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Abstract

In this paper we adopt a task approach to measure the local pool of capabilities
which can more effectively spur innovation. By focusing on the core activities that
workers undertake in their jobs, we build an abstract task intensity measure of occu-
pations to proxy the ability in analysing and solving complex problems, as well as
in coordinating and integrating people with different knowledge endowments, that
should be especially relevant for the process of invention and innovation. We thus
estimate the relationship between the local abstract intensity and the inventive per-
formance, proxied by granted patents, of US Commuting Zones during the period
2000-2015. The evidence provided, robust to a wide array of sensitivity checks,
points to the extent of workers’ engagement in abstract tasks across Commuting
Zones as a crucial determinant of the local inventive activity.
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Local Labour Tasks and Patenting
in US Commuting Zones

Marialuisa Divella Alessia Lo Turco
Alessandro Sterlacchini

1 Introduction

The economic literature recognises invention and innovation as the core engines of
growth, with human capital as the main input (Lucas Jr,[1988;[Romer} [1990; |Gross-
man and Helpman, [1993}; |Verspagen, 2006)). These processes mainly involve the
deployment of cognitive skills to produce advances in scientific and technological
knowledge, as well as of organisational capabilities to combine and transform such
knowledge into new ideas and working artifacts (Pavitt, 2003; Deming}, 2017). The
output of these activities increasingly results from the combination of the capabil-
ities of different entities: it may originate from buyer-supplier relations, or from
cooperative agreements between firms specialised in separate steps of production,
and even between firms and public entities (Pavitt, 2003} |Jones, 2009; Bercovitz
and Feldman| 2011} Deming, [2017). As these entities are often located in the same
place, the role of geography emerges as an important ingredient of the overall inno-
vation process, implying that aggregate location-level studies are better suited, than
firm-level ones, to capture these types of interactions (Porter and Solvell, 2003}
Jatfe et al., [1993). Moreover, since innovation-related capabilities are produced
and deployed on the job, a stream of literature has focused on what people do at
workplace, rather than on their educational attainment or industry affiliation, to
measure the knowledge base of regions. Different studies have thus inspected the
role of locations’ effective endowments in terms of specific occupations, such as
high skilled, STEM, and creative jobs (Thompson and Thompson, 1985} [Floridal
2004; |[Feser, 2003} |Boschma and Fritsch, [2009; Beaudry et al.l 2010; [The National
Science Board, 2015).

In this work, we move a step further by adopting a task-based approach and inves-
tigating the role of the local abstract task intensity on the patenting activity in the
US Commuting Zones (CZs) over the 2000-2015 time span. Compared to the hu-
man capital framework, this approach depicts a job as the result of the combination
of different work activities - tasks - with the aim of better capturing the extent of
substitution between labour and technology/trade (Autor et al., [2003; |Acemoglu
and Autor, [2011)).

We claim that moving from workers’ education levels or occupational title (e.g.
STEM/non-STEM) to their actual work activities on the job is an effective analyti-



cal switch also for explaining the heterogeneous inventive performances of places.
As moving from industries to occupations allows for a better isolation of the effects
of human capital, so moving from occupations to their task content should help to
shed light on which particular feature of occupations actually drives the creation of
new and valuable knowledge at the local level. In this respect, with our economic
geography perspective, we contribute to advance the recent firm level literature
showing that firms with higher shares of employees engaged in abstract, rather
than routine or manual, work activities are more productive and innovative (Fon-
seca et al.l 2018}, 2019). Indeed, to uncover whether a significant nexus between
abstract tasks and innovation exists, an empirical analysis needs to be conducted at
a relevant location level where both phenomena can be better observed and mea-
sured.

The abstract task intensity, with its composition of non-routine cognitive - techni-
cal/analytical and managerial/interactive - activities required in a job (Autor ef al.,
2003f;|Acemoglu and Autor;, 2011)), represents a measure of the ability in analysing
and solving complex problems, as well as in coordinating and integrating people,
knowledge, and learning, which should be crucial especially under the uncertainty
that typically characterises the innovation process. On the one hand, since these
activities involve different entities often co-located in space (Jaffe et al.| [1993), a
firm level approach per se would not be sufficient to capture how much the local
composition in terms of tasks actually affects the inventive activities. On the other
hand, as the introduction of a new product by a firm is not necessarily the outcome
of an inventive activity, an aggregate regional level perspective is again more ap-
propriate, likewise the use of the local patenting activity as a proxy of innovation
to capture the actual ability to engender new valuable knowledge.

Anticipating our findings, our proposed measure of local abstract task intensity is
a strong predictor of local patenting and this evidence is robust to a wide array
of sensitivity checks. Hence, a task approach significantly improves the explana-
tory capacity of models based on the usual measures of regional human capital
employed in the empirical literature. In particular, the local level of abstract task
intensity better captures the endowment of capabilities that more effectively spur
inventing activities.

The work is organised as follows: Section [2] discusses the theoretical background
and places our contribution into the literature; Section E] describes the data, the
main variables construction, and some preliminary evidence; Sectiondand Section
[5| report the empirical model and the results, respectively; Section 6] concludes.

2 Theoretical background

2.1 Innovation, geography and measures of the local pool of capabili-
ties

Porter and Solvell (2003)) identify three essential features of the process of innova-
tion that bridge it to geography. As a first point, they stress both the highly tech-



nical and economic uncertain nature of innovation and the risk containment nature
of geography: the possibility of interaction in informal networks and in formal co-
operation agreements would reduce the uncertainty by favouring a more rapid and
effective trial-and-error problem-solving phase. Second, the process of innovation
increasingly emerges outside the firm. Hence, the innovation process is highly in-
teractive, and its output is often the product of the combination and deployment of
the capabilities of different entities. Third, the process of innovation is rooted in
informal exchange of tacit knowledge, and face-to-face contacts have been found
to improve the efficacy of such an exchange.

From an evolutionary perspective of technological change, tacit knowledge is widely
recognised as a central component of the learning economy and a key to value cre-
ation through the generation of original ideas and discoveries (Nelson and Win-
ter, [1985). Although the general level of education and skills of the workforce
is an essential precondition to ensure the ability of workers and firms to absorb
both tacit and codified knowledge and engage in learning processes (Cohen and
Levinthal, [ 1990), most of the tacit knowledge produced within firms arises in "do-
ing" and "interacting" (Lundvall, 1988} [Howells, 2000). Indeed, in order to be
transferred, tacit knowledge requires social interaction and collaboration of indi-
vidual workers within a shared social, organisational, and cultural context. Since
social and cultural interactions are particularly enhanced by geographical prox-
imity, for an effective transmission of tacit knowledge the regional/local dimen-
sion exerts a paramount importance (Maskell and Malmberg, [1999; |Gertler, 2003},
Boschma), 2005)). It follows that aggregate location-level studies are better suited to
capture these types of interactions, and production locations are focal for learning
and knowledge creation (Floridal [1995).

In search of the role of specialised knowledge in the local inventive activity, many
empirical studies have focused on the local industry composition, especially high-
lighting the role played by the presence of economic clusters (Glaeser ef al.,|1992)
and knowledge intensive industries (Barkley and Henry, 2005; Jara-Figueroa et al.|
2018). Given the centrality of the knowledge base of regions, however, an in-
fluential body of research has pointed at the paramount importance of dissecting
the knowledge content of the local pools of labour (Thompson and Thompson,
1985). The call is for an increasing attention by policy makers to develop strate-
gies which target specific occupations as bundles of potentially useful knowledge
and skills, rather than just identifying a relevant industrial mix to promote (Feser,
2003} Markusen| 2004; [Boschma and Fritsch, 2009). A parallel field of study has
thus emerged in which human capital in the form of educated and skilled labour
is perceived as the most important factor explaining the rate of inventive activities
across territories, even after controlling for R&D inputs or other regional charac-
teristics. Especially, |[Florida (2004)) emphasises that regional development relies
not on particular industries, but rather on creative individuals and occupations -i.e.
the share of population employed in creative and innovative jobs such as sciences,
engineering, education, culture, arts and entertainment - which are not industry
specific and are the primary source of knowledge spillovers within and across re-



gions (Zucker et al.|[1998; |Almeida and Kogut, [1999; Stolarick and Floridal [2006).
Floridal(2004) defines creative core occupations as those whose economic function
is to create new ideas, new technology and/or new creative content; creative pro-
fessional occupations as those involving complex problem solving, a great deal of
independent judgment and high levels of education; and bohemian occupations as
those engaged in artistic and cultural activities, who also may have an (indirect) im-
pact on the local inventive capacity by further inspiring creative ideas, even if not
directly involved in the innovation process and patenting. According to this the-
ory, what mainly affects the innovative capacity of regions is the "people climate"
rather than the "business climate". This implies that places with a good "people
climate" tend to retain and attract creative talents, who, in turn, favour inventions
and innovations. Hence, the local economic performance is an effect, and not a
determinant, of the local agglomeration of inventive capabilities.

Boschma and Fritsch| (2009) operationalise Florida’s idea and show that creative
people are attracted to more open and tolerant places as well as to areas with more
job opportunities, though the evidence on the impact of the share of creative work-
ers on regional growth is mixed. In particular, for German regions, they find that
the positive effect of employees with high educational levels on patenting activity
remained stronger than that of creative core and creative professional occupations,
which suggests the need of better understanding and measuring the main sources of
inventive processes and regional development. In another direction, for instance, a
special attention has been recently paid to the local endowment of Science, Tech-
nology, Engineering and Math (STEM) jobs or technology-related occupations (i.e.
the so called "techies"), considered as key factors of regional economic growth and
competitiveness. Especially (though not exclusively) in the US, the evidence is in
favour of this "STEM workforce" as an extensive and critical input to innovation
(Perti et al., 20155 |Grinis, 2019; Deming and Noray, 2018 Harrigan et al.| 2021).

In order to explore the nexus between the local pool of capabilities and innovation,
we move a step ahead of the existing literature by considering a task approach.
This latter is expected to better capture some specific features of the local occupa-
tional base that can be essential to spur inventive activities. The task approach, by
decomposing occupations into bundles of different work activities, has been origi-
nally proposed to better explain the labour market consequences of technology and
trade (ﬁutor et all, [2003; |Autor and Dorn, 2013 |[Fernandez-Macias and Bisello,
2022)

'In fact, what determines the degree of jobs’ substitutability depends on the work method which,
in turn, stems from the amount of routine that they entail together with the specific type of technolog-
ical tools that are used (see |Autor et al.| [2006; |/Autor and Handell 2013|and, especially, [Fernandez-
Macias and Hurley, [2017). Hence, technological change/trade could be especially detrimental for
some specific occupations within an industry and for some specific workers within an occupation
(Autor and Dornl 2013} |Autor et al.l 2015). |Autor] (2022), however, cautions about the complex
relation between technological change and labour tasks, as the latter are not static and the former not
only and not necessarily implies substitution of existing work activities, but may also involve a thor-
ough transformation and reinstatement of job tasks. Also, the diffusion and evolution of Artificial



In this paper we claim that shifting the emphasis from occupations to their task
content represents an opportunity to more accurately capture the effective human
capital contribution to the inventive performances by firms and regions. Drawing
on this, we contend that the standard and most widely used indicators for human
capital based on education - e.g. the share of workers who attained at least a uni-
versity degree - may not be adequate to properly detect the local endowment of
inventive capabilities. Clearly, advanced education represents an essential condi-
tion for a region’s absorptive capacity that facilitates the flow of knowledge, ideas,
and learning. Nevertheless, we argue that the use of measures based on the educa-
tional level of the workforce would provide only partial information in this respect,
as they would not capture neither workers” accumulated experience nor individual
creativity (Florida, 2004). Moreover, they fail to consider that the way human cap-
ital resources are organised on the job matters to enable innovation, which implies
that organisational capabilities are also essential (Fonseca ef al.,|2019;|Capriati and
Divella, ZOZO)EI Furthermore, possible implications in case of mismatch between
educational qualifications and job positions must be considered. Indeed, the pres-
ence of over-education may lead to partly reallocate high-educated workers into
less qualified occupations and more routinized tasks (Beaudry et al.,2010; Brunetti
et al.|[2020). In such cases, the information provided by the sole level of education
could be incorrect. On the other hand, the focus on specific categories of qualified
workers and their occupations could be equally misleading. Indeed, an effective
workers’ engagement in critical thinking and complex problem solving, which are
at the core of invention, should be better observed at the level of specific tasks,
that is, by focusing directly on the core activities that workers undertake in their
jobs, instead of being generically inferred through their professional occupations.
Moving from workers’ education levels (or generic skill requirements) to their ac-
tual work activities on the job, then, can represent an effective analytical switch
for explaining the achievement of heterogeneous performances by regions. In this
respect, our work is the first contribution to focus on the relationship between the
local task content and inventiveness.

2.2 The process of innovation and the importance of abstract tasks

With this work we aim at showing that the actual amount of abstract tasks deployed
in the work activity of people in a specific area is strongly associated to the local
performance in patenting.

In the literature, abstract tasks are theorized as non-routine cognitive work activ-
ities where technical/analytical and managerial/interactive capabilities are applied
in varying and creative ways to solve problems and coordinate people, knowledge,

Intelligence (AI) engenders uncertainty about which tasks will be substitutable in the future.

2Within the resource-based view of the firm (Penrose, [2009), firms can also differ with respect
to the capacity to coordinate, reconfigure and dynamically sustain the creativity endowment (Teece|
2007). Therefore, superior performance crucially depends on the capacity to manage and convert the
knowledge embodied in workers into inventions and innovations.



and learning (Autor et al.L[2003;|/Acemoglu and Autor,2011). Science/engineering,
managerial and medical jobs are just few examples of professional occupations that
can be considered as more intensive in abstract tasks (Fonseca et al.| [2019). In the
empirical part of our work, the abstract task measure is retrieved from the work by
Autor and Dorn|(2013) and derives from a combination of two variables, namely:
"GEDMath", measuring mathematical and formal reasoning; and "direction control
and planning", which stands for managerial and interactive tasks. Together, these
variables represent a specific subset of cognitive activities, i.e. the non-routine
ones, which are very different in nature from other, routine and manual, tasks.
Tasks involving mathematical and formal reasoning should especially capture in-
dividuals’ ability to think logically and analytically and, thus, their intuition and
problem solving skills. Indeed, the solutions to mathematical problems are not al-
ways straightforward, and often require critical thinking and a deep understanding
of the underlying concepts. Additionally, formal reasoning tasks, such as those
found in logic and computer science, involve understanding abstract concepts and
applying them in new and unique ways. All this contrasts with repetitive tasks,
which involve performing the same actions over and over again with little varia-
tion.

Managerial and interactive activities are also essential functions that need to be per-
formed in order to ensure a good organisation of people and work activities towards
value creation. These tasks are also difficult to be considered repetitive as they
necessarily involve a high degree of flexibility and adaptability. In fact, manage-
rial tasks involve making decisions, leading and managing teams and people with
different knowledge bases, all of which require a range of skills such as strategic
thinking, communication and negotiation. Likewise, interactive tasks often involve
working with different people and adapting to changing circumstancesE]

Hence, by working on abstract tasks, individuals and teams should be required
to use their own initiative and imagination to come up with new ideas and so-
lutions that can drive innovation in a variety of fields. We thus claim that our
proposed indicator of abstract task intensity can help capturing, beyond what can
be measured by educational attainments or indirectly inferred by professional oc-
cupations, the local pool of capabilities that can be considered as fundamental in
the process of innovation where the outcome is a brand-new product or, as in our
case, a patented invention. Being the process of innovation characterised by a great
amount of uncertainty, requiring the ability to critically analyse and solve complex
problems, particularly by coordinating and integrating different pieces of knowl-
edge and knowledge sources under fast-changing scenarios, the importance of the
just mentioned abstract tasks is evident.

Pavitt (2003)) corroborates this view by regarding the overall process of innova-

3The recent development of Artificial Intelligence increasingly changes the boundaries between
routine and non-routine cognitive tasks (Autor,2022). Nevertheless, several abstract tasks, especially
those directed to the inventive activity, highly involve creativity, flexibility/adaptability and the need
to interpret and apply context-specific information. These features make these tasks actually difficult
to be replaced by Al systems (see|Cirillo ef al.} 2021} [2022).



tion as characterised by three overlapping sub-processes: i) cognitive, involving
the production of scientific and technological knowledge; ii) organisational, which
refers to the transformation of knowledge into working artifacts; iii) economic,
concerning the response to and creation of market demand. Increased specialisa-
tion in the production of goods and knowledge has increased the complexity of
goods, their knowledge base and the organisational routines for their development
and commercial exploitation. Sub-processes i) and iii) are contingent and can be
considered strictly dependent on the educational and work experience background
acquired by inventors/innovators in the specific field in which the innovation is cre-
ated. Sub-process ii), instead, is more transversal and requires a great amount of
the general-purpose ability in coordinating and integrating specialised knowledge
and learning in condition of uncertainty. In this direction, more recently, Deming
(2017) has modeled social/interactive skills as fundamental in reducing coordina-
tion costs in team work to improve performance in production, showing that math-
intensive and social/interactive skills are complements in the labour market [/
Although firm level evidence has shown that firms with a higher share of workers
performing abstract tasks are the most productive, experience a market share in-
crease over time and have a higher propensity to introduce new products (Fonseca
et al., 2018, [2019)), E] we believe that the role of economic geography needs to be
taken into account.

First, the inventive performance of regions is not simply the sum of that of the
companies located in them, but it is also remarkably affected by the network of
interactions and knowledge exchanges that occur between both firms and people.
These interactions mainly consist of exchanges of tacit rather than codified knowl-
edge and, in most cases, do not involve formal cooperation agreements. Thus, the
aggregate (regional) level of analysis allows to account for the role of knowledge
spillovers that would be not captured with a firm-level analysis.

Second, a product innovation at firm level is not necessarily the outcome of an in-
ternal inventive activity as firms may introduce products that are new to them but
not to the market. Therefore, an aggregate level of analysis is essential in assessing
the local innovative performance and patenting is particularly useful as it measures
new created knowledge that is not still existing anywhere else.

Finally, the simple aggregation of firm level data would leave out the innovation,
knowledge production and coordination activity occurring in the public sector and

*Indeed, inventive activities have been increasingly carried out by teams of individuals belong-
ing to different organisations due to the increasing need to rely on knowledge diversity and absorb
external knowledge (Jones| [2009; |Bercovitz and Feldmanl |2011). However, along with enhancing
the creativity potential, the increasing diversity of teams engenders organization and coordination
costs (Aggarwal ef al.}[2020). [Rothwell| (1977) coined the term "business innovators" to identify key
individuals within the management structure who are not necessarily part of the inventive teams, but
perform the task of coordinating the overall process of invention and innovation.

3Specifically, the authors have postulated, and partially confirmed with their evidence, that, while
the degree of abstractism has a linear positive relationship with the propensity to innovate, the re-
lationship between abstractism and share of sales from new products follows an inverted u-shaped
relationship.



that is relevant for patenting activities (Aghion et al.| 2008)).

3 Data and variables

To measure the task composition of the US CZs, we source data from the US 2000
census 5% and American Community Survey (ACS) 2005-2010 samples available
from IPUMS USA (Ruggles et all 2018). These samples include homogeneous
information on the 2000 Public Use Microdata Areas (PUMASs) that allows to ag-
gregate individual level information on occupation typology and another bunch of
individual characteristics (e.g. education and industry) at the CZ level on the basis
of the work by|Autor and Dorn|(2013)). The Autor and Dorn’s definition of abstract,
routine, and manual tasks combines into three dimensions the five tasks identified
by |Autor et al.|(2003)) and is exclusively based on work activities contained in the
DOT 1977. As already mentioned, the abstract tasks measure is the average of two
DOT variables as the core content of non-routine cognitive tasks: "GEDMath",
capturing mathematical and formal reasoning requirements; and "direction control
and planning", as a proxy of managerial and interactive tasks. Moreover, the man-
ual tasks measure corresponds to the DOT variable detecting occupations’ demand
for "eye-hand-foot coordination". The routine tasks measure is a simple average
of two DOT variables: "set limits, tolerances, and standards", which measures an
occupation’s demand for routine cognitive tasks; and "finger dexterity", which cap-
tures occupations’ use of routine motor tasksE]

Measuring the Abstract Intensity of Occupations of the CZs - To measure
the abstract intensity of each CZ we match individuals® occupational codes from
IPUMS with the abstract, routine, and manual tasks measures at the occupational
level available from |Autor and Dorn|(2013)). We thus harmonise the occupational
codes from IPUMS for the different years by means of the occ1990dd classification
created by |Autor and Dorn| (2013)) which groups individuals into 330 different 3-
digit occupational codes. Then, we define the abstract intensity of an occupation
0 as:

Abstract_Tasks,

Abstract_Intensity, =
- Yo Abstract_Tasks, + Routine_Tasks, + Manual_Tasks,
For each occupation o, Abstract_Intensity, measures the ratio of abstract to
the total of abstract, routine, and manual task scores. The intensity, indeed, iden-
tifies the relative importance of abstract tasks in the total bundle of tasks defining
the content of an occupation. Then, from IPUMS we retrieve the importance of

SThe three task measures can be retrieved from David Dorn’s web page. In Section 0.2 of the
Appendix we compare the abstract task measure with other measures of cognitive and interactive
tasks available from the existing literature.



each occupation in each US CZ in terms of the share of workers s performing an
occupation o in a CZ ¢ and in a specific year ¢, and we compute a CZ level measure
of abstract intensity of the local labour force as:

O
Abstract_Intensity; = Z Siotx Abstract_Intensity, fori=1,...,CZ;t = 2000, 2005,2010

o=1

ey
This measure is the weighted average of abstract task intensity of jobs in the CZ
where weights s, are the share of each occupation o in the total CZ 7’s employ-
ment at time ¢. This intensity, then, is not the simple share of abstract workers
like in |[Fonseca et al.| (2019) and, in this respect, also differs from previous mea-
sures based on the share of particular types of occupations. Our abstract intensity
measure takes into account the fact that any two occupations that can be similarly
classified as highly skilled may substantially differ in terms of their task composi-
tion as well as any two CZs having a similar share of abstract workers may well
differ in the distribution of abstract intensities across occupations and, hence, in
their overall abstract intensity. Figure 2] shows and contrasts the spatial distribu-
tion of our proposed measure of abstract intensity at the CZ level, for the first and
last year in which we have managed to compute that, namely in 2000 and 2010.
The two maps in the Figure are constructed by dividing the CZs by quintiles of the
measure of abstract intensity, with darker shades representing areas characterized
by higher levels of local abstract intensity. As can be noticed, over time, abstract
intensity has become more spatially concentrated in the Eastern part of the country,
mainly due to a reduction experienced by North-Western CZs.

Measuring the Innovation Activity of the CZs - We rely on the number of
patents granted to resident inventors as a measure of the CZs’ innovation activity.
We are aware that patents are affected by inherent limitations. Patents represent
just an intermediate output of the innovation process and, for this reason they may
greatly differ in their economic impact; moreover, the propensity to patent varies
significantly between industries and firms of different sizes (Griliches, [1990). De-
spite these shortcomings, a specific characteristic of patents, relevant for our study,
is that they are good proxies of inventions concerned with the provision of new
goods and services. In this direction, eminent literature has corroborated their re-
liability as a measure of local innovation (Acs ef al}, [2002)). Hence, patents are
widely adopted by prominent studies in economic geography as measure of new
and commercially exploitable pieces of knowledge (Porter, | 2003} |Crescenzi ef al.|
2007; |Hunt and Gauthier-Loiselle, 2010; Balland et al.| 2015; |[Balland and Rigbyl
2017; |Castaldi et al.,[2015]; |Rodriguez-Pose and Wilkie, 2019).

For the purpose of our study, then, we consider the number of patents granted
between 2000 and 2015. In the US, patent data at the county level are provided
by the United States Patent and Trademark Office (USPTO). The geographical



attribution to different cities and counties is based on the residence of the first-
named inventor on the patent document at the time of grant (see USTPO, [2000).
So, in the US, patent statistics at county level are not based on patent applications
(as in Europe), but on patent grants. As our units of analysis are the US CZs, we
aggregate the county level information at the CZ level.

The CZs identify local labour markets in the US, therefore patents attributed to
them provide a good approximation of regional inventive activities. Indeed, the
geographical aggregation alleviates the bias due to possible differences between
the county of residence of inventors and that of their employment, i.e. where their
inventive activities do actually take place. In the end, we manage to compute the
number of patents granted for 721 CZs over 741. The 20 missing CZs correspond
to counties for which no patent has ever been recorded over the entire 2000-2015
period and which thus do not appear in the USPTO record of patents by county.
Hence, looking at the number of granted patents at the CZs level in 2000 and 2010,
darker shades in the two maps of Figure[3]stand for areas reporting higher presence
of inventors. As can be seen, there seems to be some heterogeneity across US
main regions: there is evidence of innovation persistence in Western CZs, while,
moving from the Central to the Eastern part of the country, a process of innovation
diffusion seems at work since new CZs have been able to enter among the top
inventing places in the US (see also|Andrews and Whalley (2021)ﬂ All in all, the
spatial pattern of our measures of abstract intensity and patenting at local level, as
depicted by Figures2]and 3] appears to be somehow related: indeed, both measures
tend to move and cluster in the same CZs.

"This pattern is confirmed if patents are normalised over population (see Figure 0.4 in the Ap-
pendix).
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Figure 2: Abstract Intensity across US CZs in 2000 and 2010

0.31-0.35

>0.35-0.36
>0.36-0.38
>0.38 - 0.40
>0.40-0.47

0.32-0.36

>0.36-0.38
>0.38-0.39
>0.39-041
>0.41-0.48

(b) Abstract intensity 2010
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Figure 3: Patents Count across US CZs in 2000 and 2010
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4 Empirical model

To evaluate the relation between the local task composition and patenting in the
US CZs we estimate a negative binomial regression model to account for the count
and over-dispersed nature of the dependent variable. The baseline specification is
as follows:

E(Patents; 17 /tg+r+2) = exp|B+y*xAbstract_Intensity; to+0 X to)€ir (2)

where Patents; 4+ /to1-12 1 the total number of patents granted to CZ ¢
over the three-year time span to + 7/tg + 7 + 2 while Abstract_Intensity; ¢, is
our main variable of interest that measures the weighted average of the abstract
intensity across all occupations and workers in the CZ at the initial period £y (see
equation [T). Concerning this point, it needs to be stressed that the choice of the
past values at which considering the relevant local characteristics depends on the
time lag occurring between patent applications and the patent grants that we actu-
ally observe. Figure O.5 in the Appendix shows that during most of our sample
period the average pendency is around 35 months, hence, we set 7 = 3, choosing
a conservative three-year time span for local labour task composition to affect the
number of granted patents. We, then, consider three different waves of observa-
tions: tp = 2000 with patents aggregated over the 2003-2005 period; 9 = 2005
with patents aggregated over the 2008-2010 period; ¢y = 2010 with patents aggre-
gated over the 2013-2015 period. We alternatively treat such three waves as single
or pooled cross-sections in the estimations. It is also worth highlighting that we
aggregate the number of patents over three years in order to reduce the number
of Os in our main outcome variable. As shown in Table O.1 in the Appendix, the
three-year aggregation reduces by one half the share of Os in the sample. In the ro-
bustness checks, however, we show that our results are not affected by a different
span of aggregation.
The vector X; ¢, includes a set of controls that account for further heterogenous
initial conditions and potential confounding factors, other than abstract intensity,
which are identified according to the existing literature on innovation determinants.
These account for the CZs’ size measured by means of the log of population,
Pop; ,, retrieved from the US Census Bureau, Population Division. Then, from
IPUMS, we compute the CZs’ per capita wage income, Wage_Income; 4, the
share of employment in high-tech industries, Empl_shﬁi)g hTech ﬁ and the share
of college graduates in the labour force, Graduate_sh; toﬂ Unfortunately, we
have no information on the CZ level R&D expenditure; nonetheless, from the

8We apply the definition of high-tech industries suggested by the Bureau of Labor Statistics pre-
sented in |Wolf and Terrell| (2016) and based on the share of STEM occupations. Hence, industries
are defined as "high-tech" if they have a share of STEM workers that is two and a half times the
national average (industries in which at least 14.5 percent of jobs is in STEM occupations).

°The share of graduates is measured as the share of individuals having completed 5 or more years
of college.
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National Science Foundation (NSF), we draw the federal state level business and
public expenditure in R&D over GDP, namely R&D_GD P_sh'telndustrial apq
R&D_GDP_sh3'ePublic The inclusion of the State level R&D expenditures ac-
counts for heterogeneous state-level innovation systems and policies which impor-
tantly affect the inventive capacity at the local level (Wilson, 2009} |Chang, 2018]).
Table O.2 in the Appendix shows descriptive statistics for the left- and right-hand
side variables of model[2]and Table O.3-0.4 show correlations and VIF test among
the latter.

Before turning to the presentation of the results, it is worth discussing the poten-
tial role of reverse causality in our empirical framework. On the basis of [Florida
(2004), the existing evidence shows that the presence of job opportunities is equally
important as the presence of an open and tolerant climate in attracting specific types
of workers to a location (Boschma and Fritsch, 2009). Hence, as job opportunities
are highly dependent on regions’ economic performance, it cannot be excluded
that reverse causality between patenting and the task composition of CZs may be
at work. However, in the robustness checks and in the Appendix (Section O.2) we
provide evidence supporting the direction of the nexus going from task composi-
tion to patenting.

5 Results

Table [T] presents the baseline results from the estimation of model [2] in Columns
[1]-[4]. In all estimates, we cluster standard errors at State level to account for
potential correlation across the CZs within the same Stateq}

The results show that the coefficient of our variable of main interest is always

highly significant and positive, therefore confirming a relevant role of abstract in-
tensity in the local pool of occupations with respect to local patenting.
Turning to controls, both their sign and significance are as expected. Indeed, CZ’s
size (population) and per capita wage income, as well as the share of employees
in high-tech industries and the share of graduates in the local labour force are all
positively associated to patent counts. In particular, the results on the share of
employment in high-tech industries, as well as those regarding the significant role
of state business R&D expenditures are in line with |Acs et al.| (2002), while the
emerged positive role of the share of graduates in the labour force is in line with
Crescenzi et al.|(2007). The association between patents and average wage income
at the local level is not always significant, but its positive sign seems to be in line
with the evidence provided by Porter (2003)E]

191¢ should be also noticed that a certain number of CZs fall across multiple States. In that case, we
attribute them to the State where most of the population is located. Removing the cluster, however,
does not alter the significance of our baseline findings.

UThe last coefficient refers to the estimates of the log-transformed over-dispersion parameter,
In(a), which turns out highly significant. As can be seen in the bottom part of the Table, the implied
« is reported together with the likelihood ratio test for the null hypothesis that « = 0. According to
the associated Chi-squared statistics with one degree of freedom and the corresponding p-value, the
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Table 1: Abstract intensity and patent count in US CZs

(1] (2] (3] [4]
2000 2005 2010 Pooled
Abstract_Intensityy, 12,5825 12387 12.956%#% 13.181%*
[4.025]  [5.791]  [4811]  [4.111]
Wage_Incomey, 0.35 1.155%* 0.618 0.65
[0.515]  [0.530]  [0495]  [0.463]
Popy, 0754355 (.793%#%  0.831%#k  (.799%*
[0.067]  [0.064]  [0.054]  [0.057]
Empl_sh, "= Teh 14.306%+%  9.967#%  7.384%*  ]0.415%+*
[3.886]  [4.021]  [3.050]  [3.468]
Graduate_shy, 16307 12.642%%  18.480%+*  15.530%*

| [6.443]  [6.041]  [6.147]  [5.585]
R&D_GDPshftate=Business 97 p7gss  27.410%%  34.223%%%  29,123w+x
[10.808]  [11.598]  [7.642]  [9.060]

R&D_GDPshyteteublic -0.029 0067  -0.144%*  -0.082
[0.091]  [0.081]  [0.059]  [0.068]
In(a) 0.571%#%  Q.714%%%  0.692%%%  0.663%+*

[0.072] [0.071] [0.059] [0.059]

Observations 721 721 721 2,163
PseudoR2 0.152 0.149 0.148 0.15
Q 1.771 2.041 1.997 1.940
Chi2 916.1 905.1 657.1 1141
P-value 0 0 0 0

*** p<0.01, ** p<0.05, * p<0.1. Robust standard errors in brackets clustered at the level
of Federal State. Time dummies included in the specification of Column [4].
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Concerning the magnitude of the effect, the coefficient estimates of the pooled
model of Column [4] and the descriptive statistics of Table O.2 in the Appendix
imply that, ceteris paribus, a one standard deviation increase in the abstract in-
tensity at the local level is associated with an increase in the number of patents
of 0.395. To better grasp the relevance of the contribution of local abstract inten-
sity to patenting, Figure O.6 in the Appendix shows the average count prediction
of patents by different levels of abstract intensity computed at the means of the
remaining covariates. Moving from the minimum to the maximum of observed
abstract intensity in our sample implies a great variation in the number of patents,
though the estimates of the marginal effect are much less precise for the highest
levels of our abstract intensity measure.

5.1 Robustness checks

To assess the strength of our baseline findings, we run a wide array of robustness
checks. We focus on the pooled model of Column [4] of Table|l|and for the sake
of brevity we omit to show baseline controls that, nonetheless, are included in all
the specifications unless differently speciﬁedPE]

Omitted variables and confounding factors - To better assess the robustness
of our findings, in Table [2] we report the results obtained by splitting the indus-
try control (i.e. the share of employment in high-tech manufacturing and ser-
vice industries) inserted in our baseline specification in two separate indicators
for high-tech manufacturing and service industries (Column [1]). Then, by resort-
ing to the OECD industry classification based on R&D intensity, we also replicate
our baseline estimation by alternatively employing the share of high R&D inten-
sive (manufacturing and service) industries (Column [2]) and, again, the share of
R&D intensive manufacturing and service industries separately considered (Col-
umn [3]). Hence, exploiting a finer detail of the classification, we also add the
share of medium R&D intensive manufacturing industries []E] and that of low R&D
intensive manufacturing and services ones (Column [4]). As can be seen, our in-
dicator of abstract intensity turns out to be robust to the inclusion of any control

hypothesis is strongly rejected, so that we can conclude that alpha is non-zero and that the negative
binomial model is more appropriate than the Poisson model.

2Beyond the main sensitivity analyses shown in the remainder of this Section, we have run the
following further robustness checks: we 1) alternatively include State- and CZ-level controls; ii) dis-
aggregate and separately include the single components of our abstract intensity measure; iii) con-
sider the number of patents over local population as alternative dependent variable; iv) reintroduce
CZs with always O patent records; v) exclude self-employment from the IPUMS original sample;
vi)include the interaction terms between time dummies and US main region dummies - Northeast,
Midwest, South and West - or, alternatively, CZ population quintile to account for any potential spe-
cific trend of patenting activity not driven by the local abstract intensity; vii) add auto-regressive
spatial terms to our baseline specification; viii) allow for alternative time lags between local initial
conditions and patent grants. In all cases the evidence obtained is consistent with the baseline one.
This set of results is presented in Section O.2, Table O.5, in the Appendix.

3Please, note that no service industry is classified as medium R&D intensive.
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for the industrial structure and, as far as the latter is concerned, the share of high-
tech/high R&D intensive manufacturing industries emerges as the most important
driver of patenting across CZs.

As we claim that abstract intensity has a crucial role in new knowledge creation,
we need to ensure that we are not omitting other features of the local labour force
which could represent competing determinants of local patenting activity. To this
aim, in Table |3| we alternatively account for the CZs’ level share of STEM, tech-
nical, professional, non-manual and abstract workers (Columns [1]-[10]){13-] In all
cases our abstract intensity measure is highly significant and, in particular, cap-
tures the role of the share of non-manual workers which loses its significance when
our preferred measure is included. Also, the abstract intensity indicator, based on
scores, performs better than the share of abstract workers (workers whose job’s ab-
stract intensity is above the median)E] In Column [11]-[12] we proceed by includ-
ing the share of core, professional and bohemian creative workers so as measured
by |Boschma and Fritsch (2009)5‘] Interestingly enough, we find that the shares of
creative professionals and bohemians are significantly and positively related to the
patenting performance of CZs. However, when our abstract intensity indicator is
included, the coefficients’ size and significance of the three shares all decline. This
suggests that, indeed, the local task intensity is capturing a large part of the extent
of creativity deployed on the job by the local labour force. Furthermore, in Table 4]
we compare the performance of our measure to the performance of other local task
composition indicators. We show that our indicator outperforms other local task
measures available from the literature and based on the cognitive and interactive
abilities and on the STEM skills and knowledge competencies required by an occu-
pation This evidence and the baseline one are confirmed when abstract, manual

'*STEM workers are classified on the basis of their employment in STEM occupations so as
defined by O*NET (https : //www.onetonline.org/ find/stem?t = 0). Professionals are all
workers performing a professional activity pertaining to the major group 2 of the ISCO88 occupa-
tional classification. Technical Workers are the subset of STEM workers pertaining to ISCO88 major
group 3. Non manual workers are all workers in ISCO88 major groups 7-9 that are not involved in
strictly low skilled manual activities.

5We also experienced with the share of workers whose job’s abstract intensity is in the top 33%
and top quartile of the abstract intensity distribution across occupations and results are unchanged.

'To this purpose we match the occ1990dd classification at our disposal with the ISCO88 one
and closely apply their definition of the three groups. More specifically, CoreCreative_shy mea-
sures the share of workers employed in ISCO88 occupations: 211-214, 221, 222, 231-235, 243, 244,
247; ProfessionalCreative_shyy measures the share of workers employed in ISCO88 occupa-
tions: 111-131, 223, 241, 242, 311-324, 341-343, 345, 346; Bohemian_sh;, measures the share of
workers employed in ISCO88 occupations: 245, 3131, 347, 521.

Cognitive tasks are measured as in|[Yamaguchi| (2018) using the following set of abilities avail-
able from O*NET 2000: Fluency of Ideas, Originality, Problem Sensitivity, Deductive Reasoning,
Inductive Reasoning, Information Ordering, Category Flexibility, Mathematical Reasoning, Cate-
gory Flexibility, Number Facility, Memorization, Speech Recognition and Clarity; interactive tasks
are measured as in|Per1 and Sparber| (2009) with the following set of abilities available from O*NET
2000: Written Comprehension, Oral Expression, Written Expression; STEM skills and knowledge
competencies are measured as in Lo Turco and Maggioni| (2022)) from the O*NET job skill and
knowledge base descriptors that are directly related to STEM: knowledge items concern Physics,
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and routine tasks are computed from the O*NET database according to the defini-
tions by /Acemoglu and Autor| (2011). The evidence conveyed in these two Tables
is further corroborated in Tables O.6 and O.7 in the Appendix when region-year
fixed effects are added to the specifications. Worthy of note is the significant role
of cognitive and STEM tasks that emerges when purging from heterogeneity in the
regional patenting time evolution, which may be affected by different technolog-
ical trajectories of regional clusters of innovation. Nonetheless, our main finding
remains unaffected [[¥]

Innovation dynamics and potential reverse causality - In Table[5|we test our
baseline evidence by using a dynamic panel GMM system estimation (Blundell
and Bond, 1998)). Hence, we include the log of 1 plus the number of granted
patents among the right-hand side variables and, to avoid serial correlation, we use
annual observations on granted patents by CZs. As shown in Column titles, we
consider from a one to a three-year time lag between the left and the right-hand
side variables in Columns [1]-[3] and, in Column [4], we repeat the estimate of
Column [1] with the exclusion of year 2000, therefore leaving an annual panel
with yearly consecutive observations. The standard tests are reported at the bottom
of the Table and are in line with expectations. The coefficient estimates corroborate
our baseline finding on the importance of abstract intensity for local patenting. In
the last Column, we also repeat the estimate of Column [1] by adding a one-period
ahead value of abstract intensity, thus conducting a kind of exogeneity test like the
one proposed by Wooldridge| (2010), though in a static panel data framework, to
account for potential feedback effects from the outcome variable on covariates. The
non-significance of the lead term excludes a problem of reverse causation between
patent activities and abstract intensity and, hence, the presence of cumulative two-
way linkages between the two variables. To further inspect the identification of the
effect running from the task composition to the patenting activity, in Column [6] we
perform a placebo test by randomly assigning local levels of abstract intensity to
CZs. The results point to a non-significant coefficient for our variable of interest,
which further corroborates our baseline findings. Finally, in Table [§] we present
an empirical exercise where we regress the change in the CZ’s abstract intensity
between ¢ and ¢ + 1 on the level of patents in t — 1 (Columns [1] and [2]), and the
change in the CZ’s patents between ¢ and ¢ + 1 on the level of abstract intensity in
t — 1 (Columns [3] and [4]). The Table reveals that, across US CZs, past patenting
activity does not predict the future evolution of the local abstract intensity, while
the past CZ’s occupational composition in terms of abstract tasks does predict the
evolution of patenting activity.

Engineering and Technology, Computer Electronics and Mathematics, skill items concern Science,
Mathematics and Critical Thinking.

18In Table 0.8 in the Appendix we also report the results obtained by comparing levels of abstract
tasks to other task (i.e. cognitive and interactive) levels, which are also consistent with our main
evidence.
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Table 2: Abstract intensity and patent count in US CZs - Industry composition

(1] (2] (3] [4]
Abstract_Intensitys, 12.9310%  17.918%%%  17.632%%%  15.901%%*
[4.011]  [4486]  [4728]  [4.661]
Empl_shj ot Tech 10.24275%
[3.500]
Empl_shg. ot e 12.404
[7.745]
Empl_shy "ot Tech OBCD 5.306%
[1.580]
Empl_shjy o, Tech OFCD 51798 60445
[1.651]  [1.932]
Empl_shg ot Tech OFCD 9.991 11.533
[7.384]  [8.260]
Empl_shycliym=Tech OECD -1.572
[2.534]
Empl_shyp- Fech OBCD 1.466
[1.586]
Empl_shgg, Lech OBCD 1.288
[1.443]
In(c) 0.663 5% 0.66744%  0.667+%  0.662%%*
[0.059]  [0.059]  [0.059]  [0.058]
Observations 2,163 2,163 2,163 2,163
PseudoR?2 0.15 0.15 0.15 0.15
a 1.94 1.948 1.948 1.938
Chi2 1154 1217 1217 1410
P-value 0 0 0 0

*#* p<0.01, ** p<0.05, * p<0.1. Robust standard errors in brackets clustered at the level of
Federal State. Baseline controls are included in each specification.
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Table 4: Abstract intensity and patent count in US CZs - task composition

[1] [2] (31 (41 [5] [6]
Abstract Intensity
from O*NET Scores
Abstract_Intensityy, 19.920%3**
[5.264]
Abstract_Intensityg,NET 9.445%%  36.538%**
[4.437] [8.690]
Cognitivey, 54.839 52.94 90.869
[35.624] [82.593] [79.912]
Interactivey, 16.201 -71.361%* -165.540%**
[17.427] [35.997] [47.281]
STE Mz, 46.34 23.974 40.35
[44.849]  [49.925] [50.495]
Observations 2,163 2,163 2,163 2,163 2,163 2,163
PseudoR2 0.148 0.148 0.148 0.151 0.149 0.151
« 1.966 1.971 1.968 1.923 1.96 1.927
Chi2 1269 1345 1327 1330 1279 1287
P-value 0.00 0.00 0.00 0.00 0.00 0.00

#% p<0.01, ** p<0.05, * p<0.1. Robust standard errors in brackets clustered at level of Federal State. Time
dummies and baseline controls included in all specifications. Cognitives,, Interactives, and ST E My,
respectively measure the CZ’s level of cognitive, interactive and STEM tasks computed according to equation
mwhen the abstract intensity is alternatively substituted by the remaining two task measures.
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Table 5: Abstract intensity and patent count in US CZs - dynamic panel estimates
and Placebo test

(1] [2] [3] [4] [5] [6]
Dynamic panel Placebo
T=1 T=2 T=3 T=1 T=1
Excl. 2000  Lead Abstr.Int.
Abstract_Intensityo 5.499%#3% 3.806%*%* 4.581%%#%* 5.092%#%* 13.988%*%* 2.409
[1.091] [1.071] [1.137] [1.053] [5.924] [2.249]
Wage_Incomepc to 0.495%#% 0.696%#%* 0.643%#% 0.628%%#%* 1.524%* 1.076**
[0.179] [0.177] [0.184] [0.173] [0.654] [0.472]
Popyo 0.361%%*%* 0.352%#%* 0.371%%%* 0.365%%*%* 0.322%%#% 0.771%%%
[0.030] [0.027] [0.028] [0.030] [0.039] [0.057]
Empl_shiyi9h=Tech 3.368%%% 2027k 327EE 3 069%** 3.792% % 11.355%++
[1.215] [1.189] [1.260] [1.151] [1.324] [3.751]
Graduate_shto 6.565%%* 7.412%%% 8.461%** 5.995%#%* 12.538%%*%* 25.525%#%*
[1.737] [1.697] [1.747] [1.662] [3.967] [4.212]
R&DfGDPshfgate_B"smess 17.310%%*  16.729%%*  18.158%*%*%* 17.377%%* 14.859%%*%* 29.181%%*
[3.478] [3.405] [3.540] [3.542] [3.673] [9.790]
R&D_GDPshjtete=Public 0.000 0.018 0.013 0.005 0.043 -0.081
[0.036] [0.035] [0.037] [0.035] [0.073] [0.073]
Log(1 + patentso) 0.065* 0.093%3#% 0.047 0.065* 0.085
[0.038] [0.035] [0.033] [0.038] [0.056]
Abstract_Intensitys 41 -26.306
[17.442]
Observations 5,047 5,047 5,047 4,326 4,326 2,163
Number of CZs 721 721 721 721 721
Hansen 13.980 8.969 5.636 13.980 9.530
Degrees of Freedom 10 10 10 10 6
P-Value 0.174 0.535 0.845 0.174 0.146
AR(1) -14.020 -14.040 -13.590 -14.000 -3.384
P-Value 0.000 0.000 0.000 0.000 0.001
AR(2) 1.859 -1.993 1.106 1.844 1.536
P-Value 0.063 0.046 0.269 0.065 0.124
PseudoR2 0.148
« 1.968
Chi2 1195
P-value 0.000

##%k n<0.01, ** p<0.05, * p<0.1. Robust standard errors in brackets. Time dummies included in all specifications. First and
second lags of the variables in levels and differences used as instruments for auto-regressive term in all specifications.
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Table 6: Predictors of the evolution of the local task composition and patenting

(1] [2] (3] [4]

A Abstract_Intensity; ;1 A Patents; ;i
Patents;_q 0.000 0.000

[0.000] [0.000]
Abstract_Intensity; 1 589.212%**  3(8.558%*

[84.860] [136.573]

Observations 1,442 1,442 1,442 1,442
R-squared 0.008 0.022 0.033 0.056
Controls No Yes No Yes
Time Dummies Yes Yes Yes Yes

* p<0.1, ** p<0.05, *** p<0.01. Robust standard errors in brackets clustered at
level of Federal State. Time dummies included in all specifications.
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6 Discussion and conclusions

In this paper, we contribute to the existing literature by adopting a task approach to
measure the local pool of abstract capabilities and detect their relation with patent-
ing at the level of US Commuting Zones during the period 2000-2015. We consider
a measure of the analytical and coordination - abstract - work activities required in
a job that can be crucial for the process of innovation. We find that CZs’ abstract
intensity is a strong predictor of local patenting. This evidence survives a wide ar-
ray of robustness checks and implies that the extent to which workers are engaged
in abstract activities on their job is a further relevant factor that can contribute to
boost local inventive capabilities and innovation.

The main policy implications of our work point to the need of increasing the inci-
dence of abstract job tasks on local economies with a view to promoting technolog-
ical innovations and, then, economic growth. For this purpose, a mix of policies is
needed: policies aimed at strengthening the high-tech manufacturing base of local
economies by sustaining R&D and inventive activities are crucial; however they
should be coupled with measures fostering not only education, but also training
programs and the creation and enlargement of knowledge networks at local level.
Such a policy mix could induce more firms to change their work organisation and
structure in favour of abstract tasks. Educational and training programmes, then,
should be focussed on both analytical and coordination abilities. The former can
be achieved mainly through higher education curricula, while the latter can be en-
hanced by complementary training programs, especially directed to the develop-
ment of specific soft skills (such as leadership, flexibility, and decision making).
These skills are important both for improving the capability of coordinating people
and work activities within firms and for enhancing interactions with external actors
within local knowledge networks.

A few limitations remain in our study. First, job tasks are measured at the occu-
pational level, which does not allow us to examine the extent to which the content
of work varies across markets, even within the same occupations. Regarding this,
the future availability of data or more granular approaches to task measurement,
i.e. not fixed at the occupational level, would help to improve our analysis in this
direction. Also, access to matched employer-employee databases joint with infor-
mation on the firm-to-firm input-output networks would represent a way to enrich
the analysis of the mechanisms at play. Second, the results provided might be
specific to the context examined and thus there is the need of validating this evi-
dence on other economies for which similar data are available. Finally, although
we show some evidence corroborating the interpretation of our findings in terms of
an effect running from the local abstract intensity to patenting activity, the present
study lacks an empirical strategy to identify a causation. We, then, identify in these
limitations the future avenues for research.
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0.1 Descriptive Statistics

Table O.1: Share of Os in patents count across US CZs

3-Year Aggregations Yearly

2003-2005 2003
0.19 0.41
2008-2010 2008
0.26 0.39
2013-2015 2005
0.23 0.42

Table O.2: Descriptive statistics

Variable Mean Std. Dev. Min Max  Observations
Patents; 1o 11 /o 1142 78.00 539.43 0.00 15665 2163
Abstract_Intensity;, 0.35 0.03 0.29 045 2163
Wage_Incomes, 9.52 0.22 8.89 1041 2163
Popis, 11.64 159 747 16.70 2163
Empl_sh{]o"—Tech 006 002 002 022 2163
Graduate_shi, 0.06 002 002 0.19 2163
R&D_GDPshifete-Business 901 001 000 0.05 2163
R&D_GDPshState=Public 3.45 1.08 1.19  9.85 2163

stg
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Table O.4: VIF among right hands side variables

Variable VIF 1/VIF
Abstract_Intensityy, 275 0.36
Wage_Incomey, 3.44 0.29
Popy, 1.53  0.66
Empl_sh, 9= Tech 132 076
Graduate_shy, 3.32  0.30

R&D_GDPshytete=Business 1 g7 0,93
R&D_GDPshth“te_P“b“C 121 0.82
Mean VIF 2.06
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0.2 Further Robustness Checks

In Table [0.5] we run a wide array of robustness checks. We focus on the pooled
model of Column [4] of Table 1 in the Text and for the sake of brevity we omit
to show baseline controls that, nonetheless, are included in all specification unless
differently specified.

First, in Column [1] of panel A we show that, when only the abstract intensity mea-
sure is included in the model, its coefficient remains highly significant and large in
magnitude, while the inclusion of the State level R&D variables, which are meant
to capture the importance of the national innovation systems, in Column [2] does
not alter its significance and size. On the contrary, in Column [3] the inclusion of
controls at the CZ level absorbs most of the size of the coefficient of the variable
of interest, although not substantially affecting its significance. Columns [4]-[7]
also shows estimates of the baseline specification when we disaggregate and sepa-
rately include the single components of our abstract intensity measure. The results
reveal that only the abstract nature of tasks performed in the CZ is positively and
significantly associated to local patenting. In Column [8] we slightly modify the
definition of our dependent variable by dividing the number of patents over local
population. The normalisation does not alter the insights from our baseline results,
therefore confirming the relevance of the CZs’ initial level of abstract intensity for
local patenting in subsequent years. Finally, Column [9] reveals that reintroducing
the CZs that have 0 patent records all along the 2000-2015 period does not change
the insights from our baseline findings.

Turning to results in Panel B, to capture the extent of task performed by employees
we first exclude self-employment from the IPUMS original sample (Column [1]).
To overcome the limited availability of CZ level controls, we include the interaction
terms between US main region dummies[q] with time dummies to account for any
potential region specific trend of patenting activity not driven by the local abstract
intensity (Column [2]). Additionally, to take into account other potential CZ level
confounding factors, we grouped CZs according to quintiles of the distribution of
population size in the initial year, we created dummy variables for each quintile and
interacted them with time dummies (Columns [3]). Hinging on the idea that highly
populated locations may be endowed with a larger and more diverse set of capabil-
ities which can more easily enhance the inventive activity, these controls are meant
to capture the trend in capabilities accumulation and deployment across CZs of
different size. In all cases our baseline evidence is confirmed. We further account
for the uneven spatial distribution of patent activities within and across the CZs
by adding an auto-regressive spatial term to our baseline specification: we report
the findings when we include the average of the total number of granted patents at
time ¢ to the CZs that are contiguous to CZ ¢ (Column [4]); next, we consider the
patent activity in all the CZs other than ¢ and weight them according to the inverse
of the distance between each one of them and ¢ (Column [5]), or according to the

!9Regions are Northeast, Midwest, South and West.
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inverse of the squared distance between each one of them and ¢ (Column [6]). In
all cases our baseline evidence is confirmed. Additionally, we allow for alternative
time lags between local initial conditions and patent grants. In Column [7] we set
7 = 2 and, hence, aggregate patents over the 2002-2004, 2007-2009, and 2012-
2014 time spans. Alternatively, in Column [8] we set 7 = 1 and aggregate patents
over the 2001-2003, 2006-2008, and 2011-2013 time periods. Also, in Columns
[9] we set 7 = 1 and aggregate patents over the five-year aggregations 2001-2005,
2006-2010 and 2011-2015. In all cases the evidence obtained is consistent with the
baseline one.
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0.2.1 Additional Checks
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Table O.7: Abstract intensity and patent count in US CZs - task composition -
region-specific trends

[1] (2] [3] (4] [5] [6]
Abstract Intensity
from O*NET Scores
Abstract_Intensityy, 16.851 %%
[4.219]
Abstract_[ntensityg*NET 6.571%  24.194%%*
[3.890] [7.637]
Cognitivey, 64.450* 38.28 68.108
[36.585] [82.533] [78.470]
Interactivey, 16.263 -66.136%* -116.974%%*
[17.957] [33.459] [39.933]
STE My, 94.749**  84.857* 88.430*
[36.985] [46.801] [48.543]
Observations 2,163 2,163 2,163 2,163 2,163 2,163
PseudoR2 0.153 0.154 0.155 0.156 0.154 0.156
Q 1.887 1.881 1.869 1.845 1.883 1.855
Chi2 1520 1404 1499 1788 1581 1773
P-value 0.00 0.00 0.00 0.00 0.00 0.00

*#* p<0.01, ** p<0.05, * p<0.1. Robust standard errors in brackets clustered at level of Federal
State. Baseline controls and region-time dummies included in all the specifications. Cognitivey,,
Interactivey, and ST E M, respectively measure the CZ’s level of cognitive, interactive and STEM
tasks computed according to equation 1 when the abstract intensity is alternatively substituted by the
remaining two task measures.
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Table O.8: Abstract intensity and patent count in US CZs - CZ-level task scores

(1] (2] (3] (4]
Abstract_Tasksy, 1.639%##% 1 789%%x ] 678%**k  36,089%*
[0.564] [0.554] [0.567] [17.122]
Cognitive_Tasksy, -35.826 46.486 92.273
[42.328] [88.611] [91.449]
Interactive_Tasksy, -29.122 -47.049 -78.864%*
[19.412] [41.233] [40.493]
Wage_Incomey, 0.698 0.603 0.531 0.734
[0.503] [0.528] [0.593] [0.574]
Popy, 0.830%** (. 842%**  (,837*** () 82]***
[0.064] [0.060] [0.063] [0.065]
Empl_sh, "= Teh 0.258%#%  876TF  8314¥x 9309wk
[3.539] [3.535] [3.354] [3.404]
Graduate_shy, 17.535%%% 19,46 %** 19 837*** 22 105%*:*

. [5.420] [5.799] [6.022] [5.909]
R&:D_GDPShfot‘“‘/e*B”‘“”“S 29.237H%% 28 A4T3HHE  2B.062%*F*  28.765%**
[9.248] [9.444] [9.590] [10.167]

R&D_GDPshyteteublic -0.086 -0.092 -0.093 -0.088
[0.067]  [0.067]  [0.068]  [0.070]
In(a) 0.664%%%  0.662%%%  0.662%%*  0.670%+*
[0.058]  [0.058]  [0.058]  [0.060]
Observations 2,163 2,163 2,163 2,163
PseudoR2 0.15 0.15 0.15 0.149
a 1.943 1.939 1.938 1.955
Chi2 1149 1226 1275 1285
P-value 0 0 0 0

##% p<0.01, ** p<0.05, * p<0.1. Robust standard errors in brackets clustered at the level of
Federal State.
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0.3 Comparing the abstract task measure to other tasks
definitions from the literature

The literature on the task approach to the labour market has produced different
task measures. Beyond tasks meant to capture the extent of substitutability be-
tween labour and capital, other works have focused on the evolution of the overall
cognitive versus manual intensity of jobs to explain the gender gap evolution in the
US (Bacolod and Blum, 2010} [Yamaguchi, 2018), and on the different specialisa-
tion of immigrants and natives in manual and communication-language tasks (Peri
and Sparber, 2009). Hence, further measures of cognitive and interactive tasks
have been developed on the basis of the scores recorded by the DOT and O*NET
surveys to grasp specific abilities required by different jobs.

Although our abstract task measure is expected to be related to other existing mea-
sures of cognitive work, as previously mentioned, the former should especially
capture non-routine cognitive abilities - i.e. analytical and coordination capacities
- that are essential for the process of innovation and may be not adequately cap-
tured by existing measures that looks at workers’ individual skills, or which focus
on job tasks, but then consider overall cognitive task intensity. Indeed, occupations
that are classified as highly cognitive on the basis of workers’ abilities could actu-
ally reflect a low deployment of analytical and coordination capacities as measured
on the basis of work activities. On the other hand, occupations with high cognitive
content based on work tasks may require the completion of routine activities and,
thus, also imply a low engagement in abstract tasks. To validate these expectations
and compare our abstract task measure to the cognitive and interactive ones based
in work abilities we hinge on the cognitive task definition by [Yamaguchi (2018@
and on the definition of interactive tasks by [Peri and Sparber (2009)122] and contrast
the level of abstract versus cognitive/interactive tasks. Across all 330 occupations
included in the |Autor and Dorn['s job classification, the rank correlation between
the abstract task score and the cognitive and interactive ones is 0.68 in both cases.
Then, the ranking of occupations in terms of their abstract content is not coincident
with their ranking in terms of the two further task definitions. We explore this issue
by plotting the nexus between the task indicators under scrutiny for major occupa-
tional groups in Figure[O.1] It emerges that as the skill intensity of jobs declines,
the average abstract, cognitive and interactive task content of major occupational
groups declines. Nonetheless, the evolution of the three task measures across the
occupational groupings does not coincide: in some cases, as the cognitive content
of jobs increases/declines a decline/increase in abstract content of the job is ob-
served - e.g. Health Assessment/Treatment; Librarians, Archivists, and Curators;

2This definition accounts for the following set of abilities available from O*NET 2000: Flu-
ency of Ideas, Originality, Problem Sensitivity, Deductive Reasoning, Inductive Reasoning, Informa-
tion Ordering, Category Flexibility, Mathematical Reasoning, Category Flexibility, Number Facility,
Memorization, Speech Recognition and Clarity.

2! This definition accounts for the following set of abilities available from O*NET 2000: Written
Comprehension, Oral Expression, Written Expression.
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Judges and Lawyers; Machine Operators, Assemblers and Transportation and Ma-
terial Moving Operators - and a similar pattern emerges from the comparison of
the abstract and interactive task content of jobs. Figures[0.2]and [O.3]enter into the
detail of two specific occupational groups showing that some highly cognitive jobs,
such as those belonging to the group "Executive, Managerial and Administrative",
may display lower levels of abstract tasks while some low cognitive intensive jobs,
such as those in the group "Transportation and Material Moving Operators”, can
display high levels of abstract tasks. By the same token, across narrowly defined
occupations, high levels of abstract tasks not always coincide with high levels of
interactivity.

Hence, we have shown that the abstract intensity of jobs captures more gen-
eral and comprehensive features of work activities, that is, neither strictly related
to a job’s content of specific cognitive activities, nor strictly dependent on a di-
rect involvement in innovation-related activities. In fact, high levels of abstract
intensity are observed also for jobs which are not closely related to innovation.
Then, it is highly unlikely that the occupational sorting of workers, particularly
a higher incidence of "abstract workers", may be driven by the local level of in-
ventive/innovation activities as proxied by patents. Indeed, these latter, unlike the
adoption of new technologies, do not necessarily affect/explain the composition of
employment in terms of occupations and tasks. All in all, this piece of evidence
corroborates a causality direction that we contend in the paper.
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0.4 Additional Figures

Figure O.4: Patents count over population across US CZs in 2000 and 2010
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(b) Patents over population 2010

Source: IPUMS, USPTO. Own calculations. For a better readability, we have excluded Alaska and Hawaii from the maps.
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Figure O.5: Average pendency of US patent applications
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Source: USPTO, Performance and Accountability Report (various years). The average
pendency is the estimated time in months from filing a patent application to patent
granting.
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Figure O.6: Marginal effects at the means of covariates
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Source: USPTO, IPUMS and BLS. Own calculations.
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