73 82 
Rape 48 56 67 81 69 87 78 84 86 85 96 
Salm 48 69 79 93 55 79 79 90 119 83 102 
Shri 48 79 91 118 65 85 84 103 118 76 79 
Soym 48 55 67 86 62 84 75 88 93 92 121 
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Table A6 (continued)            

Soyo 48 61 65 74 71 86 80 91 96 92 101 
Suga 48 64 73 93 63 87 84 133 164 97 123 
Sunf 48 58 62 72 61 77 69 73 82 82 91 
Tea 48 78 89 122 58 98 103 138 159 91 102 
Cott 48 66 72 88 61 81 85 96 116 80 86 
Dap 48 54 57 68 61 86 67 75 87 74 79 
Hide 48 76 85 104 52 88 91 132 147 71 84 
Logs 48 91 109 138 59 75 116 136 48 87 124 
Pota 48 58 62 70 69 83 67 71 87 79 88 
Rubb 48 63 74 88 64 85 85 91 115 73 89 
Sawn 48 85 99 185 69 92 112 48 48 92 122 
Urea 48 59 68 75 56 82 74 79 77 73 105 
Wool 48 77 90 111 62 91 84 121 48 85 96 
Avg. 48 65 73 88 64 84 82 94 102 83 96 
Avg. Energy 48 58 63 73 61 80 81 93 100 80 87 
Avg. Metals 48 61 68 78 66 82 80 92 102 86 93 
Avg. Agriculture 48 65 74 87 65 83 83 97 109 80 93 
Avg. Food 48 66 76 92 62 86 82 94 106 87 101 
Avg. Other raw materials 48 70 80 103 61 85 87 94 86 79 97 
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ANNEX 5  

Figure A1 – Topology of selected synthetic networks with the 49 nodes (commodity prices).   
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