

UNIVERSITÀ POLITECNICA DELLE MARCHE

DIPARTIMENTO DI SCIENZE ECONOMICHE E SOCIALI

ESTIMATING THE IMPACT OF POLICIES UNDER SPATIAL INTERFERENCE. THE CASE OF CAP SUPPORT TO ORGANIC FARMING.

Edoardo Baldoni, Roberto Esposti

QUADERNO DI RICERCA n. 475 ISSN: 2279-9575

April 2023

Scientific Board – Comitato Scientifico:

Giulia Bettin Marco Gallegati Stefano Staffolani Alessandro Sterlacchini

Editor – Curatore: Massimo Tamberi

> The views expressed in the articles are those of the authors and do not involve the responsibility of the Department.

Abstract

This paper deals with the identification and estimation of a policy impact taking spatial interference explicitly into account. Most literature on treatment-effect estimation excludes this spatial interference by assumption but in several policies spatial interference is very likely to occur as well-known economic forces make contiguity affect both treatment assignment and effect. The paper develops two alternative spatially explicit estimation approaches to take these economic forces into account. These approaches are applied to the support for the adoption of organic farming within the Common Agricultural Policy. The Italian 2008-2020 Farm Accountancy Data Network (FADN) sample is considered. Results suggest that spatial interference occurs and it is relevant in both treatment assignment and impact. Propensity Score Matching approaches seem more suitable to capture this interference.

KEYWORDS: Spatial Interference, Treatment effect, Agro-Environmental Policy, Organic Farming.

JEL classification: C21, Q15, Q51

Address:

Edoardo BALDONI European Commission, Joint Research Centre, Directorate D – Sustainable Resources, Unit D.4 – Economics of the Food System. Edificio EXPO, C/ Inca Garcilaso 3, E-41092 Seville/Spain. Email:<u>edoardo.baldoni@ec.europa.eu</u>

Roberto ESPOSTI Department of Economics and Social Sciences - Università Politecnica delle Marche, 60121, Ancona (Italy). Email: <u>r.esposti@staff.univpm.it</u>

Estimating the impact of policies under spatial interference.

The case of CAP support to organic farming.

Edoardo BALDONI

European Commission, Joint Research Centre (Seville, Spain)

Roberto ESPOSTI

Department of Economics and Social Sciences - Università Politecnica delle Marche (Ancona, Italy)

Abstract

This paper deals with the identification and estimation of a policy impact taking spatial interference explicitly into account. Most literature on treatment-effect estimation excludes this spatial interference by assumption but in several policies spatial interference is very likely to occur as well-known economic forces make contiguity affect both treatment assignment and effect. The paper develops two alternative spatially explicit estimation approaches to take these economic forces into account. These approaches are applied to the support for the adoption of organic farming within the Common Agricultural Policy. The Italian 2008-2020 Farm Accountancy Data Network (FADN) sample is considered. Results suggest that spatial interference occurs and it is relevant in both treatment assignment and impact. Propensity Score Matching approaches seem more suitable to capture this interference.

Keywords: Spatial Interference, Treatment effect, Agro-Environmental Policy, Organic Farming. **JEL Classification**: C21, Q15, Q51

1. Introduction

The wide literature applying the Causal Inference (CI) logic to policy evaluation mostly assumes no spatial interference on the estimation of treatment effects. This is established through the so-called Stable Unit Treatment Value Assumption (SUTVA) (Imbens and Wooldridge, 2009; Imbens and Rubin, 2015; Perraillon et al., 2023). Only few recent works have tried to deal with the possible violations of this assumption, particularly in terms of the consequent bias in the Treatment Effect (TE) estimation (Kolak and Anselin 2020; Yang and Knook, 2021). However, there are policies whose impact may be strongly affected by space. This occurs whenever units (either treated or non-

treated) are spatially explicit, that is, located in a specific place. In such a spatial setting, spatial interference depends on the activation of several forms of economic and social interaction that concern both levels of the CI logic: they may affect treatment assignment, due to either voluntary choice or involuntary exclusion, but it may also influence treatment outcome due to either positive or negative externalities.

The present paper aims to contribute to this literature by explicitly taking spatial interference into account in the estimation of both average TE on the whole sample (ATE) and average TE on the treated units (ATT). This is done by proposing an appropriate theoretical and methodological framework to deal with the role of space in policy evaluation. By making spatial interference explicit, the SUTVA restores its validity and, consequently, the respective bias is eliminated. Two alternative estimation approaches are proposed and both consist in adjusting conventional approaches to take spatial interaction into account. The first is a spatially explicit *Propensity Score Matching* (PSM) estimation, the second is a spatially explicit *Control Function Estimation* (CFE). Through different identification and estimation strategies, both allow to assess if, how and how much space affects the policy impact.

Agri-Environmental Measures (AEM) within the Common Agricultural Policy (CAP) (Coderoni et al., 2021; Esposti, 2022a) seem particularly suitable for this kind of analysis: treated units are farms located in space and behaviour is influenced by interactions in their social and ecological context. Nonetheless, the abundant recent empirical literature applying CI concepts and tools to agricultural and environmental policies (Dumangane et al., 2021; Esposti, 2022a) mostly maintains the SUTVA assumption thus disregarding spatial interference. The abovementioned estimation approaches are applied to the assessment of the impact of an AEM clearly oriented to affect farms' choices, that is, the adoption of organic farming.

The dataset is the 2008-2020 Italian Farm Accountancy Data Network (FADN) panel. Panel data helps identify spatial interference that arises when treatment is assigned at different times, but analysing a time-variant (or staggered) treatment (Cerulli and Ventura, 2019; Baker et al., 2022) may

be challenging due to the possible overlap of two different CAP regimes. As a result, the panel is reduced to two cross-sectional samples representing the 2008-2014 and 2015-2020 periods. The treated vs. non-treaded farms comparison is separately performed on these two sub-periods and respective policy implementation derived. Moreover, as within each period non-treated units can be distinguished in two groups on the basis of the underlying voluntary choice, this comparison is repeated twice in order to appreciate the role of voluntariness in treatment participation.

The rest of the paper is structured as follows. Section 2 introduces the relevance of spatial interference in agro-environmental policy assessment. Section 3 presents the theoretical framework modelling the farms' decision-making and allowing for spatial interference, while Section 4 illustrates the data and the research design. Section 5 discusses and compares the alternative methodologies for the identification and estimation of the ATE and ATT. Section 6 reports and discusses the respective results and section 7 concludes.

2. Policy relevance: on why space matters

Agro-environmental policies (AEM) are measures targeted towards farms that involve payments for meeting environmental standards. The CAP introduced these policies in 1988 with the set-aside incentive scheme, which was reinforced by the 1992 Reform and later included in the Rural Development Policy and then progressively restructured (Coderoni et al., 2021; Esposti, 2022a,b). Since the 1992 reform, support for organic farming has been a major focus of AEM, with most EU countries allocating a significant portion of the AEM budget to organic farming support. This support is defined per unit of land (i.e., per ha) or livestock and, in many cases, is distinguished between support to shifting from conventional to organic farming and support to the maintenance of organic farming, with the former being usually higher than the latter.¹Despite debates about its

¹ This has been and still is the case of most Italian regions. For the sake of completeness, it is worth reminding that over the successive CAP reforms, the support to organic agriculture might have also involved other second pillar measures (support to marketing, information, education, innovation etc.) and the first pillar itself. For instance, since the 2008/9 Health Check reform Article 68 has been used to 'supplement' agri-environmental support under Pillar 2, including support for organic farming. This has been done in France, for instance. Since CAP rules prevented duplication between the two funding streams, France did no longer offer an organic

appropriateness within the EU (European Commission, 2021), organic farming support remains a persistent and relevant AEM, which has had a significant impact on reorienting EU farmers towards organic production (Lampkin, 2010).

The empirical literature in the field of agricultural and environmental policies has always highlighted the role of localised social and economic interactions among farmers that eventually affect their behaviour and choices (Yang and Knook, 2021).² In the case of RDP measures (including organic farming support), localised interactions are very likely to occur as RDP funds are usually managed at some local level (the regions, in Italy). In TE studies, these interactions take the form of spatial interference within the policy impact and may be twofold as both the participation and the response to these measures may be affected by the presence of neighbouring participants.

With regard to the participation to the policy, in turn, this influence can come from two contrasting forces. Firstly, proximity of other organic farms may induce imitation (or *contagion effect*) while limited funding at the local level may lead to latecomers being excluded (first-type congestion or *crowding-out effect*). Two categories of untreated units can thus be implicitly distinguished: those that do not want to participate (voluntary exclusion); those that have been excluded for administrative reasons (unvoluntary exclusion).

With regard to the response to the policy, spatial interference may occur for two opposite reasons. The presence of other contiguous organic farms may induce a local *milieu* that facilitates organic production due to either lower costs (for instance associated to the larger availability of some specific production factor) or higher revenues (for instance due to more advanced and efficient local supply chains), that is, positive pecuniary and non-pecuniary externalities. At the same time, however, this local concentration of organic farms may saturate the local organic markets, increase competition (lower output prices and/or higher input prices) and reduce revenues. This *second-type congestion*

support under AEMs. These additional forms of support are not explicitly considered here as only the AEM dedicated measure is used to define the treated and the untreated farms. In fact, as support to organic farming is simply considered as a binary treatment, whether or not organic farms receive this further support, beside the dedicated AEM, becomes irrelevant here.

² For an in-depth analysis on the role of social interaction in EU organic farming, also with reference to AEM support, see Gailhard et al. (2015).

effect thus expresses all those negative externalities generated by the concurrent participation to the treatment of neighbours.

Table 1 summarizes the economic interpretation of all these sources of spatial interference in assessing the policy impact. To properly evaluate the support to organic farming all these possible sources of spatial interference have to be accounted for. This requires a suited theoretical framework and research design.

[Table 1 here]

3. Theoretical framework: the economics of spatial interference

3.1. Farms' decision making under treatment

Consider a panel of N production units (farms) observed over S time periods. For the sake of simplicity, assume that farmers are profit maximisers and risk neutral.³ We can associate any i-th farm with an aggregated general multi-input multi-output technology that we represent by the feasible production set $F_i \subset \mathbb{R}^M$. F_i is farm specific as it contains all possible sources of heterogeneity in farmer's decisions in terms of treatment participation and production choices (Esposti, 2022a). Therefore, F_i is shaped by all the specific features of the i-th farms, depending on both external and internal factors, that we generally indicate with the $(Q \times 1)$ vector \mathbf{X}_i . Given F_i , i.e. \mathbf{X}_i , a $(M \times 1)$ vector of netputs $\mathbf{Y}_i = (Y_{i1}, \dots, Y_{iM})'$ is feasible if $\mathbf{Y}_i \in F_i$. This netput vector, \mathbf{Y}_i , contains both farms' outputs (with positive sign) and inputs use (negative).

Each farm is offered K alternative policies or, as we will hereafter call them, treatments. In a given period t (t=0,...,S), either via outputs' production (especially in the case of coupled support) or via inputs' use, any k^{th} treatment (T_k) is expected to induce specific production choices (\mathbf{Y}_{it}). Therefore, treatments can be univocally mapped into production choices ($T_{it,k} \leftrightarrow \mathbf{Y}_{it,k}$). It is thus possible to

³ This assumption could be generalized by stating that farmers actually pursue utility and admit that, besides net farm income, farmers' utility can also involve other extra-income items (Thomas et al., 2019; Esposti, 2022a). Risk-aversion can also play a major role in this respect (Coderoni et al., 2022). As clarified further below, neither aspect is considered here.

express these production choices as a function of the policy treatments themselves, plus those abovementioned exogenous, and possibly time-varying, farm-specific characteristics \mathbf{X}_{it} (also called confounding variables in a TE context) also influencing the behaviour of farmers: $\mathbf{Y}_{it,k} = f(T_{it,k}, \mathbf{X}_{it})$, where $f(\cdot)$ is a vector-valued function.

Within this theoretical framework, although the considered policy actually targets organic farming to improve the associated environmental performance, what actually matters from the farmers perspective is whether or not organic farming adoption may improve their profit (or net income). Therefore, if the i-th farm is assigned the k-th treatment, T_{ik} , the actual effect of the treatment that really matters here is the consequent farm's profit $\pi_{it,k}$. Thus, we can generically express the individual profit function as $\pi_{it,k} = p[f(T_{it,k}, \mathbf{X}_{it})]$, where $p(\cdot)$ is a single-valued function.⁴

3.2. Spatial interference

In order to enter space interference in this framework, it is worth reminding that it can actually affect both the treatment assignment (or choice) and the treatment outcome. Modelling this latter form of spatial interference is relatively straightforward. As discussed in Section 2, it expresses those positive and negative externalities generated by any j-th neighbouring farm either through its own outcome, $Y_{jt,k}$, or though its characteristics, X_{jt} . Entering spatial interference in treatment assignment is more complex instead. This implies that $T_{it,k}$ depends on the same treatment choice of the neighbouring units, $T_{jt,k}$. However, the economic rationale and implications of this dependence requires distinguishing between voluntary and involuntary treatment choice.

When farmers voluntary choose the treatment, $T_{it,k}$, spatial interference on this choice can be prevalently intended as an imitation effect. In the case of involuntary exclusion from the treatment

⁴ Following the conventional terminology of production theory, this should be a direct profit function as opposed to the more frequently used indirect profit function, where profit is function of only output and input prices. In fact, beside netput quantities, the direct profit function also includes the respective prices as $p[\mathbf{v}'_{it}f(T_{it,k}, \mathbf{X}_{it})]$ where \mathbf{v}'_{it} is the $(M \times 1)$ vector of netput prices. For non-market netputs there are no prices but these elements in \mathbf{v}'_{it} can be still interpreted as shadow prices. Nonetheless, prices have been excluded from the present notation under the assumption that the prices are constant or, more precisely, unaffected by the policy regime.

 $T_{it,k}$ (that is, the farmer would choose the k-th treatment but it is not assigned to it), interference may occur on the treatment variable whenever the non-voluntary attribution to the treatment is motivated by a crowding-out effect. Namely, other farms in the neighbourhood chooses the treatment and this crowds-out (arguably for the depletion of the policy funds) the i-th farm.⁵

We can integrate these forms of spatial interference in our modelling framework, by augmenting the individual profit function as $p\{f[T_{it,k}(T_{jt,k}), \mathbf{X}_{it}, \mathbf{Y}_{jt,k}, \mathbf{X}_{jt}]\}$, where $i, j \in \overline{N} \in N$ and \overline{N} designates a geographically explicit subset of N, that is, all units belonging to some pre-determined neighbourhood (i.e., i and j are contiguous). As discussed in Esposti (2017a; 2017b), within profitseeking units the policy support operates like market price changes in orienting production decisions. Consequently, whenever the treatment is voluntarily chosen, an augmented version of the weak axiom of profit maximization can be formulated (Afriat, 1972; Varian, 1984; Chavas and Cox, 1995; Esposti, 2000): $p\{f[T_{it,k}(T_{jt,k}), \mathbf{X}_{it}, \mathbf{Y}_{jt,k}, \mathbf{X}_{jt}]\} \ge p\{f[T_{it,h}(T_{jt,k}), \mathbf{X}_{it}, \mathbf{Y}_{jt,k}, \mathbf{X}_{jt}]\}$, $\forall k, h \in K, k \neq$ $h.^6$ Namely, the profit of the *i*-th farmer choosing the *k*-th treatment at time t ($\pi_{it,k}$) exceeds the profit that farmer would have achieved under any alternative treatment, T_h ($\pi_{it,h}$).⁷

The economic interpretation of this formulation substantially differs for farms that are involuntarily excluded from the treatment: the individual profit function remains $p\{f[T_{it,k}(T_{jt,k}), \mathbf{X}_{it}, \mathbf{Y}_{jt,k}, \mathbf{X}_{jt}]\}$ but now the effect of $T_{jt,k}$ on $T_{it,k}$ is negative. Moreover, condition $p\{f[T_{it,k}(T_{jt,k}), \mathbf{X}_{it}, \mathbf{Y}_{jt,k}, \mathbf{X}_{jt}]\} \ge$ $p\{f[T_{it,h}(T_{jt,k}), \mathbf{X}_{it}, \mathbf{Y}_{jt,k}, \mathbf{X}_{jt}]\}, k, h \in K, k \neq h$, has a completely different meaning: the profit achieved by the *i*-th farm under the *k*-th treatment it would have chosen at time $t(\pi_{it,k})$, is higher than the profit that farm actually achieves under the treatment it is involuntarily assigned to, $T_h(\pi_{it,h})$.

⁵ The presence of a spatial interference on the outcome variable may remain also for these involuntarily untreated farms whenever they make the same production choice it would have made under the treatment, so to still incur the abovementioned positive and negative external effects.

⁶ Jaime et al. (2016) and Bonfiglio et al. (2022) present a similar theoretical modelling of the farms' uptake of organic production.

⁷ Since production decisions must be taken ex-ante, their consequences are evidently subject to some degree of uncertainty. Consequently, farmers actually maximize $E\{p[f(T_{it,k}, \mathbf{X}_{it})]\}$ and, more importantly, the condition $E\{p[f(T_{it,k}, \mathbf{X}_{it})]\} \ge E\{p[f(T_{it,h}, \mathbf{X}_{it})]\}, \forall k, h \in K, k \neq h$ remains valid only if we are willing to assume farmer's risk-neutrality. Otherwise, the variance of $\pi_{it,k}$ and $\pi_{it,h}$, and the possible impact of $T_{it,k}$ on them, would also matter.

3.3. The binary treatment case

If both $\mathbf{Y}_{it,k}$ and $T_{it,k}$ are observed $\forall i \in N$ and $\forall t \in T$, this reformulation of the weak axiom of profit maximization can be simplified within a binary TE logic, that is, considering a treatment T_1 compared to the non-treatment status, or baseline treatment, T_0 . In such case, the TE simply is $\Delta \pi_{it,1} =$ $(\pi_{it,1} - \pi_{it,0})$. Assessing how large $\Delta \pi_{it,k}$ is and how much it is affected by spatial interference is the main focus of the present study. However, the interpretation of this TE is different under the two abovementioned cases, voluntary treatment choice and involuntary exclusion from the treatment. In the former case, $\Delta \pi_{it,1} = p \left[\Delta f [T_{it,1}(T_{jt,1}), \mathbf{X}_{it}, \mathbf{Y}_{jt}, \mathbf{X}_{jt}] \right] \ge 0$, where $\Delta f(\cdot) = \Delta \mathbf{Y}_{it,1} = (\mathbf{Y}_{it,1} - \mathbf{Y}_{it,0})$, indicates how much the policy support, and the consequent production response, induces an higher profit level compared to the baseline treatment T_0 . In the latter case, $\Delta \pi_{it,1} = p \left[\Delta f [T_{it,1}(T_{jt,1}), \mathbf{X}_{it}, \mathbf{Y}_{jt}, \mathbf{X}_{jt}] \right] \ge 0$ indicates the potential profit improvement that the farm misses because it is excluded from the treatment T_1 and remains in the baseline treatment T_0 . This potential income loss is the net balance between the lost policy support and the production response $\Delta \mathbf{Y}_{it,1}$ it activates.

Due to this different economic meaning, the TE in these two cases can be juxtaposed providing interesting policy implications. Under voluntary treatment choice, the TE expresses the private benefit generated by the application of the policy. Under involuntary exclusion from the policy, the TE expresses the shadow cost (i.e. the missed private benefit) of the non-application of the policy due to funding (or administrative) limitations. Moreover, it is also possible to assess if and how much spatial interference differently affects these two benefits.

4. Dataset and research design

Suitable dataset and research design are needed to test this theoretical framework. The CAP support for the adoption of organic farming corresponds to one specific AEM in the 20082-2020 period under

consideration (Stolze et al., 2016).⁸ This support is regularly registered in the FADN together with all the other variables considered in the present investigation, spatial information included. Therefore, the 2008-2020 Italian FADN panel seems particularly suitable for the present study. This unbalanced sample varies from a maximum of 11,398 farms in 2013 to minimum of 9,580 units in 2015. However, a significant turnover occurs as only 1,585 of these farms are observed in any year of the period. To minimize the loss of information while ensuring robustness, two complementary strategies are adopted. Firstly, the panel is divided in two sub-panels, one for 2008-2014, another one for 2015-2020. This because the measure under investigation has been maintained over the whole 2008-2020 period but under two different regimes.⁹ Though several farms maintain the same treatment status across the two sub-periods, the overall policy framework, the eligibility criteria, the regional funding, substantially differ (Stolze et al., 2016). Secondly, as farm production data are quite volatile over time, it seems reasonable to conduct farm comparisons on the basis of a multiannual average. The decision made here is to average values of each farm over the respective observed years.¹⁰ The combination of these two strategies makes the original 2008-2020 unbalanced panel collapse to two cross-sectional samples with different size, where for any unit the available observations are pooled and variables are computed as multiannual averages over each sub-period.¹¹

On these two FADN samples an appropriate research design must be arranged, in terms of treatment variable, treatment group, outcome variable and confounding variables. The treatment variable here considered is binary. It consists in whether or not the i-th farm has received the AEM support for

⁹ In fact, due to the lags typically affecting the implementation of the II Pillar measures, most 2015 payments still refers to the previous programming period. Units receiving these payments are thus included in the first sample and removed from the second.

⁸ More in detail, these II Pillar measures are a subset of Measure 214 for the 2008-2014 programming period and Measures 11.1 and 11.2 for the 2015-2020 period.

¹⁰ Taking multiannual averages seems appropriate also because the timing of the response to the organic support may differ across farms due to their different production specialization (Esposti, 2022b).

¹¹ It worth noticing that, as observations may then concern averages computed on different years, this can imply a larger variability, thus heteroskedasticity, than what would be obtained with averages computed on the same period for all units. It is also worth noticing that spatial interference in its different forms is likely to occur particularly when the timing of treatment may differ across units, in other terms, when farms receive the AEM support before other units. This is definitely the case here. Consequently, on the one hand a TE identification strategy based on the before-treatment and after-treatment comparisons on the same units is highly problematic as the two respective periods differ across the units and in several units the before-treatment might not exist at all. Moreover, such identification strategy would require extracting a FADN balanced panel with a significant loss of observations. For an application of the Difference-in-Differences (DiD) logic within a time-varying treatment context see Cerulli and Ventura (2019). A sort of DiD estimation under time-varying treatment for AEM adoption can be found in Jaime et al. (2016).

organic farming. Therefore, by definition all treated farms, i.e., treated group (T), are organic while the other way round is not necessarily true: some organic farm may be excluded from the support. In fact, the set of untreated farms (NT), actually combines two different conditions: farms that voluntarily decide to be excluded from the treatment (NTa); farms that are organic but have not received any support (NTb). These latter farms are in principle eligible to receive the treatment and their exclusion is reasonably involuntary, i.e., due to some localised external conditions, like administrative impediments or, simply, the depletion of specific funds.¹²

The distinction between these two untreated sets (NTa and NTb) is particularly interesting here as the nature of the TE and the respective spatial interference is expected to substantially differ depending on whether exclusion is voluntary or not. Therefore, by alternatively confronting groups NTa and NTb with the treated units T, it is possible to compare the respective TE and, thus, to make the different nature of spatial interference surface. At the same time, using the *NT* group may provide evidence of the mix up of different, and possibly contrasting, effects. In order to make all these aspects emerge, the comparison for the two cross-sections (2008-2014 and 2015-2020) is separately carried out between these groups: "T vs NT", "T vs NTa", "T vs NTb".

Table 2 summarizes these 6 treatment sets. The disproportion among treatment groups within the panel clearly emerges with only marginal difference between the two time periods. In 2008-2014, only 4% of the farms are treated (T); of the remaining 96%, most (93%) are voluntarily untreated (NTa) and only 3% is involuntarily excluded from the treatment (NTb). In 2015-2020, the T group slightly increases to 6%, the NTb to 5% and NTa consequently declines to 89%. Table 2 also reports the sample obtained by dropping the outliers, that is, those farms showing extreme values of the covariates and of the outcome variable and for which common support (or covariate balancing) could be hardly achieved (see Section 5). Three trimming options are considered, i.e., dropping 1%, 5% or

 $^{^{12}}$ As stressed by Jaime et al. (2016), some non-supported organic farms might, in fact, voluntary decide to not apply for the AEM support. They simply produce non-certified organic products and, therefore, they do not need to apply even though this implies the loss of support. Investigating the motivations behind this choice is outside the scope of the present study also because we argue that these farms represent a largely minor part of the whole set of organic farms in Italy. In any case, the presence of these farms does not hinder the research design here adopted, but it requires caution in interpreting the non-treatment of the *NTb* set as involuntary.

10% units on both tails. In order to find the best compromise between balancing and saving observations, results presented in Section 6 will refer to the 5% trimming (that is, to a 10% smaller sample) on both sub-periods.

[Table 2 here]

To complete the research design, the outcome and confounding variables have to be selected.¹³ The proper definition of these variables is driven by the theoretical framework of section 3. There, what motivates the farmers' choice is the increase in their profit $\Delta \pi_{i,1} = (\pi_{i,1} - \pi_{i,0}) = p \left[\Delta f [T_{i,1}(T_{j,1}), \mathbf{X}_i, \mathbf{Y}_j, \mathbf{X}_j] \right]$. Therefore, the most appropriate outcome variable here is a scalar that allows estimating the *i*-th farm net income gain (or loss) under the treatment, T_i , compared to the baseline, T_i (Esposti, 2022a). To be consistent with the structural characteristics of the Italian agriculture, mostly based on family farms, here the farm profit is proxied with the farm net income (*NI*) (Esposti, 2022a). In the agricultural context, *NI* can be very volatile year-by-year and highly size-dependent. Therefore, *NI* is here divided by the annual units of farms' autonomous or family work (measured as Family Annual Work Units, FAWU) and then averaged over the observed subperiods. After all, per capita income is what the farmers really care about and drives their choices. As regards \mathbf{X}_i , it is worth reminding that these variables are expected to capture all possible external and internal sources of heterogeneity in farmer's production decisions (Coderoni et al., 2021; Esposti, 2022a). In this respect, following Brown et al. (2021), we distinguish three sets of relevant observable characteristics: economic; socio-demographic; and environmental.

Consistently with this categorization, we consider here the following farms's economic features. In order to express the possible presence of non-constant returns to scale, two size variables are included: the economic size (ES)¹⁴ and the physical size in terms of utilised agricultural area (UAA) that enters as a second-degree polynomial (see Tables 3-6).

¹³ As the two panels eventually collapse to two cross-sections the time index is skipped henceforth.

¹⁴ Farms are distributed across economic classes from ES1 to ES3 where class ES1 represents to smallest size and class 3 the largest. For all sets of dummies, when needed to avoid collinearity in the estimation stage, one dummy (the less frequent) is eliminated from the dataset.

To take the multioutput nature of technology into account, the farm's production specialization is included in the form of a set of dummies (from TF1 to TF10).¹⁵ As this TF variable does not consider forestry production, an additional variable (FOR), expressed as the ratio of farm's forest area on the UAA, is included. Moreover, beside UAA, the input side of the production choices is captured by: the capital endowment expressed by the total farm's machinery power (CAP) and livestock units (LSU); the labour use (LAB), expressed by annual working units (AWU); the energy and materials use (EMAT) expressed by the total expenditure for energy (fuels included), fertilizers, pesticides and animal feed; the expenditure for all other farm services (SER). To be consistent with the size-independent outcome variable, all the non-categorical input variables are expressed as intensities, that is, divided by the farm's GPV.¹⁶ A further set of variables is included to control for the structural specificity of the farm: the share of family work in the total amount employed on the farm (SFAWU); the share of fixed cost in the total cost of the farm (FIX); the share of rental land on total farm land (RENT); the share of other gainful activities on total farm output (OGA).

For the socio-demographic characteristics of the farm, we consider: the farm holder's age (AGE) and the level of the farm holder's education as expressed by a set of dummies variables (from EDU1 to EDU8). Finally, the third category of farm's features is expressed by altitude class (from ALT1 to ALT5), macro-region (from GEO1 to GEO5), and by climate and weather conditions expressed by the local average annual rainfall (RAIN) and the respective percentage deviation with respect to a long-term average (DEV).

Table A1 (Annex 1) reports descriptive statistics of the outcome variable and of the covariates.

¹⁵ Ten farm types are considered: cereals, grazing livestock, fruits, granivores, mixed crops&livestock, olive growing, horticulture, other field crops, wine growing, dairy.

¹⁶ For instance, LAB is computed as the AWU per unit of GPV.

5. The identification and estimation methodology

As the dataset consists, *de facto*, in two cross-sections, TE identification and estimation can be achieved following two alternative empirical strategies whose pros and cons are well-known in the literature in this field (Austin, 2011), both grounded on the Rubin (1974) Potential Outcomes (*PO*) framework. Given a generic i-th unit (either treated or untreated) and a binary treatment, $T_i = 0,1$, the PO approach simply assumes that the outcome π_i is a stochastic variables that could be observed under either the non-treatment (T_0) or the treatment status (T_1) and that can be defined as follow:

(1)
$$\begin{aligned} \pi_i(0) &= E(\pi_{i0}|\mathbf{X}_i) + \varepsilon_{i0} \\ \pi_i(1) &= E(\pi_{i1}|\mathbf{X}_i) + \varepsilon_{i1} \end{aligned}$$

where ε_{i0} and ε_{i1} are assumed to behave like spherical disturbances following a normal distribution. The Individual Treatment Effect (ITE) is thus identified as:

(2)
$$ITE_i = \pi_i(1) - \pi_i(0)$$

Averaging (2) either over the whole sample (i.e. $\forall i \in N$) or over only treated units (i.e. $\forall i \in T$), the Average Treatment Effect (ATE) and the Average Treatment Effect on the Treated (ATT) can be estimated. (2) makes the fundamental problem of causal inference explicit. The identification and estimation of the ATE (or ATT) depends on something we cannot observe: for treated units we only observe $\pi_i(1)$; for untreated units we only observe $\pi_i(0)$. What we really observe is the potential outcome that corresponds to the realised T_i , namely, $\pi_i = T_i \pi_{i1} + (1 - T_i) \pi_{i0}$, where T_i indicates the treatment that is really assigned to the i-th unit. In order to recover the unobserved cases, a counterfactual evidence is needed. This could be obtained via appropriate randomized experiments but these are often unfeasible within socio-economic research. Alternatively, counterfactuals can be identified within observational data using an appropriate research design.

An appropriate research setting requires three identification conditions: the *Conditional Independence Assumption* (CIA), the *Stable Unit Treatment Value Assumption* (SUTVA), the common support condition (or balancing property). The CIA (or Unconfoundedness or *Ignorability*) can be formalized as follows:

(3) $(\pi_{i0}, \pi_{i1}) | \mathbf{X}_i \perp T_i$

(3) means that, once we control for \mathbf{X} , the potential outcomes of the i-th unit, though possibly affected by the treatment, are independent of the treatment assignment. The SUTVA rules out any influence of the j-th individual's treatment status on the i-th individual's potential outcome:¹⁷

(4)
$$(\pi_{i0}, \pi_{i1}) | \mathbf{X}_i \perp T_j$$

This cross-individual interference, in fact, can also jeopardize the CIA whenever also \mathbf{X}_j and π_j may affect π_i . Under such circumstance, the CIA should be reformulated as $(\pi_{i0}, \pi_{i1})|\mathbf{X}_i, \mathbf{X}_j, \pi_j \perp T_i$ and the SUTVA as $(\pi_{i0}, \pi_{i1})|\mathbf{X}_i, \mathbf{X}_j, \pi_j \perp T_j$. These two conditions can be combined as:

(5)
$$(\pi_{i0}, \pi_{i1}) | \mathbf{X}_i, \mathbf{X}_j, \pi_j \perp T_i | T_j$$

(5) translates into the TE identification condition of the theoretical framework developed in Section 3. This becomes even clearer whenever we make this cross-individuals interference spatially explicit, that is, whenever the i-th and j-th farms are neighbouring units so their reciprocal interference takes the form of a spatial dependence (Papadogeorgou et al., 2019; Yang and Knook, 2021). Evidently, X_i might include spatially explicit variables like, for instance, location or environmental variables (e.g., agronomic or meteorological conditions) but cannot capture the impact of neighbouring units, that is, spatial dependence (Kolak and Anselin, 2020).¹⁸ Concisely, spatially explicit CIA and SUTVA can be formulated by introducing a generic variable s_i making the i-th unit location explicit. s_i identifies the area surrounding the i-th farm within which any other j-th unit (with $i\neq j$) affects both i-th farm's treatment assignment and outcome variable:

(6) $(\pi_{i0}, \pi_{i1}) | \mathbf{X}_i \perp T_i, \mathbf{s}_i$

It also follows that using different definitions of the s_i can provide an empirical evidence on the role of space on the CIA and SUTVA validity (Yang and Knook, 2021).

¹⁷ It is worth noticing that the SUTVA actually excludes interference from two different sources. One is under analysis here and consists in the interference coming from other neighbouring treated units. The second source of interference can originate from other treatments (i.e., policy) administered to the same unit. This second possible violation is not considered here. For more details on this, with specific reference to the CAP measures, see Esposti (2022b).

¹⁸ The relevance of spatial dependence in AEM assessment, specifically in organic farming support, is stressed by Jaime et al. (2016).

Finally, as variables in \mathbf{X}_i are expected to de-confound the allocation of farms into the treatment, any identification strategy requires the validity of the common support condition. It establishes that $0 < Pr(T_i = 1 | \mathbf{X}_i) < 1$, $\forall i \in N$, i.e., a positive probability of both treated and untreated units within different strata of \mathbf{X} . Empirically, this condition implies that there must be at least one treated unit and one control unit at each possible value of all exogenous variables in \mathbf{X} (Sauppe and Jacobson, 2017).

Given these identifications conditions, the two alternative estimation strategies here considered, PSM and CFE, both allow the estimation of the ATE and of the ATT, but they substantially differ in the way they try to materialize the identification conditions above. Consequently, they also differ in how they make spatial interference explicit. This latter difference depends on the twofold nature of spatial interference as emerged from the theoretical framework:¹⁹ space may affect both the treatment assignment and the TE (i.e., the effect on the outcome variable).

5.1. Spatially explicit PS estimation

The PS approach starts with the estimation of the treatment equation where the dependent variable is the probability to be assigned the treatment conditional on a set of observable variables (or Propensity Score, PS): $p(T_i = 1 | \mathbf{X}_i) = 1 - p(T_i = 0 | \mathbf{X}_i)$. As this probability is not observed and we only observe the actual assignment to the treatment, it is empirically modelled as $p(T_{i1} | \mathbf{X}_i) = f(\mathbf{X}'_i \boldsymbol{\beta})$ where $\boldsymbol{\beta}$ is a $(Q \times 1)$ vector of unknown parameters and $f(\mathbf{X}'_i \boldsymbol{\beta})$ here assumes a Probit specification. Consequently, these model parameters, and the PS itself, can be estimated via conventional Maximum-Likelihood Estimation (MLE) (Wooldridge, 2010). Then, the ATE and the ATT are estimated by matching any treated (untreated) unit with the untreated (treated) ones showing a statistical equivalent PS conditional on \mathbf{X} .

¹⁹ See also Yang and Knook (2021, Figure 1) for a visual clarification.

Space can enter this conventional PS estimation in two different ways (Kolak and Anselin, 2020). First, a Spatially Explicit Propensity Score Estimation (SEPSE) is obtained by augmenting X_i with some information about other neighboring units spatial metric (Yang and Knook, 2021): counting the number of treated neighbours (TCOUNT); and computing the respective density with respect to all neighbouring farms (TSHARE). This takes into account whether and how the treatment assignment of the neighbouring units affects the treatment assignment of a given i-th farm. Alternatively, the neighbouring space may be considered in the matching stage by computing a Spatially-weighted Propensity Score (SPSM)²⁰ as $SPSM = wp(T_{i1}|X_i) + (1 - w)d_i$ and then performing the matching, where d_i expresses the Euclidean distance of any matching unit from the ith farm and w is a weight to be established *ex ante* and, possibly, calibrated. A combination of these two solutions can be also attempted by performing a Spatially Explicit Propensity Score Estimation and Matching (SEPSEM) (Yang and Knook, 2021). Comparing these different spatially explicit PS approaches may provide evidence on how and how much space affects ATE/ATT estimation.

5.2. Spatially explicit CFE

The second estimation strategy consists in a spatially explicit CFE which is, in turn, an augmentation of the *Regression Adjustment* (RA) approach to TE estimation under possible endogeneity of the treatment assignment (Wooldridge, 2010; Cerulli, 2015). The CFE combines two equations.²¹ The first is the treatment equation, corresponding to the PS equation above, that expresses the probability to be treated for any farm (treated or not) within the sample. For any unit, the estimated residual of

²⁰ This solution is also designated as Distance-Adjusted PSM (Papadogeorgou et al., 2019).

²¹ This approach actually expresses the convergence of two different traditions in the field. The first concerns the regression adjustment (RA) with covariates in experiments. This is intended to improve precision over a simple difference in means between the treated and non-treated outcomes by controlling for observed heterogeneity (Imbens and Rubin, 2015). However, in non-experimental settings (i.e., with observational data) such an approach disregards the possible endogeneity of the treatment assignment. The second tradition explicitly considers this endogeneity in estimating the different outcome of treated and non-treated units under heterogeneity. This tradition is usually referred to as endogenous switching regression (Fuglie and Bosch, 1995). The CFE can be viewed as an extension of the RA idea to this context (Murtazashvili and Wooldridge, 2016), thus admitting large observed and unobserved heterogeneity and treatment endogeneity. The estimation approach here followed is also close to that recently proposed by Murtazashvili and Wooldridge (2016) possibly with some restrictions on the heterogeneity between treated and non-treated units. These authors propose a two-stage estimation approach and the use of instruments to control for endogeneity though in the form of a 2SLS estimation. As most of this literature, however, their approach neglects the possible occurrence of spatial interference, thus the violation of the SUTVA.

this equation (i.e., the difference between this estimated probability and the observed binary treatment status) behaves as a proxy of the unobserved source of selection bias. Consequently, to control for treatment endogeneity, this residual enters the second stage of the approach, the outcome equation estimation. This latter equation parametrically expresses the outcome variable as a linear function of the set of covariates X_i plus the abovementioned estimated residual. Consistently with the PO framework expressed by (1), this parametric function differs between treated and non-treated units:

(7)
$$\pi_{i}(0) = \mathbf{X}_{i}'\boldsymbol{\alpha}_{0} + \gamma_{0}\hat{u}_{i} + \varepsilon_{i} , \forall i \in NT$$
$$\pi_{i}(1) = \mathbf{X}_{i}'\boldsymbol{\alpha}_{1} + \gamma_{1}\hat{u}_{i} + \varepsilon_{i} , \forall i \in T$$

where: $\boldsymbol{\alpha}_0$ and $\boldsymbol{\alpha}_1$ are two $(Q \times 1)$ vectors of unknown parameters that may differ between treated and untreated units $(\boldsymbol{\alpha}_0 \neq \boldsymbol{\alpha}_1)$; \hat{u}_i represent the estimated residual of the treatment equation for the i-th unit; γ_0 and γ_1 are the respective unknown parameters $(\gamma_0 \neq \gamma_1)$. It follows that the Average Treatment Effect (ATE) can be estimated as:

(8)
$$ATE = E[(\mathbf{X}_{i}'\boldsymbol{\alpha}_{1} + \gamma_{1}\hat{u}_{i}) - (\mathbf{X}_{i}'\boldsymbol{\alpha}_{0} + \gamma_{0}\hat{u}_{i})], \forall i \in N$$

while the Average Treatment Effect on the Treated (ATT) is estimated as (8) but $\forall i \in T$.

The RA estimation is a sort of simplified version of the CFE as it assumes treatment exogeneity, thus skipping the estimation of the treatment equation. The ATE/ATT estimation is then obtained estimating the two equations in (7) with $\gamma_0 = \gamma_1 = 0$. Both RA and CFE estimations are performed via Generalized Methods of Moments (GMM) in order to account for all possible sources of endogeneity depending on treatment assignment and unobserved heterogeneity.²²

Even this second estimation strategy may explicitly admit spatial interference in two forms. Firstly, space may enter the treatment equation exactly as done in SEPSE above. Secondly, space may enter the outcome equation in the form of a Spatial AutoRegressive (SAR) process, that is, the equation is augmented with the spatially lagged dependent variable expressing if and how the observed outcome for the i-th unit is affected, *ceteris paribus*, by the outcome variable of the neighbouring treated units:

²² For more details on this GMM estimation approach see Wooldridge (2010), Cerulli (2015), Drukker (2016).

(9)
$$\pi_i(0) = \mathbf{X}'_i \boldsymbol{\alpha}_0 + \boldsymbol{\rho}'_0 \mathbf{W} \mathbf{\Pi} + \gamma_0 \hat{u}_i + \varepsilon_i , \forall i \in NT$$
$$\pi_i(1) = \mathbf{X}'_i \boldsymbol{\alpha}_1 + \boldsymbol{\rho}'_1 \mathbf{W} \mathbf{\Pi} + \gamma_1 \hat{u}_i + \varepsilon_i , \forall i \in T$$

where: Π is the $(T \times 1)$ vector of the outcome variable in all treated units; **W** is the $(N \times T)$ spatial weighting matrix whose dichotomic elements identify the neighbouring (fixed at 1) or nonneighbouring units (fixed at 0); ρ_0 and ρ_1 are two ($N \times 1$) vectors of constant spatial autocorrelation terms, ρ_0 and ρ_1 , respectively,

Depending on the criterion adopted (usually the radial distance), in (9) different specifications of W can be considered. Following the work of Baldoni and Esposti (2021) on an analogous dataset, here **W** is defined by considering as contiguous treated units (elements fixed at 1) those treated farms positioned at a radial distance lower than 50 Km but still belonging to the same administrative region, as this represents the programming and funding level of the policy measure under consideration. The Annex (Figures A1-A4) displays the Italian map and the interactions assumed with the different **W**. By selectively including space in the treatment and the outcome equations, the CFE estimation strategy can generate four alternative estimates. If space only enters the treatment equation, we obtain a Spatially Explicit Propensity Score Estimation with Control-Function Estimation (SEPSE+CFE). If space only enters the outcome equation, we obtain a Spatially Explicit Control-Function Estimation (SECFE). If space enters both equations, we obtain a Spatially Explicit Propensity Score Estimation with Spatially Explicit Control-Function Estimation (SEPSE+SECFE). For the sake of completeness and comparison, we also consider the case of space only entering the outcome equation under the assumption of exogenous treatment and designated it the Spatial Regression Adjustment (SRA) estimation. In all cases, estimation is performed via GMM using the instruments proposed by Kelejian and Prucha (1998) for the SAR specification.

The present study aims to perform and compare all these estimation solutions (see Table 7) that explicitly but differently admit spatial interference in the policy effect.

6. Results

6.1. Alternative model estimates and the role of space

Tables 3-6 reports estimates of the two approaches to identify the ATE and the ATT: the PSE and the CFE.²³ Alternatively including and removing spatial dependence highlights if and how contiguity matters in both participation and response to the treatment.

Table 3 concerns the first step of the PSE approach model estimates, that is, the PS function estimated over the two time periods (2008-2014 and 2015-2020) and the three treatment comparisons (i.e., "T vs NT", "T vs NTa" and "T vs NTb" indicating that the PSE has been performed on the T+NT, T+NTa and T+NTb subsamples, respectively). Focusing on the "T vs NT" case comparison in 2008-2014, we may notice that most of the coefficients associated to the confounding variables are highly statistically significant. This concerns economic, the social and the environmental/geographical variables.

As expected, this evidence is reinforced when the comparison is limed to the group of voluntary treatment (NTa), while it almost entirely vanishes when the unvoluntary treatment (NTb) is considered. In the latter, evidently, non-participation does not express a choice but rather depends on conjectural circumstances excluding the farm from the treatment (first-type congestion effect). Moreover, compared to the "T vs NTa" case, the "T vs NTb" comparison suffers from a much lower size of the untreated group (see Table 2). Only some geographical features seem to be relevant for this congestion effect together with the farm physical size.

In all cases, however, space matters. Introducing the contiguity of treated farms (model specification (2)), preserves the evidence of the without-space specification (1), but it also reveals that the density of treated farms in the neighbouring space (TCOUNT and TSHARE) relevantly and significantly affects the probability to be treated. This would suggest that although some evidence of congestion effects emerges, it is largely outweighed by imitation effects.

²³ Estimates have been obtained using software R 4.2.2. Due to space limitations, results reported in Tables 3-6 do not include estimated standard errors but only indicates the statistical significance. Estimated standard errors are available upon request.

Moving to 2015-2020, results are largely confirmed although statistically poorer. This maybe be due to the shorter period and some drag effect of the previous period that affects participation to the treatment beside the variables included in the model. Nonetheless, even here the positive effect of spatial contiguity on participation is confirmed in all comparisons.

Tables from 4 to 6 present results of the second estimation approach, i.e., the estimated coefficients of the outcomes under treatment exogeneity (the RA-based estimation) and under endogeneity (the CFE). The tables report estimates for the two periods. The RA-based estimates (Table 4) concern all the four treatment groups and may admit or not a SAR term (SRA). In the case of the CFE estimates, the presence of spatial dependence may concern both treatment assignment and treatment effect and they are firstly reported with reference to the treated units (Table 5) and then to the untreated ones (Table 6).

The list of covariates considered in this second estimation approach differs from the PSE because some controls variables express time varying production choices, more than farm's structural features and are dropped from the treatment equation. This is the case of variables expressing inputs' use (CAP, EMAT, LAB, SER). On the other hand, some of the dummies or categorical variables (economic size, education) have to be dropped from the outcome equation due to the lack of variability or to perfect collinearity in some of the subsamples under analysis, especially those of lower numerosity (i.e., NTb). Dropping these variables that are explicitly included among the determinants of the participation choice may thus represent a source of endogeneity in the linear outcome equation.

Endogeneity is firstly excluded, by assumption, in the RA estimation (Table 4). In this case, results obtained in the two periods are largely concordant and will be commented jointly. Coefficient estimates reveal differences between the treated and non-treated farms mostly in terms of statistically significance and magnitude rather than sign. Eventually, among treated units the statistically significant control variables are fewer but their impact on the outcome is generally larger. This seems consistent with the fact that, among treated farms, the participation to the treatment is more strongly

linked to some covariates while obscuring the relevance of others. This effect evidently disappears in the NT group.

As expected, however, the main difference emerges between the T and the NTa groups as results for the NTb are very close to those obtained on the treated units. After all, the behaviour of farms involuntarily excluded from the treatment, in terms of production choices, is expected to be closer to units that voluntary choose the treatment than to farms that voluntarily decide to forgo it. Moreover, NTa group is much larger than the NTb one, and this explains why results obtained for the whole NT sub-sample is very close to the NTa case. The difference between T and NTa groups mostly concerns several geographical variables that significantly affect the outcome of the latter units but not of former ones.

The main interest is the role of the space which is included here as a SAR term in the outcome equation. The coefficient associated to this SAR term (RHO) does not express the combination of imitation and congestion effects as in the PS equation but rather affects the outcome as the net effect of negative and positive externalities associated to the participation to the treatment. It emerges that in both periods spatial autocorrelation has a negative impact on the outcome of voluntarily untreated units. This would indicate that the presence of treated units in the neighbouring space generates prevalent negative externalities arguably attributable to the market competition of organic products on the local markets. The opposite is observed for treated units but only in the first time period. In this case, the outcome of the treated units is positively affected by the presence of treated farms in the surrounding space that seems to generate a positive local *milieu*, attributable to both market and nonmarket mechanisms, for organic agriculture.

Unlike RA estimation, CFE admits endogeneity of the treatment assignment with respect to the outcome. Therefore, the outcome equation estimation is anticipated by the PS estimates that then enter the former as expressed by coefficient END.²⁴ Statistical significance of this coefficient provides

²⁴ The first stage of the CFE approach, i.e. the PS estimation, is equivalent to what reported in Table 2.

evidence of whether endogeneity occurs and, consequently, on whether RA estimation incurs an endogeneity bias. Tables 5 and 6 report the separate outcome equation estimation for the two treatment groups, T and NT, respectively. Therefore, comparing the two tables reveals the difference in the outcome generation process between treated and non-treated units.

A first relevant evidence is that the coefficient of the PS estimated residual (END) is statistically significant both for the treated units and for the untreated ones. For treated units, endogeneity seems to be present mainly in the period 2008-2014 and when space is not accounted for in the treatment equation. The estimated coefficients associated with END are highly statistically significant and negative. In period 2015-2020, endogeneity appears in outcome equations only when controlling for space both in the treatment and in the outcome equation. The associated coefficients are less statistically significant and positive. Regarding untreated units, endogeneity statistically appears only in the second period when not controlling for space in the treatment equation. Associated coefficients are highly significant and positive. All in all, endogeneity seems to be not always present, but it seems to be closely linked to the spatial dimension of the data. Together with the statistical significance of spatial treatment variables and spatial autoregressive variables, this reveals how critical accounting for space can be in treatment effect assessments.

Results seem quite robust for the rest of estimated coefficients across the different specifications (from (1) to (4)), between treated groups and time periods. Most estimated coefficients are statistically significant although significance seems to increase moving from treated to untreated units and from the first to the second period. As the difference among specifications (1)-(4) exclusively depends on if and how spatial interference is admitted, the substantial equivalence of estimates across specifications could be interpreted as a marginal role of space in affecting the outcome variable. This role can be directly assessed by looking at the estimated spatial correlation terms (RHO) in SAR specifications. Only for the treated units in 2015-2020, this term is never statistically significant. In the previous period, with the only exclusion of the "T vs NTb" comparison, a significant positive spatial correlation is found indicating the prevalence of positive externalities created among treated

units in the local context. On the contrary, spatial correlation is always statistically significant but negative (again with the exclusion of the "T vs NTb" comparison) for untreated units indicating that the presence of treated farms (i.e., receiving support for organic farming) creates prevalent negative externalities for the untreated ones.

[Tables 3-6 here]

6.2. ATE and ATT estimates

Table 7 collects ATE and ATT estimates for both time periods, the three comparisons across treatment groups and all the estimation procedures of the two alternative approaches, PSM and RA estimations. It is worth reminding that ATE and ATT always differ because computed on the whole sample (T+NTa+NTb) and only treated farms (T), respectively. Therefore, in the present case, ATE estimates are expected to show a higher statistical quality due to the much larger numerosity of NTa compared to T. This is confirmed by the estimated standard errors that are, *ceteris paribus*, normally much lower for ATE than for ATT.

Some remarkable regularities seem to emerge from Table 7. If we consider the "T vs NT" comparison as the reference, ATE is always significantly positive when PSM-based estimations are considered. Given the estimation approach, ATE also remains quite stable passing from the first to the second time period. ATE ranges from a minimum of about 4 thousand to a maximum of 12.7 thousand ϵ /FAWU. This corresponds to a range of 10%-45% on the observed average value of the outcome variable (i.e., the *NI/FAWU*). It means that impact of the policy measure on the farms' outcome is not only statistically significant but also of major relevance. The spatial bias implicitly emerging by disregarding space from this PSM-based treatment effect estimation seems to point to a general underestimation of ATE and ATT. Except for ATE in 2008-2014, the difference between these two extreme cases is negative. In absolute value, this bias ranges between 10% and 30% of the unbiased estimation. When looking at RA- and CFE-based estimates, evidence seems to be mixed and more difficult to interpret than PSM-based ones. Statistical significance of estimated coefficients is smaller and although some of the estimates seems to be comparable in magnitude to those obtained from the PSM-based methods, extreme values emerge: large statistically significant ATE are found for CFE and SECFE in 2008-2014; negative, non-statistically significant estimates are present especially in 2015-2020.

Moving to the "T vs NTa" comparison results are expected to be confirmed and reinforced as NTa sub-sample represents the large part of NT group and the NTb units are those whose choices and attitudes might be closer to the treated farms. At least for the PSM-based estimations, Table 7 is consistent with expectations: the estimated TE seems less variables both between the two periods and between ATE and ATT values. They all remain statistically significant with a potential spatial bias that varies between 0.291 and -2.669. It is also confirmed that RA- and CFE-based estimates are generally not stable and associated with lower statistically significant.

Regarding the "T vs NTb" comparisons, it is interesting to notice that the comparison of statistical significance between PSM-based and RA- and CFE-based estimates remains. PSM-based are generally more stable and more statistically significance than RA- or CFE-based ones. However, in this T vs NTb comparisons statistical significance seems to be smaller even for PSM-based estimates, especially in the second period. Magnitude of significant ATE and ATT seems to be comparable to those obtained in previous comparisons.

If we limit the attention to those two estimations approaches expected to fully account for both spatial interference and potential treatment endogeneity (SEPSEM and the SEPSE-SECFE), the conclusions drawn above remain valid: some robust and significant results emerge, others are less clear and interpretable. In the former case, when comparison in made between T and NT or NTa, the ATE is between 5,900 - 6,200 €/FAWU for both the first and the second time period, while the ATT is found to be between 5,000 to 8,100 €/FAWU. In the latter case, none of these values is statistical significant

at the 5% significance level, and this is valid for the comparisons between treated and untreated unit for all untreated typologies.

[Table 7 here]

7. Concluding remarks

The adoption of the CI logic in assessing the impact of agricultural and environmental policies on agents' behaviour has become predominant in the recent years. In this literature, this adoption is always accompanied by the SUTVA, that is, the assumption that excludes interference among treated units. This kind of interference, however, is very likely to occur among contiguous units especially in the case of farming activities. Not only spatial interference implies a violation of the SUTVA but it also expresses fundamental economic mechanisms and interactions whose understanding seems critical for better policy design.

The present paper aims to tackle the occurrence of spatial interference in policy evaluation by developing a theoretical framework unravelling its economic nature. In particular, it is made explicit that spatial interference may occur in two different forms by either influencing the participation to the policy (i.e., the treatment) and/or affecting the response to the policy itself, therefore the outcome variable. Consequently, the paper also proposes alternative ways to estimate ATE and ATT taking these different forms of spatial interference into account thus restoring SUTVA validity. The CAP support to organic farming within the Italian FADN sample over the 2008-2020 period is used to perform the empirical analysis.

Findings suggest that both forms of spatial interference occurs and both points to a net positive effect of contiguity among treated units, therefore to a prevalence of imitation on congestion and of positive externalities on negative external effects. This evidence would indicate the need of a more careful consideration in the spatial allocation of funds and policy interventions as their appropriate concentration seems to be part of their own success. Correspondingly, a dispersion of interventions across space may reduce, *ceteris paribus*, their impact on farmers' choices.

However, the study's primary contribution is its methodological implications in selecting identification and estimation approaches under spatial interference, instead of providing detailed policy implications. In principle, these alternatives may all be appropriate depending on the underlying unknown mechanisms generating the TE under investigation. Results obtained would suggest that PS approaches seem to outperform the CFE methods as the former provide more robust and interpretable results. Firstly, our estimates question whether the CFE approach is really able to fully capture the treatment endogeneity particularly considering that the role of space itself seems to have a lot to do with endogenous treatment assignment. Secondly, compared to CFE, PS estimation seems more flexible in capturing the unknown underlying (possibly non-linear) data generation process of the outcome. Thirdly, with respect to the two forms of spatial interference in policy impact, the PS approaches seems to better focus on the spatial interference in treatment participation that, in turn, seems to matter more than spatial interference in outcome generation. Since the empirical literature on spatial interference in policy assessment is still in its infant stage, future research is expected to provide further validation of these methodological conclusions.

References

Afriat, S.N. (1972). Efficiency estimation of production function. *International Economics Review* 13 (3): 568–598.

Austin, P.C. (2011). An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies. *Multivariate Behavioral Research* 46(3): 399-424.

Baker, A.C., Larcker, D.F., Wang, C.C.Y. (2022). How much should we trust staggered difference-in-differences estimates? *Journal of Financial Economics* 144 (2): 370-395.

Baldoni, E., Esposti, R. (2021). Agricultural Productivity in Space: an Econometric Assessment Based on Farm-Level Data. *American Journal of Agricultural Economics* 103(4): 1525-1544.

Bonfiglio, A., Abitabile, C., Henke, R. (2022). A choice model-based analysis of diversification in organic and conventional farms. *Bio-based and Applied Economics* 11(2): 131-146.

Brown, C. Kovács, E., Herzon, I., Villamayor-Tomas, S., Albizua, A., Galanaki, A., Grammatikopoulou, I., McCracken, D., Alkan Olsson, J., Zinngrebe, Y. (2021). Simplistic understandings of farmer motivations could undermine the environmental potential of the common agricultural policy. *Land Use Policy* 101, 105136.

Cerulli, G. (2015). Econometric Evaluation of Socio-Economic Programs: Theory and Applications. Berlin: Springer.

Cerulli G, Ventura M. (2019). Estimation of pre- and posttreatment average treatment effects with binary time-varying treatment using Stata. *The Stata Journal* 19 (3): 551-565.

Chavas, J.P., Cox, T.L. (1995). On nonparametric supply response analysis. *American Journal of Agricultural Economics* 77 (1): 80–92.

Coderoni, S., Esposti, R., Varacca, A. (2022). How differently do farms respond to agroenvironmental policies? A Machine-Learning approach. Department of Agricultural and Food Economics, Università Cattolica del Sacro Cuore (Piacenza, Italy), unpublished manuscripts.

Drukker, D. M. (2016). A generalized regression-adjustment estimator for average treatment effects from panel data. *Stata Journal* 16: 826–836.

Dumangane, M., Freo, M., Granato, S., Lapatinas, A., Mazzarella, G. (2021). An Evaluation of the CAP impact: a Discrete policy mix analysis. EUR 30880 EN, Publications Office of the European Union, Luxembourg.

Esposti, R. (2000). The impact of public R&D and extension expenditure on Italian agriculture. An application of a mixed parametric/nonparametric approach. *European Review of Agricultural Economics* 27 (3): 365–384.

Esposti, R. (2017a). The empirics of decoupling: Alternative estimation approaches of the farmlevel production response. *European Review of Agricultural Economics* 44 (3): 499–537.

Esposti, R. (2017b). The heterogeneous farm-level impact of the 2005 CAP-first pillar reform: A multivalued treatment effect estimation. *Agricultural Economics* 48 (3): 373–386.

Esposti, R. (2022a). Non-Monetary Motivations of Agro-Environmental Policies Adoption. A Causal Forest Approach. Quaderno di Ricerca n. 459, Dipartimento di Scienze Economiche e Sociali, Università Politecnica delle Marche.

Esposti, R. (2022b). The Coevolution of Policy Support and Farmers Behaviour and Performance. An investigation on Italian agriculture over the 2008-2019 period. *Bio-Based and Applied Economics* 11(3): 49-82.

European Commission (2021). European Green Deal: Commission presents actions to boost organic production. European Commission - Press release, 25 March, Brussels.

Fuglie, K.O., Bosch, D.J. (1995). Economic and Environmental Implications of Soil Nitrogen Testing: A Switching Regression Analysis. *American Journal of Agricultural Economics* 77(4): 891-900.

Gailhard, I.U., Bavorová, M., Pirscher, F. (2015). Adoption of Agro-Environmental Measure by Organic Farmers: The Role of Interpersonal Communication. *The Journal of Agricultural Education and Extension* 21 (2): 127-148.

Imbens, G.W., Rubin, D.B. (2015). *Causal inference in statistics, social, and biomedical sciences*. Cambridge University Press. Imbens, G.W., Wooldridge, J.M. (2009). Recent Developments in the Econometrics of Program Evaluation. *Journal of Economic Literature* 47(1): 5–86.

Jaime, M.M., Coria, J. Liu, X. (2016). Interactions between CAP Agricultural and Agri-Environmental Subsidies and Their Effects on the Uptake of Organic Farming. *American Journal of Agricultural Economics* 98 (4): 1114-1145.

Kelejian, H.H., Prucha, I. R. (1998). A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances. *Journal of Real Estate Finance and Economics* 17 (1): 99-121.

Kolak M, Anselin L. (2020). A Spatial Perspective on the Econometrics of Program Evaluation. *International Regional Science Review* 43(1-2):128-153.

Lampkin, N. (2010). EU-CAP reform – the history of the CAP and key issues for the organic sector. ORC Discussion Paper, Organic Research Centre, Cirencester, UK.

Murtazashvili, I., Wooldridge, J.M. (2016). A control function approach to estimating witching regression models with endogenous explanatory variables and endogenous switching. *Journal of Econometrics* 190: 252–266.

Papadogeorgou, G., Choirat, C., Zigler, C.M. (2019). Adjusting for unmeasured spatial confounding with distance adjusted propensity score matching. *Biostatistics* 20: 256-272.

Perraillon, M.C., Lindrooth, R.M., Hedeker, D. (2023). *Health Services Research and Program Evaluation: Causal Inference and Estimation*. Cambridge University Press (forthcoming).

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. *Journal of Educational Psychology* 66: 688–701.

Sauppe, J.J., Jacobson, S.H. (2017). The Role of Covariate Balance in Observational Studies. *Naval Research Logistics* 64: 323-344.

Stolze, M., Sanders, J., Kasperczyk, N., Madsen, G., Meredith, S., (2016). *CAP 2014-2020:* Organic farming and the prospects for stimulating public goods. IFOAM EU, Brussels. Thomas, F., Midler, E., Lefebvre, M., Engel, S. (2019). Greening the common agricultural policy:

a behavioural perspective and lab-in-the-field experiment in Germany. *European Review of* Agricultural Economics 46 (3): 367–392.

Varian, H. (1984). The nonparametric approach to production analysis. *Econometrica* 52 (3): 579–597.

Wooldridge, J. M. (2010). *Econometric Analysis of Cross Section and Panel Data*. 2nd ed., MIT Press, Cambridge.

Yang, W., Knook, J. (2021). Spatial evaluation of the impact of a climate change participatory extension programme on the uptake of soil management practices. *The Australian Journal of Agricultural and Resource Economics* 65: 539-565.

		Sign of the interference					
		Positive	Negative				
Nature of the	On treatment participation	Imitation/Contagion effect - Under voluntary participation	First-type congestion (or crowding-out) effect - Under involuntary exclusion				
interference	On treatment effect	Localised external economies	Localised external diseconomies (or Second-type congestion effect)				

Table 1 - Economic interpretation of the spatial interference in policy assessment

Table 2 – Treatment sets considered in the analysis: number of farms

	Т	NTa	NTb
Full sample			
2008-2014	696	15,601	441
2015-2020	777	12,576	747
1%+1% trimmed			
2008-2014	681	15,299	419
2015-2020	759	12,337	718
5%+5% trimmed*			
2008-2014	631	14,050	361
2015-2020	709	11,333	635
10%+10% trimmed			
2008-2014	554	12,507	304
2015-2020	623	10,077	554

LEGEND: T = treated units; NTa = voluntary untreated units; NTb = involuntary untreated units

* Indicates the sample used in model estimations

	and without (1) spatial interference.												
		2008-2014					2015-2020						
	T va NT		T va				T va		T va		T va NTb		
Variable:	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)	(1)	(2)	
Constant	-1.817***	-1.300***	-1.758***	-1.252***	-0.441	-1.603***	-1.509***	-1.161***	-1.384***	-1.039***	-0.559	-1.732***	
GEO1	-0.195**	-0.276***	-0.193**	-0.276***	-0.469***	-0.267	-0.233***	-0.311***	-0.218**	-0.321***	-0.584***	-0.227	
GEO2	-0.590***	-0.320***	-0.624***	-0.336***	-0.398**	0.081	-0.193***	0.082	-0.239***	0.059	0.254*	0.124	
GEO3	-0.598***	-0.382***	-0.634***	-0.397***	0.322	0.273	-0.789***	-0.462***	-0.857***	-0.512***	-0.604***	-0.154	
GEO4	-0.020	-0.295***	-0.049	-0.311***	0.191	-0.003	-0.067	-0.243***	-0.103*	-0.273***	0.019	0.000	
UAA	0.007***	0.008***	0.007***	0.008***	0.009***	0.009***	0.005***	0.005***	0.005***	0.006***	0.002	0.002	
UAA ²	0.000***	0.000***	0.000***	0.000***	0.000***	0.000**	0.000***	0.000***	0.000***	0.000***	0.000	0.000	
TF1	0.188	0.179	0.194	0.185	0.118	0.163	-0.135	-0.111	-0.139	-0.110	0.150	0.162	
TF2	0.495***	0.419***	0.516***	0.438***	-0.025	0.120	0.241**	0.250**	0.255**	0.274***	-0.018	0.054	
TF3	1.064***	0.846***	1.094***	0.861***	0.709**	0.745**	0.548***	0.406***	0.602***	0.459***	0.126	0.184	
TF4	-0.159	-0.162	-0.187	-0.189	-0.249	-0.093	-0.345*	-0.339*	-0.366*	-0.361*	-0.293	-0.250	
TF5	0.672***	0.640***	0.709***	0.681***	0.126	0.306	0.248**	0.213*	0.282***	0.252**	-0.144	-0.035	
TF6	1.569***	1.300***	1.620***	1.349***	0.911***	0.939***	1.249***	0.730***	1.430***	0.871***	0.334	0.136	
TF7	-0.106	-0.082	-0.098	-0.078	-0.460	-0.056	-0.005	0.037	0.000	0.043	-0.039	0.081	
TF8	0.371**	0.344**	0.378**	0.346**	0.179	0.442	0.159	0.174	0.166	0.185*	0.085	0.254	
TF9	0.609***	0.637***	0.632***	0.658***	0.244	0.451	0.202*	0.294***	0.239**	0.335***	-0.048	0.279	
ES1	0.145**	0.133**	0.152**	0.138**	0.118	0.127	0.104*	0.096	0.119*	0.110*	0.100	0.039	
ES2	-0.030	-0.058	-0.025	-0.057	0.051	0.069	-0.001	-0.030	0.011	-0.021	0.106	0.037	
ALT1	0.254***	-0.048	0.254***	-0.045	0.234*	0.063	0.090	-0.111	0.112*	-0.098	-0.073	-0.185*	
ALT2	-0.163**	-0.129*	-0.171**	-0.137*	-0.216	0.007	0.003	0.015	-0.003	-0.002	0.202*	0.194*	
ALT3	0.994***	0.198	1.048***	0.232	0.472**	0.246	0.369**	-0.232	0.448**	-0.420**	0.028	-0.020	
ALT4	-0.213***	-0.228***	-0.226***	-0.235***	0.028	-0.146	-0.301***	-0.253***	-0.327***	-0.279***	-0.107	-0.010	
RENT	-0.104*	-0.052	-0.084	-0.037	-0.394***	-0.295**	-0.123**	-0.023	-0.128**	-0.032	-0.128	-0.031	
FOR	0.264	0.232	0.307*	0.282	-0.326	-0.140	0.551***	0.620***	0.629***	0.686***	0.299	0.257	
FIX	0.000	0.000	0.000	0.000	0.002	0.002	-0.011***	-0.010**	-0.011***	-0.011***	-0.006	-0.008	
SFAWU	-0.386***	-0.172	-0.414***	-0.197*	-0.053	0.082	-0.165*	-0.156	-0.252**	-0.216**	0.274*	0.284*	
RAIN	0.000***	0.000**	0.000***	0.000**	0.000	0.000	0.000***	0.000**	0.001***	0.000*	0.000	0.000	
OGA	0.008***	0.009***	0.009***	0.009***	0.003	0.003	0.000	0.002	0.000	0.003*	-0.007***	-0.002	
AGE	-0.008***	-0.010***	-0.009***	-0.011***	0.004	0.002	-0.008***	-0.007***	-0.010***	-0.009***	0.002	0.005	
EDU1	-0.106	-0.202***	-0.117*	-0.212***	-0.022	-0.111	-0.225***	-0.259***	-0.264***	-0.302***	0.076	0.073	
EDU2	-0.142	-0.146	-0.180	-0.182	0.378	0.362	-0.192	-0.237	-0.194	-0.233	-0.385	-0.550*	
EDU3	0.178**	0.199**	0.189**	0.210**	0.021	0.034	0.323***	0.331***	0.353***	0.367***	0.258**	0.240**	
EDU4	-0.302***	-0.293***	-0.320***	-0.303***	0.308	0.000	-0.236***	-0.282***	-0.240***	-0.287***	-0.079	-0.200	
EDU5	-0.237***	-0.207***	-0.252***	-0.219***	0.202	0.116	-0.233***	-0.236***	-0.248***	-0.255***	0.030	0.014	
EDU6	-0.357**	-0.354*	-0.348*	-0.349*	-0.250	-0.196	0.268**	0.163	0.264**	0.158	0.715***	0.564*	
EDU7	-	-	-	-	-	-	0.478	0.572	0.556	0.654	0.262	0.562	
TCOUNT	-	-0.001***	-	-0.001***	-	0.002	-	0.000**	-	-0.001**	-	0.002	
TSHARE	-	3.675***	-	3.632***	-	2.113***	-	4.016***	-	3.695***	-	2.354***	
-	T" "T vs NT		a NITh" nofon		on which the		C		L				

Table 3 - Propensity Score (PS) estimation: Probit specification of the treatment equation with (2) and without (1) spatial interference.^a

^a"T vs NT", "T vs NTa" and "T vs NTb" refer the sample on which the PSE is performed.

Statistical significance: *** 1%, ** 5%, * 10%.

LEGEND: T = treated units; NTa = voluntary untreated units; NTb = involuntary untreated units; GEO1 = Italian NUTS1 region "Islands"; GEO2 = Italian NUTS1 region "North-East"; GEO3 = Italian NUTS1 region "North-West"; GEO4 = Italian NUTS1 region "South"; UAA = Utilised Agricultural Area; TF1 = Type of Farming "Cereals"; TF2 = Type of Farming "Grazing livestock"; TF3 = Type of Farming "Fruits"; TF4 = Type of Farming "Granivores"; TF5 = Type of Farming "Mixed crops&livestock"; TF6 = Type of Farming "Olive growing"; TF7 = Type of Farming "Horticulture"; TF8 = Type of Farming "Other field crops"; TF9 = Type of Farming "Wine growing"; ES1 = Economic Size class "Medium"; ES2 = Economic Size class "Small"; ALT1 = Altitude class "Coastal Hill"; ALT2 = Altitude class "Inland Mountain"; ALT3 = Altitude class "Coastal Mountain"; ALT4 = Altitude class "Plain"; RENT = share of rental land on total farm land; FOR = share of forests on total farm land; FIX = share of farm holder; EDU1 = Technical education of the farm holder; EDU2 = University-level education of the farm holder; EDU3 = Master-level education of the farm holder; EDU4 = Elementary-level education of the farm holder; TCOUNT= number of treated farms in the neighbouring space; TSHARE = density (% on total farms) of treated farms in the neighbouring space.

Table 4 – Regression adjustment GMM estimation of the outcome equation assuming exogeneity of the treatment: for the T group (1), the NT group (2), the NTa group (3), and the NTb group (4), without spatial lag (RA) and with spatial lag (SRA).

		RA		2008-2	014	CD A	SRA		
	(1)	(2) KA	(3)	(4)	(1)	(2) SKA	(3)	(4)	
RHO	- (1)	(2)	(5)		0.484***	-0.032***	-0.032***	0.060	
Const	62.016***	75.155***	74.783***	91.996***	48.586***	76.369***	75.878***	88.091***	
GEO1	-5.291	-2.225***	-1.913***	-8.780**	-6.046*	-2.057***	-1.677**	-7.301*	
GEO2	-0.260	3.959***	4.343***	-11.708**	-1.877	3.834***	4.250***	-10.007*	
GEO3	4.405	6.332***	6.560***	8.260	1.251	6.258***	6.517***	8.984	
GEO4	-1.901	-3.010***	-2.789***	-7.195	-3.244	-2.967***	-2.676***	-6.389	
UAA	0.579***	0.284***	0.284***	0.257***	0.592***	0.284***	0.284***	0.248***	
UAA ²	-0.002***	0.000***	0.000***	0.000**	-0.002***	0.000***	0.000***	0.000**	
CAP	0.288	-0.187	-0.178	-1.779***	0.372	-0.143	-0.116	-1.676***	
EMAT	0.008**	0.000	0.000	-0.016	0.008**	0.000	0.000	-0.015	
LAB	-74.659*	-11.912***	-11.662***	-4.661	-82.477**	-12.941***	-12.702***	-8.287	
SER	0.006*	0.002***	0.002***	0.007*	0.006**	0.002***	0.002***	0.007*	
SFAWU	-64.351***	-47.221***	-47.073***	-44.993***	-63.041***	-47.648***	-47.399***	-44.122***	
ALT1	-1.176	-2.928***	-2.988***	1.275	-0.625	-3.175***	-3.181***	2.608	
ALT2	-1.037	-2.640***	-2.787***	2.174	0.259	-2.779***	-2.925***	2.929	
ALT3	4.652	-8.337***	-7.834***	-12.617*	5.638	-8.370***	-7.860***	-12.217*	
ALT4	4.542	0.261	0.137	9.986*	5.367	0.253	0.183	7.550	
FOR	1.089	-7.301***	-7.473***	-2.092	1.068	-7.191***	-7.393***	-2.512	
FIX	0.026	0.003	0.003	0.159	0.019	0.003	0.003	0.167	
DEV	15.074*	2.810	1.719	10.852	8.936	3.051	2.090	10.092	
OGA	0.002	0.017	0.015	0.064	0.011	0.010	0.004	0.065	
AGE	-0.013	-0.096***	-0.095***	-0.074	-0.011	-0.095***	-0.096***	-0.075	
LSU	-3.158	0.057***	0.056***	0.746*	-3.456*	0.056***	0.055***	0.773*	
TF1-10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
111 10	100	100	100	2015-2		100	100	100	
		RA		2010 2	020	SRA	L		
	(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)	
RHO									
	-	-	-	-	-0.216	-0.087***	-0.084***	-0.097	
Const	- 66.499***	- 72.521***	- 72.403***	76.852***	72.899***	-0.087*** 74.865***	-0.084*** 74.782***	-0.097 81.385***	
Const GEO1	-0.463	-3.833***	-2.869***	-10.995***	72.899*** -0.548	-0.087*** 74.865*** -2.887***	-0.084*** 74.782*** -1.990**	-0.097 81.385*** -10.648***	
Const GEO1 GEO2	-0.463 3.887	-3.833*** 4.922***	-2.869*** 5.477***	-10.995*** -2.509	72.899*** -0.548 5.128	-0.087*** 74.865*** -2.887*** 5.155***	-0.084*** 74.782*** -1.990** 5.686***	-0.097 81.385*** -10.648*** -2.013	
Const GEO1 GEO2 GEO3	-0.463 3.887 3.088	-3.833*** 4.922*** 3.836***	-2.869*** 5.477*** 4.344***	-10.995*** -2.509 -1.905	72.899*** -0.548 5.128 3.243	-0.087*** 74.865*** -2.887*** 5.155*** 3.427***	-0.084*** 74.782*** -1.990** 5.686*** 3.933***	-0.097 81.385*** -10.648*** -2.013 -2.675	
Const GEO1 GEO2 GEO3 GEO4	-0.463 3.887 3.088 0.434	-3.833*** 4.922*** 3.836*** -1.751***	-2.869*** 5.477*** 4.344*** -1.312**	-10.995*** -2.509 -1.905 -3.872	72.899*** -0.548 5.128 3.243 0.342	-0.087*** 74.865*** -2.887*** 5.155*** 3.427*** -1.458**	-0.084*** 74.782*** -1.990** 5.686*** 3.933*** -1.045*	-0.097 81.385*** -10.648*** -2.013 -2.675 -3.889	
Const GEO1 GEO2 GEO3 GEO4 UAA	-0.463 3.887 3.088 0.434 0.420***	-3.833*** 4.922*** 3.836*** -1.751*** 0.301***	-2.869*** 5.477*** 4.344*** -1.312** 0.300***	-10.995*** -2.509 -1.905 -3.872 0.206***	72.899*** -0.548 5.128 3.243 0.342 0.417***	-0.087*** 74.865*** -2.887*** 5.155*** 3.427*** -1.458** 0.300***	-0.084*** 74.782*** -1.990** 5.686*** 3.933*** -1.045* 0.300***	-0.097 81.385*** -10.648*** -2.013 -2.675 -3.889 0.210***	
Const GEO1 GEO2 GEO3 GEO4 UAA UAA ²	-0.463 3.887 3.088 0.434 0.420*** -0.001***	-3.833*** 4.922*** 3.836*** -1.751*** 0.301*** 0.000***	-2.869*** 5.477*** 4.344*** -1.312** 0.300*** 0.000***	-10.995*** -2.509 -1.905 -3.872 0.206*** 0.000**	72.899*** -0.548 5.128 3.243 0.342 0.417*** -0.001***	-0.087*** 74.865*** -2.887*** 5.155*** 3.427*** -1.458** 0.300*** 0.000***	-0.084*** 74.782*** -1.990** 5.686*** 3.933*** -1.045* 0.300*** 0.000***	-0.097 81.385*** -10.648*** -2.013 -2.675 -3.889 0.210*** 0.000**	
Const GEO1 GEO2 GEO3 GEO4 UAA UAA ² CAP	-0.463 3.887 3.088 0.434 0.420*** -0.001*** -0.175	-3.833*** 4.922*** 3.836*** -1.751*** 0.301*** 0.000*** -0.321***	-2.869*** 5.477*** 4.344*** -1.312** 0.300*** 0.000*** -0.303***	-10.995*** -2.509 -1.905 -3.872 0.206*** 0.000** -0.608	72.899*** -0.548 5.128 3.243 0.342 0.417*** -0.001*** -0.197	-0.087*** 74.865*** -2.887*** 5.155*** 3.427*** -1.458** 0.300*** 0.000*** -0.441***	-0.084*** 74.782*** -1.990** 5.686*** 3.933*** -1.045* 0.300*** 0.000*** -0.414***	-0.097 81.385*** -10.648*** -2.013 -2.675 -3.889 0.210*** 0.000** -0.623	
Const GEO1 GEO2 GEO3 GEO4 UAA UAA ²	-0.463 3.887 3.088 0.434 0.420*** -0.001*** -0.175 -0.031***	-3.833*** 4.922*** 3.836*** -1.751*** 0.301*** 0.000***	-2.869*** 5.477*** 4.344*** -1.312** 0.300*** 0.000***	-10.995*** -2.509 -1.905 -3.872 0.206*** 0.000**	72.899*** -0.548 5.128 3.243 0.342 0.417*** -0.001*** -0.197 -0.032***	-0.087*** 74.865*** -2.887*** 5.155*** 3.427*** -1.458** 0.300*** 0.000***	-0.084*** 74.782*** -1.990** 5.686*** 3.933*** -1.045* 0.300*** 0.000***	-0.097 81.385*** -10.648*** -2.013 -2.675 -3.889 0.210*** 0.000** -0.623 -0.023**	
Const GEO1 GEO2 GEO3 GEO4 UAA UAA ² CAP	-0.463 3.887 3.088 0.434 0.420*** -0.001*** -0.175 -0.031*** -199.018***	-3.833*** 4.922*** 3.836*** -1.751*** 0.301*** 0.000*** -0.321*** 0.002** -10.041	-2.869*** 5.477*** 4.344*** -1.312** 0.300*** 0.000*** 0.303*** 0.002** -9.113	-10.995*** -2.509 -1.905 -3.872 0.206*** 0.000** -0.608 -0.024** -286.509***	72.899*** -0.548 5.128 3.243 0.342 0.417*** -0.001*** -0.097 -0.032*** -202.954***	-0.087*** 74.865*** -2.887*** 5.155*** 3.427*** -1.458** 0.300*** 0.000*** -0.441*** 0.002*** -15.238	-0.084*** 74.782*** -1.990** 5.686*** 3.933*** -1.045* 0.300*** 0.000*** -0.414***	-0.097 81.385*** -10.648*** -2.013 -2.675 -3.889 0.210*** 0.000** -0.623 -0.023** -282.814***	
Const GEO1 GEO2 GEO3 GEO4 UAA UAA ² CAP EMAT LAB SER	-0.463 3.887 3.088 0.434 0.420*** -0.001*** -0.175 -0.031*** -199.018*** 0.000	-3.833*** 4.922*** 3.836*** -1.751*** 0.301*** 0.000*** -0.321*** 0.002** -10.041 0.000	-2.869*** 5.477*** 4.344*** -1.312** 0.300*** 0.000*** 0.002** -9.113 0.000	-10.995*** -2.509 -1.905 -3.872 0.206*** 0.000** -0.608 -0.024** -286.509*** 0.058***	72.899*** -0.548 5.128 3.243 0.342 0.417*** -0.001*** -0.197 -0.032*** -202.954*** 0.000	-0.087*** 74.865*** -2.887*** 5.155*** 3.427*** -1.458** 0.300*** 0.000*** -0.441*** 0.002*** -15.238 0.000	-0.084*** 74.782*** -1.990** 5.686*** 3.933*** -1.045* 0.300*** 0.000*** -0.414*** 0.002*** -15.264 0.000	-0.097 81.385*** -10.648*** -2.013 -2.675 -3.889 0.210*** 0.000** -0.623 -0.023** -282.814*** 0.057***	
Const GEO1 GEO2 GEO3 GEO4 UAA UAA ² CAP EMAT LAB	-0.463 3.887 3.088 0.434 0.420*** -0.001*** -0.175 -0.031*** -199.018***	-3.833*** 4.922*** 3.836*** -1.751*** 0.301*** 0.000*** -0.321*** 0.002** -10.041	-2.869*** 5.477*** 4.344*** -1.312** 0.300*** 0.000*** 0.303*** 0.002** -9.113	-10.995*** -2.509 -1.905 -3.872 0.206*** 0.000** -0.608 -0.024** -286.509***	72.899*** -0.548 5.128 3.243 0.342 0.417*** -0.001*** -0.097 -0.032*** -202.954***	-0.087*** 74.865*** -2.887*** 5.155*** 3.427*** -1.458** 0.300*** 0.000*** -0.441*** 0.002*** -15.238	-0.084*** 74.782*** -1.990** 5.686*** 3.933*** -1.045* 0.300*** 0.000*** -0.414*** 0.002*** -15.264	-0.097 81.385*** -10.648*** -2.013 -2.675 -3.889 0.210*** 0.000** -0.623 -0.023** -282.814***	
Const GEO1 GEO2 GEO3 GEO4 UAA UAA ² CAP EMAT LAB SER SFAWU ALT1	-0.463 3.887 3.088 0.434 0.420*** -0.001*** -0.031*** -199.018*** 0.000 -24.259*** -3.818*	-3.833*** 4.922*** 3.836*** -1.751*** 0.301*** 0.000*** 0.321*** 0.002** -10.041 0.000 -43.220*** -2.325***	-2.869*** 5.477*** 4.344*** -1.312** 0.300*** 0.000*** 0.002** -9.113 0.000	-10.995*** -2.509 -1.905 -3.872 0.206*** 0.000** -0.608 -0.024** -286.509*** 0.058***	72.899*** -0.548 5.128 3.243 0.342 0.417*** -0.001*** -0.032*** -202.954*** 0.000 -24.665*** -4.313**	-0.087*** 74.865*** -2.887*** 5.155*** 3.427*** -1.458** 0.300*** 0.000*** -0.441*** 0.002*** -15.238 0.000	-0.084*** 74.782*** -1.990** 5.686*** 3.933*** -1.045* 0.300*** 0.000*** -0.414*** 0.002*** -15.264 0.000	-0.097 81.385*** -10.648*** -2.013 -2.675 -3.889 0.210*** 0.000** -0.623 -0.023** -282.814*** 0.057***	
Const GEO1 GEO2 GEO3 GEO4 UAA UAA ² CAP EMAT LAB SER SFAWU ALT1 ALT2	-0.463 3.887 3.088 0.434 0.420*** -0.001*** -0.031*** -199.018*** 0.000 -24.259***	-3.833*** 4.922*** 3.836*** -1.751*** 0.301*** 0.000*** -0.321*** 0.002** -10.041 0.000 -43.220*** -2.325*** -0.647	-2.869*** 5.477*** 4.344*** -1.312** 0.300*** 0.000*** -0.303*** 0.002** -9.113 0.000 -43.337*** -2.138*** -0.697	-10.995*** -2.509 -1.905 -3.872 0.206*** 0.000** -0.608 -0.024** -286.509*** 0.058*** -35.624***	72.899*** -0.548 5.128 3.243 0.342 0.417*** -0.001*** -0.032*** -202.954*** 0.000 -24.665*** -4.313** -3.955*	-0.087*** 74.865*** -2.887*** 5.155*** 3.427*** -1.458** 0.300*** 0.000*** -0.441*** 0.002*** -15.238 0.000 -43.118*** -2.784*** -0.263	-0.084*** 74.782*** -1.990** 5.686*** 3.933*** -1.045* 0.300*** 0.000*** -0.414*** 0.002*** -15.264 0.000 -43.329*** -2.594*** -0.302	-0.097 81.385*** -10.648*** -2.013 -2.675 -3.889 0.210*** 0.000** -0.623 -0.023** -282.814*** 0.057*** -35.754***	
Const GEO1 GEO2 GEO3 GEO4 UAA UAA ² CAP EMAT LAB SER SFAWU ALT1 ALT2 ALT3	-0.463 3.887 3.088 0.434 0.420*** -0.001*** -0.031*** -199.018*** 0.000 -24.259*** -3.818* -3.503 -3.205	-3.833*** 4.922*** 3.836*** -1.751*** 0.301*** 0.000*** -0.321*** 0.002** -10.041 0.000 -43.220*** -2.325*** -0.647 -5.301***	-2.869*** 5.477*** 4.344*** -1.312** 0.300*** -0.303*** 0.002** -9.113 0.000 -43.337*** -2.138*** -0.697 -5.234***	-10.995*** -2.509 -1.905 -3.872 0.206*** 0.000** -0.608 -0.024** -286.509*** 0.058*** -35.624*** -3.941* 1.915 -2.984	72.899*** -0.548 5.128 3.243 0.342 0.417*** -0.001*** -0.032*** -202.954*** 0.000 -24.665*** -4.313** -3.955* -3.918	-0.087*** 74.865*** -2.887*** 5.155*** 3.427*** -1.458** 0.300*** 0.000*** -0.441*** 0.002*** -15.238 0.000 -43.118*** -2.784*** -0.263 -6.760***	-0.084*** 74.782*** -1.990** 5.686*** 3.933*** -1.045* 0.300*** 0.000*** -0.414*** 0.002*** -15.264 0.000 -43.329*** -2.594*** -0.302 -6.821***	-0.097 81.385*** -10.648*** -2.013 -2.675 -3.889 0.210*** 0.000** -0.623 -0.023** -282.814*** 0.057*** -35.754*** -4.095* 1.866 -3.591	
Const GEO1 GEO2 GEO3 GEO4 UAA UAA ² CAP EMAT LAB SER SER SFAWU ALT1 ALT2 ALT3 ALT4	-0.463 3.887 3.088 0.434 0.420*** -0.001*** -0.031*** -199.018*** 0.000 -24.259*** -3.818* -3.503 -3.205 -1.065	-3.833*** 4.922*** 3.836*** -1.751*** 0.301*** 0.000*** -0.321*** 0.002** -10.041 0.000 -43.220*** -2.325*** -0.647 -5.301*** 0.882	-2.869*** 5.477*** 4.344*** -1.312** 0.300*** -0.303*** -0.303*** -9.113 0.000 -43.337*** -2.138*** -0.697 -5.234*** 0.923	-10.995*** -2.509 -1.905 -3.872 0.206*** 0.000** -0.608 -0.024** -286.509*** 0.058*** -35.624*** -3.941* 1.915	72.899*** -0.548 5.128 3.243 0.342 0.417*** -0.001*** -0.032*** -202.954*** -202.954*** -4.313** -3.955* -3.918 -1.159	-0.087*** 74.865*** -2.887*** 5.155*** 3.427*** -1.458** 0.300*** 0.000*** -0.441*** 0.002*** -15.238 0.000 -43.118*** -2.784*** -0.263 -6.760*** 0.350	-0.084*** 74.782*** -1.990** 5.686*** 3.933*** -1.045* 0.300*** 0.000*** 0.414*** 0.002*** -15.264 0.000 -43.329*** -2.594*** -0.302 -6.821*** 0.358	-0.097 81.385*** -10.648*** -2.013 -2.675 -3.889 0.210*** 0.000** -0.623 -0.023** -282.814*** -35.754*** -35.754*** -4.095* 1.866 -3.591 -1.571	
Const GEO1 GEO2 GEO3 GEO4 UAA UAA ² CAP EMAT LAB SER SFAWU ALT1 ALT2 ALT2 ALT3 ALT4 FOR	-0.463 3.887 3.088 0.434 0.420*** -0.001*** -0.031*** -199.018*** 0.000 -24.259*** -3.818* -3.503 -3.205 -1.065 -17.148***	-3.833*** 4.922*** 3.836*** -1.751*** 0.301*** 0.000*** -0.321*** 0.002** -10.041 0.000 -43.220*** -2.325*** -0.647 -5.301*** 0.882 -7.406***	-2.869*** 5.477*** 4.344*** -1.312** 0.300*** 0.000*** -0.303*** -0.303*** -9.113 0.000 -43.337*** -2.138*** -0.697 -5.234*** 0.923 -8.200***	-10.995*** -2.509 -1.905 -3.872 0.206*** 0.000** -0.608 -0.024** -286.509*** 0.058*** -35.624*** -3.941* 1.915 -2.984 -1.358 -5.323	72.899*** -0.548 5.128 3.243 0.342 0.417*** -0.001*** -0.032*** -202.954*** 0.000 -24.665*** -4.313** -3.955* -3.918 -1.159 -16.837***	-0.087*** 74.865*** -2.887*** 5.155*** 3.427*** -1.458** 0.300*** 0.000*** -0.441*** 0.002*** -15.238 0.000 -43.118*** -2.784*** -0.263 -6.760*** 0.350 -8.197***	-0.084*** 74.782*** -1.990** 5.686*** 3.933*** -1.045* 0.300*** 0.000*** 0.002*** -0.414*** 0.002*** -15.264 0.000 -43.329*** -2.594*** 0.302 -6.821*** 0.358 -8.813***	-0.097 81.385*** -10.648*** -2.013 -2.675 -3.889 0.210*** 0.000** -0.023** -282.814*** 0.057*** -35.754*** -35.754*** 1.866 -3.591 -1.571 -5.533	
Const GEO1 GEO2 GEO3 GEO4 UAA UAA ² CAP EMAT LAB SER SFAWU ALT1 ALT2 ALT3 ALT3 ALT4 FOR FIX	-0.463 3.887 3.088 0.434 0.420^{***} -0.01^{***} -0.031^{***} -199.018^{***} 0.000 -24.259^{***} -3.818^{*} -3.503 -3.205 -1.065 -17.148^{***} 0.409^{***}	-3.833*** 4.922*** 3.836*** -1.751*** 0.301*** 0.002** -0.321*** 0.002** -10.041 0.000 -43.220*** -2.325*** -0.647 -5.301*** 0.882 -7.406*** 0.005**	-2.869^{***} 5.477^{***} 4.344^{***} -1.312^{**} 0.000^{***} -0.303^{***} 0.002^{**} -9.113 0.000 -43.337^{***} -2.138^{***} -0.697 -5.234^{***} 0.923 -8.200^{***} 0.005^{**}	-10.995*** -2.509 -1.905 -3.872 0.206*** 0.000** -0.608 -0.024** -286.509*** 0.058*** -35.624*** -3.941* 1.915 -2.984 -1.358 -5.323 -0.024	72.899*** -0.548 5.128 3.243 0.342 0.417*** -0.001*** -0.032*** -202.954*** -202.954*** -4.313** -3.955* -3.918 -1.159	-0.087*** 74.865*** -2.887*** 5.155*** 3.427*** -1.458** 0.300*** 0.000*** 0.002*** -0.441*** 0.002*** -15.238 0.000 -43.118*** -2.784*** -0.263 -6.760*** 0.350 -8.197*** 0.005**	-0.084*** 74.782*** -1.990** 5.686*** 3.933*** -1.045* 0.300*** 0.000*** -0.414*** 0.002*** -15.264 0.000 -43.329*** -2.594*** -0.302 -6.821*** 0.358 -8.813*** 0.005**	-0.097 81.385*** -10.648*** -2.013 -2.675 -3.889 0.210*** 0.000** -0.623 -0.023** -282.814*** 0.057*** -35.754*** 1.866 -3.591 -1.571 -5.533 -0.025	
Const GEO1 GEO2 GEO3 GEO4 UAA UAA ² CAP EMAT LAB SER SFAWU ALT1 ALT2 ALT2 ALT3 ALT4 FOR	-0.463 3.887 3.088 0.434 0.420*** -0.001*** -0.031*** -199.018*** 0.000 -24.259*** -3.818* -3.503 -3.205 -1.065 -17.148***	-3.833*** 4.922*** 3.836*** -1.751*** 0.301*** 0.000*** -0.321*** 0.002** -10.041 0.000 -43.220*** -2.325*** -0.647 -5.301*** 0.882 -7.406***	-2.869*** 5.477*** 4.344*** -1.312** 0.300*** 0.000*** -0.303*** -0.303*** -9.113 0.000 -43.337*** -2.138*** -0.697 -5.234*** 0.923 -8.200***	-10.995*** -2.509 -1.905 -3.872 0.206*** 0.000** -0.608 -0.024** -286.509*** 0.058*** -35.624*** -3.941* 1.915 -2.984 -1.358 -5.323	72.899*** -0.548 5.128 3.243 0.342 0.417*** -0.001*** -0.032*** -202.954*** 0.000 -24.665*** -4.313** -3.955* -3.918 -1.159 -16.837***	-0.087*** 74.865*** -2.887*** 5.155*** 3.427*** -1.458** 0.300*** 0.000*** -0.441*** 0.002*** -15.238 0.000 -43.118*** -2.784*** -0.263 -6.760*** 0.350 -8.197***	-0.084*** 74.782*** -1.990** 5.686*** 3.933*** -1.045* 0.300*** 0.000*** 0.002*** -0.414*** 0.002*** -15.264 0.000 -43.329*** -2.594*** 0.302 -6.821*** 0.358 -8.813***	-0.097 81.385*** -10.648*** -2.013 -2.675 -3.889 0.210*** 0.000** -0.023** -0.023** -282.814*** 0.057*** -35.754*** 1.866 -3.591 -1.571 -5.533	
Const GEO1 GEO2 GEO3 GEO4 UAA UAA ² CAP EMAT LAB SER SFAWU ALT1 ALT2 ALT3 ALT3 ALT4 FOR FIX	-0.463 3.887 3.088 0.434 0.420^{***} -0.01^{***} -0.031^{***} -199.018^{***} 0.000 -24.259^{***} -3.818^{*} -3.503 -3.205 -1.065 -17.148^{***} 0.409^{***}	-3.833*** 4.922*** 3.836*** -1.751*** 0.301*** 0.002** -0.321*** 0.002** -10.041 0.000 -43.220*** -2.325*** -0.647 -5.301*** 0.882 -7.406*** 0.005**	-2.869*** 5.477*** 4.344*** -1.312** 0.300*** 0.002** -9.113 0.000 -43.337*** -2.138*** -0.697 -5.234*** 0.923 -8.200*** 0.923 -8.200*** 0.005**	-10.995*** -2.509 -1.905 -3.872 0.206*** 0.000** -0.608 -0.024** -286.509*** 0.058*** -35.624*** -3.941* 1.915 -2.984 -1.358 -5.323 -0.024	72.899*** -0.548 5.128 3.243 0.342 0.417*** -0.001*** -0.032*** -202.954*** 0.000 -24.665*** -4.313** -3.955* -3.918 -1.159 -16.837*** 0.402***	-0.087*** 74.865*** -2.887*** 5.155*** 3.427*** 0.300*** 0.000*** -0.441*** 0.002*** -15.238 0.000 -43.118*** -2.784*** -0.263 -6.760*** 0.350 -8.197*** 0.005** -7.687*** 0.109***	-0.084*** 74.782*** -1.990** 5.686*** 3.933*** -1.045* 0.300*** 0.000*** -0.414*** 0.002*** -15.264 0.000 -43.329*** -2.594*** -0.302 -6.821*** 0.358 -8.813*** 0.005**	-0.097 81.385*** -10.648*** -2.013 -2.675 -3.889 0.210*** 0.000** -0.623 -0.023** -282.814*** 0.057*** -35.754*** 1.866 -3.591 -1.571 -5.533 -0.025	
Const GEO1 GEO2 GEO3 GEO4 UAA UAA ² CAP EMAT LAB SER SFAWU ALT1 ALT2 ALT3 ALT3 ALT4 FOR FIX DEV	-0.463 3.887 3.088 0.434 0.420^{***} -0.01^{***} -0.031^{***} -199.018^{***} 0.000 -24.259^{***} -3.818^{*} -3.503 -3.205 -1.065 -17.148^{***} 0.409^{***} 0.507	-3.833*** 4.922*** 3.836*** -1.751*** 0.301*** 0.002** -0.321*** 0.002** -10.041 0.000 -43.220*** -2.325*** -0.647 -5.301*** 0.882 -7.406*** 0.005** -7.024*** 0.110***	-2.869^{***} 5.477^{***} 4.344^{***} 0.300^{***} 0.002^{**} -0.303^{***} 0.002^{**} -9.113 0.000 -43.337^{***} -2.138^{***} -0.697 -5.234^{***} 0.923 -8.200^{***} 0.005^{**} -9.017^{***}	-10.995*** -2.509 -1.905 -3.872 0.206*** 0.000** -0.608 -0.024** -286.509*** 0.058*** -35.624*** -3.941* 1.915 -2.984 -1.358 -5.323 -0.024 0.962 0.140 -0.015	72.899*** -0.548 5.128 3.243 0.342 0.417*** -0.001*** -0.032*** -202.954*** -202.954*** -3.955* -3.918 -1.159 -16.837*** 0.402*** -0.480	-0.087*** 74.865*** -2.887*** 5.155*** 3.427*** -1.458** 0.000*** -0.441*** 0.002*** -15.238 0.000 -43.118*** -2.784*** -0.263 -6.760*** 0.350 -8.197*** 0.005** -7.687*** 0.109*** -0.099***	-0.084*** 74.782*** -1.990** 5.686*** 3.933*** -1.045* 0.300*** 0.000*** -0.414*** 0.002*** -15.264 0.000 -43.329*** -2.594*** -0.302 -6.821*** 0.358 -8.813*** 0.005** -9.280***	-0.097 81.385*** -10.648*** -2.013 -2.675 -3.889 0.210*** 0.000** -0.623 -0.023** -282.814*** 0.057*** -35.754*** -4.095* 1.866 -3.591 -1.571 -5.533 -0.025 -0.278 0.137 -0.021	
Const GEO1 GEO2 GEO3 GEO4 UAA UAA ² CAP EMAT LAB SER SFAWU ALT1 ALT2 ALT3 ALT4 FOR FIX DEV OGA	-0.463 3.887 3.088 0.434 0.420^{***} -0.001^{***} -0.031^{***} -199.018^{***} 0.000 -24.259^{***} -3.818^{*} -3.503 -3.205 -1.065 -17.148^{***} 0.409^{***} 0.507 0.326^{***}	-3.833*** 4.922*** 3.836*** -1.751*** 0.301*** 0.002** -0.321*** 0.002** -10.041 0.000 -43.220*** -2.325*** -0.647 -5.301*** 0.882 -7.406*** 0.005** -7.024*** 0.110***	-2.869*** 5.477*** 4.344*** -1.312** 0.300*** 0.002** -9.113 0.000 -43.337*** -2.138*** -0.697 -5.234*** 0.923 -8.200*** 0.923 -8.200*** 0.005**	-10.995*** -2.509 -1.905 -3.872 0.206*** 0.000** -0.608 -0.024** -286.509*** 0.058*** -35.624*** -3.941* 1.915 -2.984 -1.358 -5.323 -0.024 0.962 0.140	72.899*** -0.548 5.128 3.243 0.342 0.417*** -0.001*** -0.032*** -202.954*** 0.000 -24.665*** -4.313** -3.955* -3.918 -1.159 -16.837*** 0.402*** -0.480 0.323***	-0.087*** 74.865*** -2.887*** 5.155*** 3.427*** 0.300*** 0.000*** -0.441*** 0.002*** -15.238 0.000 -43.118*** -2.784*** -0.263 -6.760*** 0.350 -8.197*** 0.005** -7.687*** 0.109***	-0.084*** 74.782*** -1.990** 5.686*** 3.933*** -1.045* 0.300*** 0.000*** -0.414*** 0.002*** -15.264 0.000 -43.329*** -2.594*** 0.358 -8.813*** 0.005** -9.280*** 0.102***	-0.097 81.385*** -10.648*** -2.013 -2.675 -3.889 0.210*** 0.000** -0.623 -0.023** -282.814*** 0.057*** -35.754*** -4.095* 1.866 -3.591 -1.571 -5.533 -0.025 -0.278 0.137	

Statistical significance: *** 1%, ** 5%, * 10%.

LEGEND: T = treated units; NTa = voluntary untreated units; NTb = involuntary untreated units; RHO = spatial autoregressive coefficient; GEO1 = Italian NUTS1 region "Islands"; GEO2 = Italian NUTS1 region "North-East"; GEO3 = Italian NUTS1 region "North-West"; GEO4 = Italian NUTS1 region "South"; UAA = Utilised Agricultural Area; CAP = (capital stock/GPV)*1000; EMAT = (energy and materials expenditure/GPV)*1000; LAB = (AWU/GPV)*1000; SER = (services expenditure/GPV)*1000; SFAWU = share of family labour on total farm AWU; ALT1 = Altitude class "Coastal Hill"; ALT2 = Altitude class "Inland Mountain"; ALT3 = Altitude class "Coastal Mountain"; ALT4 = Altitude class "Plain"; FOR = share of forests on total farm land; FIX = share of fixed costs on total farm GPV; AGE = age of the farm holder; LSU = (Livestock Units/GPV)*1000; TF1-10: type of farming 1 to 10.

Table 5 – Control function GMM estimation of the outcome equation for the T group: without SAR term and without spatial treatment (CFE), without SAR term and with spatial treatment (SEPSE+CFE), with SAR term without spatial treatment (SECFE), with SAR term and spatial treatment (SEPSE+SECFE).^a

				2008-2014 T vs NTa				T vs NTb				
	(1)	(2) T vs 1	(3)	(4)	(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)
RHO	(1)	(2)	0.488***	0.570***	(1)	(2)	0.463**	0.557***	(1)	(2)	0.164	0.189*
Const	99.446***	63.330***	79.073***	39.451***	93.897***	62.171***	74.822***	39.158***	55.425***	58.913***	49.514***	48.991**
GEO1	-3.546	-5.264	-5.335	-6.337*	-3.712	-5.288	-5.444	-6.407*	-6.615	-6.054*	-5.989	-5.646
GEO2	2.440	-0.157	0.796	-2.393	2.478	-0.246	0.763	-2.737	-1.474	-0.976	-0.802	-0.92
GEO3	5.940	4.462	3.114	0.453	5.990	4.413	3.340	0.383	5.495	5.454	4.208	4.39
GEO4	-1.897	-1.989	-3.625	-3.013	-1.608	-1.910	-3.409	-3.091	-0.906	-1.110	-2.509	-2.68
UAA	0.518***	0.578***	0.544***	0.600***	0.523***	0.579***	0.550***	0.604***	0.605***	0.588***	0.606***	0.596**
UAA ²	-0.001***	-0.002***	-0.001***	-0.002***	-0.001***	-0.002***	-0.002***	-0.002***	-0.002***	-0.002***	-0.002***	-0.002**
CAP	0.284	0.291	0.280	0.366	0.289	0.289	0.289	0.362	0.288	0.300	0.294	0.34
EMAT	0.007*	0.008**	0.007*	0.009**	0.007*	0.008**	0.007**	0.009**	0.008**	0.008**	0.008**	0.009*
LAB	-70.862*	-74.687*	-69.601*	-83.052**	-71.620*	-74.668*	-71.803*	-83.464**	-73.506*	-76.717*	-79.645**	-86.418*
SER	0.005*	0.006*	0.005*	0.006**	0.005*	0.006*	0.005*	0.006**	0.006*	0.006*	0.006**	0.006**
SFAW	-58.470***	-64.182***	-57.134***	-63.337***	-58.791***	-64.329***	-57.607***	-63.764***	-64.404***	-64.356***	-64.482***	-63.936***
ALT1	-3.497	-1.309	-2.270	0.194	-3.269	-1.192	-2.160	0.239	-0.479	-0.852	-0.500	-0.126
ALT2	0.030	-0.986	1.893	0.296	-0.027	-1.030	1.784	0.255	-1.777	-1.277	-1.864	-1.734
ALT3	-9.580	4.352	-6.968	7.200	-8.555	4.614	-6.030	7.499	5.790	5.057	5.872	6.275
ALT4	6.308*	4.582	7.033**	5.269	6.197*	4.546	6.782**	5.127	4.676	4.539	4.687	5.220
FOR	-3.802	0.961	-4.483	1.122	-3.859	1.071	-4.295	1.686	0.383	0.401	3.012	3.640
FIX	0.024	0.026	0.018	0.018	0.024	0.026	0.018	0.018	0.030	0.027	0.028	0.028
DEV	11.433	14.208	5.635	11.927	11.856	14.967*	6.265	12.852	14.369*	14.963*	14.466*	14.891*
OGA	-0.075	0.000	-0.049	0.026	-0.076	0.002	-0.053	0.026	0.012	0.010	0.004	0.005
AGE	0.080	-0.010	0.064	-0.026	0.078	-0.013	0.061	-0.030	0.013	-0.002	0.029	0.027
LSU	-2.826	-3.151	-3.232	-3.583*	-2.836	-3.157	-3.177	-3.534*	-3.350*	-3.295	-3.167	-3.107
END	-43.632**	-1.397	-38.364**	6.512	-38.076**	-0.167	-33.164**	7.733	9.903	5.444	8.051	7.425
TF1-10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
						2015-202	0			т		
	(1)	T vs I			(1)	T vs		(\mathbf{A})	(1)	T vs		
RHO	(1)	(2)	-0.189	-0.238	(1)	(2)	-0.225	-0.251	(1)	(2)	-0.010	(4)
Const	57.143***	58.130***	-0.189 65.346***	-0.238 64.211***	58.783***	58.488***	-0.225 64.825***	-0.251 65.474***	66.939***	69.007***	-0.010 66.123***	67.277***
GEO1	-0.977	-0.838	-2.024	-1.721	-0.950	-0.813	-1.071	-1.417	-0.317	0.524	-0.271	07.277
GEO2	3.739	3.767	3.789	4.461	3.696	3.727	4.971	4.644	3.814	3.562	4.239	3.968
GEO2 GEO3	2.182		1.733									3.319
GEO4	2.102	2 1 1 9		2 019 1		1 998	2 3 7 5	2 195 1	3 240	4 1 4 1		
	0 339	2.119		2.019	2.175	1.998	2.375	2.195	3.240	4.141	2.947	
	0.339	1.566	-0.554	1.553	0.277	1.740	0.162	1.914	0.416	0.271	0.572	0.656
UAA	0.428***	1.566 0.426***	-0.554 0.416***	1.553 0.421***	0.277 0.428***	1.740 0.428***	0.162 0.426***	1.914 0.423***	0.416 0.420***	0.271 0.419***	0.572 0.426***	0.656 0.426***
UAA UAA ²	0.428*** -0.001***	1.566 0.426*** -0.001***	-0.554 0.416*** -0.001***	1.553 0.421*** -0.001***	0.277 0.428*** -0.001***	1.740 0.428*** -0.001***	0.162 0.426*** -0.001***	1.914 0.423*** -0.001***	0.416 0.420*** -0.001***	0.271 0.419*** -0.001***	0.572 0.426*** -0.001***	0.656 0.426*** -0.001***
UAA UAA ² CAP	0.428*** -0.001*** -0.185	1.566 0.426*** -0.001*** -0.197	-0.554 0.416*** -0.001*** -0.193	1.553 0.421*** -0.001*** -0.245	0.277 0.428*** -0.001*** -0.185	1.740 0.428*** -0.001*** -0.203	0.162 0.426*** -0.001*** -0.208	1.914 0.423*** -0.001*** -0.261	0.416 0.420*** -0.001*** -0.175	0.271 0.419*** -0.001*** -0.160	0.572 0.426*** -0.001*** -0.188	0.656 0.426*** -0.001*** -0.161
UAA UAA ² CAP EMAT	0.428*** -0.001*** -0.185 -0.031***	1.566 0.426*** -0.001*** -0.197 -0.032***	-0.554 0.416*** -0.001*** -0.193 -0.032***	1.553 0.421*** -0.001*** -0.245 -0.031***	0.277 0.428*** -0.001*** -0.185 -0.031***	1.740 0.428*** -0.001*** -0.203 -0.032***	0.162 0.426*** -0.001*** -0.208 -0.031***	1.914 0.423*** -0.001*** -0.261 -0.031***	0.416 0.420*** -0.001*** -0.175 -0.031***	0.271 0.419*** -0.001*** -0.160 -0.031***	0.572 0.426*** -0.001*** -0.188 -0.032***	0.656 0.426*** -0.001*** -0.161 -0.032***
UAA UAA ² CAP EMAT LAB	0.428*** -0.001*** -0.185 -0.031*** -199.88***	1.566 0.426*** -0.001*** -0.197 -0.032*** -196.24***	-0.554 0.416*** -0.001*** -0.193 -0.032*** -211.80***	1.553 0.421*** -0.001*** -0.245 -0.031*** -202.09***	0.277 0.428*** -0.001*** -0.185 -0.031*** -199.59***	1.740 0.428*** -0.001*** -0.203 -0.032*** -194.58***	0.162 0.426*** -0.001*** -0.208 -0.031*** -203.48***	1.914 0.423*** -0.001*** -0.261 -0.031*** -199.22***	0.416 0.420*** -0.001*** -0.175 -0.031*** -198.98***	0.271 0.419*** -0.001*** -0.160 -0.031*** -199.14***	0.572 0.426*** -0.001*** -0.188 -0.032*** -204.78***	0.656 0.426*** -0.001*** -0.161 -0.032*** -203.29***
UAA UAA ² CAP EMAT LAB SER	0.428*** -0.001*** -0.185 -0.031*** -199.88*** 0.000	1.566 0.426*** -0.001*** -0.197 -0.032*** -196.24*** 0.000	-0.554 0.416*** -0.001*** -0.193 -0.032*** -211.80*** 0.000	1.553 0.421*** -0.001*** -0.245 -0.031*** -202.09*** 0.000	0.277 0.428*** -0.001*** -0.185 -0.031*** -199.59*** 0.000	1.740 0.428*** -0.001*** -0.203 -0.032*** -194.58*** 0.000	0.162 0.426*** -0.001*** -0.208 -0.031*** -203.48*** 0.000	1.914 0.423*** -0.001*** -0.261 -0.031*** -199.22*** 0.000	0.416 0.420*** -0.001*** -0.175 -0.031*** -198.98*** 0.000	0.271 0.419*** -0.001*** -0.160 -0.031*** -199.14*** 0.000	0.572 0.426*** -0.001*** -0.188 -0.032*** -204.78*** 0.000	0.656 0.426*** -0.001*** -0.161 -0.032*** -203.29*** 0.000
UAA UAA ² CAP EMAT LAB SER SFAW	0.428*** -0.001*** -0.185 -0.031*** -199.88*** 0.000 -24.721***	1.566 0.426*** -0.001*** -0.197 -0.032*** -196.24*** 0.000 -24.508***	-0.554 0.416*** -0.001*** -0.193 -0.032*** -211.80*** 0.000 -25.320***	1.553 0.421*** -0.001*** -0.245 -0.031*** -202.09*** 0.000 -24.767***	0.277 0.428*** -0.001*** -0.185 -0.031*** -199.59*** 0.000 -24.88***	1.740 0.428*** -0.001*** -0.203 -0.032*** -194.58*** 0.000 -24.69***	0.162 0.426*** -0.001*** -0.208 -0.031*** -203.48*** 0.000 -25.34***	1.914 0.423*** -0.001*** -0.261 -0.031*** -199.22*** 0.000 -25.20***	0.416 0.420*** -0.001*** -0.175 -0.031*** -198.98*** 0.000 -24.32***	0.271 0.419*** -0.001*** -0.160 -0.031*** -199.14*** 0.000 -24.66***	0.572 0.426*** -0.001*** -0.188 -0.032*** -204.78*** 0.000 -24.13***	0.656 0.426*** -0.001*** -0.161 -0.032*** -203.29*** 0.000 -24.40***
UAA UAA ² CAP EMAT LAB SER SFAW	0.428*** -0.001*** -0.185 -0.031*** -199.88*** 0.000 -24.721*** -3.505	1.566 0.426*** -0.001*** -0.197 -0.032*** -196.24*** 0.000 -24.508*** -3.608*	-0.554 0.416*** -0.001*** -0.193 -0.032*** -211.80*** 0.000 -25.320*** -4.316**	1.553 0.421*** -0.001*** -0.245 -0.031*** -202.09*** 0.000 -24.767*** -3.992*	0.277 0.428*** -0.001*** -0.185 -0.031*** -199.59*** 0.000 -24.88*** -3.477	1.740 0.428*** -0.001*** -0.203 -0.032*** -194.58*** 0.000 -24.69*** -3.447	0.162 0.426*** -0.001*** -0.208 -0.031*** -203.48*** 0.000 -25.34*** -3.949*	1.914 0.423*** -0.001*** -0.261 -0.031*** -199.22*** 0.000 -25.20*** -3.606*	0.416 0.420*** -0.001*** -0.175 -0.031*** -198.98*** 0.000 -24.32*** -3.799*	0.271 0.419*** -0.001*** -0.160 -0.031*** -199.14*** 0.000 -24.66*** -3.705*	0.572 0.426*** -0.001*** -0.188 -0.032*** -204.78*** 0.000 -24.13*** -3.886*	0.656 0.426*** -0.001*** -0.032*** -203.29*** 0.000 -24.40*** -3.772*
UAA UAA ² CAP EMAT LAB SER SFAW T ALT1 ALT2	0.428*** -0.001*** -0.185 -0.031*** -199.88*** 0.000 -24.721*** -3.505 -3.502	1.566 0.426*** -0.001*** -0.032*** -196.24*** 0.000 -24.508*** -3.608* -3.347	-0.554 0.416*** -0.001*** -0.193 -0.032*** -211.80*** 0.000 -25.320*** -4.316** -4.093*	1.553 0.421*** -0.001*** -0.245 -0.031*** -202.09*** 0.000 -24.767*** -3.992* -3.803	0.277 0.428*** -0.001*** -0.185 -0.031*** -199.59*** 0.000 -24.88*** -3.477 -3.526	1.740 0.428*** -0.001*** -0.032*** -194.58*** 0.000 -24.69*** -3.447 -3.462	0.162 0.426*** -0.001*** -0.031*** -203.48*** 0.000 -25.34*** -3.949* -3.964*	1.914 0.423*** -0.001*** -0.261 -0.031*** -199.22*** 0.000 -25.20*** -3.606* -3.935*	0.416 0.420*** -0.001*** -0.175 -0.031*** -198.98*** 0.000 -24.32*** -3.799* -3.557	0.271 0.419*** -0.001*** -0.160 -0.031*** -199.14*** 0.000 -24.66*** -3.705* -3.840	0.572 0.426*** -0.001*** -0.188 -0.032*** -204.78*** 0.000 -24.13*** -3.886* -4.022	0.656 0.426*** -0.001*** -0.032*** -203.29*** 0.000 -24.40*** -3.772* -4.255*
UAA UAA ² CAP EMAT LAB SER SFAW TALT1 ALT2 ALT3	0.428*** -0.001*** -0.185 -0.031*** -199.88*** 0.000 -24.721*** -3.505 -3.502 -1.882	1.566 0.426*** -0.001*** -0.032*** -196.24*** 0.000 -24.508*** -3.608* -3.347 -2.406	-0.554 0.416*** -0.001*** -0.193 -0.032*** -211.80*** 0.000 -25.320*** -4.316** -4.093* -3.131	1.553 0.421*** -0.001*** -0.245 -0.031*** -202.09*** 0.000 -24.767*** -3.992* -3.803 -2.756	0.277 0.428*** -0.01*** -0.031*** -199.59*** 0.000 -24.88*** -3.477 -3.526 -1.759	1.740 0.428*** -0.001*** -0.032*** -194.58*** 0.000 -24.69*** -3.447 -3.462 -2.261	0.162 0.426*** -0.001*** -0.031*** -0031*** -0.0348*** 0.000 -25.34*** -3.949* -3.964* -2.338	1.914 0.423*** -0.001*** -0.931*** -199.22*** 0.000 -25.20*** -3.606* -3.935* -2.266	0.416 0.420*** -0.01*** -0.031*** -198.98*** 0.000 -24.32*** -3.799* -3.557 -3.223	0.271 0.419*** -0.001*** -0.031*** -199.14*** 0.000 -24.66*** -3.705* -3.840 -3.412	0.572 0.426*** -0.01*** -0.188 -0.032*** -204.78*** 0.000 -24.13*** -3.886* -4.022 -4.108	0.656 0.426*** -0.001*** -0.161 -0.032*** -203.29*** 0.000 -24.40*** -3.772* -4.255* -3.896
UAA UAA ² CAP EMAT LAB SER SFAW ALT1 ALT2 ALT3 ALT4	0.428*** -0.001*** -0.185 -0.031*** -199.8*** 0.000 -24.721*** -3.505 -3.502 -1.882 -1.437	1.566 0.426*** -0.001*** -0.032*** -196.24*** 0.000 -24.508*** -3.608* -3.347 -2.406 -1.696	-0.554 0.416*** -0.001*** -0.193 -0.032*** -211.80*** 0.000 -25.320*** -4.316** -4.093* -3.131 -1.302	1.553 0.421*** -0.01*** -0.245 -0.031*** -202.09*** 0.000 -24.767*** -3.992* -3.803 -2.756 -2.061	0.277 0.428*** -0.01*** -0.185 -0.031*** -199.59*** 0.000 -24.88*** -3.526 -1.759 -1.448	1.740 0.428*** -0.001*** -0.203 -0.032*** -194.58*** 0.000 -24.69*** -3.447 -3.462 -2.261 -1.810	0.162 0.426*** -0.001*** -0.208 -0.031*** -203.48*** 0.000 -25.34*** -3.949* -3.964* -2.338 -1.584	1.914 0.423*** -0.001*** -0.031*** -199.22*** 0.000 -25.20*** -3.935* -2.266 -2.089	0.416 0.420*** -0.01*** -0.031*** -198.98*** 0.000 -24.32*** -3.557 -3.223 -1.051	0.271 0.419*** -0.001*** -0.031*** -199.14*** 0.000 -24.66*** -3.705* -3.840 -3.412 -1.145	0.572 0.426*** -0.01*** -0.188 -0.032*** -204.78*** 0.000 -24.13*** -3.886* -4.022 -4.108 -1.350	0.656 0.426*** -0.011*** -0.161 -0.032*** -203.29*** 0.000 -24.40*** -3.772* -4.255* -3.896 -1.185
UAA UAA ² CAP EMAT LAB SER SFAW ALT1 ALT2 ALT3 ALT4 FOR	0.428*** -0.001*** -0.185 -0.031*** -199.88*** 0.000 -24.721*** -3.505 -3.502 -1.882	1.566 0.426*** -0.001*** -0.032*** -196.24*** 0.000 -24.508*** -3.608* -3.347 -2.406	-0.554 0.416*** -0.001*** -0.193 -0.032*** -211.80*** 0.000 -25.320*** -4.316** -4.093* -3.131	1.553 0.421*** -0.001*** -0.245 -0.031*** -202.09*** 0.000 -24.767*** -3.992* -3.803 -2.756	0.277 0.428*** -0.01*** -0.031*** -199.59*** 0.000 -24.88*** -3.477 -3.526 -1.759	1.740 0.428*** -0.001*** -0.032*** -194.58*** 0.000 -24.69*** -3.447 -3.462 -2.261	0.162 0.426*** -0.001*** -0.031*** -0.031*** -0.000 -25.34*** -3.949* -3.964* -2.338	1.914 0.423*** -0.001*** -0.931*** -199.22*** 0.000 -25.20*** -3.606* -3.935* -2.266	0.416 0.420*** -0.015** -0.031*** -198.98*** 0.000 -24.32*** -3.799* -3.557 -3.223 -1.051 -17.244***	0.271 0.419*** -0.001*** -0.031*** -199.14*** 0.000 -24.66*** -3.705* -3.840 -3.412	0.572 0.426*** -0.01*** -0.188 -0.032*** -204.78*** 0.000 -24.13*** -3.886* -4.022 -4.108	0.656 0.426*** -0.001*** -0.161 -0.032*** -203.29*** 0.000 -24.40*** -3.772* -4.255* -3.896
UAA UAA ² CAP EMAT LAB SER SFAW ALT1 ALT2 ALT3 ALT3 ALT4 FOR FIX	0.428*** -0.001*** -0.185 -0.031*** -199.88*** 0.000 -24.721*** -3.505 -3.502 -1.882 -1.437 -15.208** 0.392***	1.566 0.426^{***} -0.001^{***} -0.032^{***} -196.24^{***} 0.000 -24.508^{***} -3.608^{*} -3.347 -2.406 -1.696 -15.634^{**} 0.392^{***}	-0.554 0.416*** -0.001*** -0.193 -0.032*** -211.80*** 0.000 -25.320*** -4.316** -4.093* -3.131 -1.302 -14.536** 0.380***	1.553 0.421*** -0.01*** -0.245 -0.031*** -202.09*** 0.000 -24.767*** -3.992* -3.803 -2.756 -2.061 -15.003** 0.379***	0.277 0.428*** -0.018** -0.031*** -199.59*** 0.000 -24.88*** -3.477 -3.526 -1.759 -1.448 -15.117** 0.391***	1.740 0.428*** -0.001*** -0.203 -0.032*** -194.58*** 0.000 -24.69*** -3.447 -3.462 -2.261 -1.810 -15.285** 0.389***	0.162 0.426*** -0.001*** -0.208 -0.031*** -203.48*** 0.000 -25.34*** -3.949* -3.964* -2.338 -1.584 -14.718** 0.382***	1.914 0.423*** -0.001*** -0.261 -0.031*** -199.22*** 0.000 -25.20*** -3.606* -3.935* -2.266 -2.089 -14.500** 0.376***	0.416 0.420*** -0.015** -0.031*** -198.98*** 0.000 -24.32*** -3.799* -3.557 -3.223 -1.051 -17.244*** 0.411***	0.271 0.419*** -0.016** -0.031*** -199.14*** 0.000 -24.66*** -3.705* -3.840 -3.412 -1.145 -17.753*** 0.422***	0.572 0.426*** -0.018** -0.032*** -204.78*** 0.000 -24.13*** -3.886* -4.022 -4.108 -1.350 -16.293** 0.405***	0.655 0.426*** -0.011*** -0.032*** -203.29*** -24.40*** -3.772* -3.894 -1.188 -17.129*** 0.414***
UAA UAA ² CAP EMAT LAB SER SFAW SFAW ALT1 ALT2 ALT3 ALT3 ALT4 FOR FIX DEV	0.428*** -0.001*** -0.185 -0.031*** -199.88*** 0.000 -24.721*** -3.505 -3.502 -1.882 -1.437 -15.208** 0.392*** 0.663	1.566 0.426^{***} -0.001^{***} -0.197 -0.032^{***} -196.24^{***} 0.000 -24.508^{***} -3.347 -2.406 -1.696 -15.634^{**} 0.392^{***} -1.763	-0.554 0.416*** -0.001*** -0.193 -0.032*** -211.80*** 0.000 -25.320*** -4.316** -4.093* -3.131 -1.302 -14.536** 0.380*** -0.384	1.553 0.421*** -0.01*** -0.245 -0.031*** -202.09*** -3.992* -3.803 -2.756 -2.061 -15.003** 0.379*** -2.827	0.277 0.428*** -0.015** -0.031*** -199.59*** 0.000 -24.88*** -3.477 -3.526 -1.759 -1.448 -15.117** 0.391*** 0.644	1.740 0.428*** -0.001*** -0.203 -0.032*** 0.000 -24.69*** -3.447 -3.462 -2.261 -1.810 -15.285** 0.389*** -2.067	0.162 0.426*** -0.001*** -0.208 -0.031*** -203.48*** -3.949* -3.964* -3.964* -3.964* -3.964* -3.964* -3.958 -1.584 -1.584 -1.584 -1.584 -1.584 -1.584	1.914 0.423*** -0.001*** -0.261 -0.031*** -199.22*** 0.000 -25.20*** -3.935* -2.266 -2.089 -14.500** 0.376*** -3.049	0.416 0.420*** -0.0175 -0.031*** -198.98*** 0.000 -24.32*** -3.799* -3.557 -3.223 -1.051 -17.244*** 0.411*** 0.495	0.271 0.419*** -0.001*** -199.14*** -3.705* -3.840 -3.412 -1.145 -17.753*** 0.422*** 0.915	0.572 0.426*** -0.01*** -0.188 -0.032*** -204.78*** -3.886* -4.022 -4.108 -1.350 -16.293** 0.405*** -1.554	0.655 0.426*** -0.01*** -0.32*** -203.29** -203.29** -3.772 -4.255* -3.896 -1.188 -17.129*** 0.414***
UAA UAA ² CAP EMAT LAB SER SFAW ALT1 ALT2 ALT3 ALT4 FOR FIX DEV OGA	0.428*** -0.001*** -0.185 -0.031*** -199.88** 0.000 -24.721*** -3.505 -3.502 -1.882 -1.437 -15.208** 0.392*** 0.663 0.329***	1.566 0.426^{***} -0.001^{***} -0.197 -0.032^{***} -196.24^{***} 0.000 -24.508^{***} -3.347 -2.406 -15.634^{**} 0.392^{***} -1.763 0.326^{***}	-0.554 0.416*** -0.001*** -0.193 -0.032*** -211.80*** 0.000 -25.320*** -4.316** -4.093* -3.131 -1.302 -14.536** 0.380*** -0.384	1.553 0.421*** -0.01*** -0.245 -0.031*** -202.09*** -202.09*** -3.992* -3.803 -2.756 -2.061 -15.003** 0.379*** -2.827 0.321***	0.277 0.428*** -0.01*** -0.185 -0.031*** -199.59*** 0.000 -24.88*** -3.477 -3.526 -1.759 -1.448 -15.117** 0.391*** 0.644 0.331***	1.740 0.428*** -0.001*** -194.58*** 0.000 -24.69*** -3.447 -3.462 -2.261 -1.810 -15.285** 0.389*** -2.067 0.327***	0.162 0.426*** -0.001*** -0.208 -0.031*** -203.48*** -3.949* -3.964* -2.338 -1.584 -14.718** 0.382*** -0.286 0.329***	1.914 0.423*** -0.001*** -0.261 -0.031*** -199.22*** 0.000 -25.20*** -3.935* -2.266 -2.089 -14.500** 0.376*** -3.049 0.322***	0.416 0.420*** -0.0175 -0.031*** -198.98*** -3.799* -3.557 -3.223 -1.051 -17.244*** 0.411*** 0.495 0.327***	0.271 0.419*** -0.016** -0.031*** -199.14*** 0.000 -24.66*** -3.705* -3.840 -3.412 -1.145 -17.753*** 0.422*** 0.915 0.332***	0.572 0.426*** -0.018* -0.032*** -204.78*** -3.886* -4.022 -4.108 -1.350 -16.293** 0.405*** -1.554 0.328***	0.655 0.426*** -0.001*** -0.32*** -203.29** -203.29** -3.772* -3.899 -1.188 -17.129*** 0.414*** -0.055 0.330***
UAA UAA ² CAP EMAT LAB SER SER SFAW ALT1 ALT2 ALT3 ALT4 FOR FIX DEV OGA AGE	0.428*** -0.001*** -0.185 -0.031*** -199.88*** 0.000 -24.721*** -3.505 -3.502 -1.882 -1.437 -15.208** 0.663 0.329*** -0.045	1.566 0.426^{***} -0.001^{***} -0.032^{***} $-1.96.24^{***}$ 0.000 -24.508^{***} -3.347 -2.406 $-1.5.634^{**}$ 0.392^{***} -1.763 0.326^{***} -0.049	-0.554 0.416^{***} -0.001^{***} -0.032^{***} -211.80^{***} 0.000 -25.320^{***} -4.316^{**} -4.093^{*} -3.131 -1.302 -14.536^{**} 0.380^{***} -0.384 0.334^{***}	1.553 0.421*** -0.01*** -0.245 -0.031*** -202.09*** -3.092* -3.803 -2.756 -2.061 -15.003*** 0.379*** -2.827 0.321*** -0.058	0.277 0.428*** -0.01*** -0.185 -0.031*** -199.59*** 0.000 -24.88*** -3.477 -3.526 -1.759 -1.448 -15.117** 0.644 0.331*** -0.046	1.740 0.428*** -0.001*** -194.58*** 0.000 -24.69*** -3.447 -3.462 -2.261 -1.810 -15.285** 0.327*** -2.067 0.327***	0.162 0.426*** -0.001*** -0.031*** -0.031*** -0.000 -25.34*** -3.949* -3.964* -2.338 -1.584 -14.718** 0.382*** -0.286 0.329*** -0.050	1.914 0.423*** -0.001*** -0.261 -0.031*** -199.22*** 0.000 -25.20*** -3.606* -3.935* -2.266 -2.089 -14.500** 0.376*** -3.049 0.322*** -0.063	0.416 0.420*** -0.01*** -0.031*** -198.98*** 0.000 -24.32*** -3.799* -3.557 -3.223 -1.051 -17.244*** 0.411*** 0.495 0.327*** -0.025	0.271 0.419*** -0.016** -0.031*** -199.14*** 0.000 -24.66*** -3.705* -3.840 -3.412 -1.145 -17.753*** 0.422*** 0.315 0.332*** -0.030	0.572 0.426*** -0.018* -0.032*** -204.78*** -3.886* -4.022 -4.108 -1.350 -16.293** 0.405*** -1.554 0.328*** -0.021	0.655 0.426*** -0.001*** -0.32*** -203.29*** 0.000 -24.40*** -3.772 -4.255 -3.890 -1.18 -17.129*** 0.414*** -0.055 0.330*** -0.026
UAA UAA ² CAP EMAT LAB SER SFAW ALT1 ALT2 ALT3 ALT4 FOR FIX DEV OGA AGE LSU	0.428*** -0.001*** -0.185 -0.031*** -199.88*** -3.505 -3.502 -1.882 -1.437 -15.208** 0.663 0.329*** -0.045 0.397	1.566 0.426^{***} -0.001^{***} -0.032^{***} -196.24^{***} 0.000 -24.508^{***} -3.347 -2.406 -1.696 -15.634^{**} 0.392^{***} -1.763 0.326^{***} -0.049 0.418	-0.554 0.416^{***} -0.001^{***} -0.032^{***} -211.80^{***} 0.000 -25.320^{***} -4.316^{**} -4.093^{*} -3.131 -1.302 -14.536^{**} 0.380^{***} -0.384 0.334^{***} -0.050 0.461	1.553 0.421*** -0.01*** -0.245 -0.031*** -202.09*** -20.09*** -3.992* -3.803 -2.756 -2.061 -15.003*** 0.379*** -2.827 0.321*** -0.058 0.439	0.277 0.428*** -0.01*** -0.185 -0.031*** -199.59*** 0.000 -24.88*** -3.477 -3.526 -1.759 -1.448 -15.117** 0.391*** 0.644 0.331*** -0.046 0.393	1.740 0.428*** -0.001*** -0.032*** -194.58*** 0.000 -24.69*** -3.447 -3.462 -2.261 -1.810 -15.285** 0.389*** -2.067 0.327*** -0.055 0.411	0.162 0.426*** -0.001*** -0.031*** -0.0348*** 0.000 -25.34*** -3.949* -3.964* -2.338 -1.584 -1.584 -14.718** 0.382*** 0.382*** -0.286 0.329*** -0.050 0.394	1.914 0.423*** -0.001*** -0.261 -0.031*** -199.22*** -3.606* -3.935* -2.266 -2.089 -14.500** 0.376*** -3.049 0.322*** -0.063 0.427	0.416 0.420*** -0.0175 -0.031*** -198.98*** 0.000 -24.32*** -3.799* -3.557 -3.223 -1.051 -17.244*** 0.411*** 0.495 0.327*** -0.025 0.413	0.271 0.419*** -0.016** -0.031*** -199.14*** 0.000 -24.66*** -3.705* -3.840 -3.412 -1.145 -17.753*** 0.422*** 0.322*** 0.332*** -0.030 0.440	0.572 0.426*** -0.018* -0.032*** -0.032*** -0.000 -24.13*** -3.886* -4.022 -4.108 -1.350 -16.293** 0.405*** -1.554 0.328*** -0.021 0.446	0.656 0.426*** -0.01*** -0.32*** -0.32*** -0.32*** -0.32*** -3.876 -1.182 -17.129*** 0.41** -0.53 0.330*** -0.026 0.484
UAA UAA ² CAP EMAT LAB SER SFAW ALT1 ALT2 ALT3 ALT4 FOR FIX DEV OGA AGE	0.428*** -0.001*** -0.185 -0.031*** -199.88*** 0.000 -24.721*** -3.505 -3.502 -1.882 -1.437 -15.208** 0.663 0.329*** -0.045	1.566 0.426^{***} -0.001^{***} -0.032^{***} $-1.96.24^{***}$ 0.000 -24.508^{***} -3.347 -2.406 $-1.5.634^{**}$ 0.392^{***} -1.763 0.326^{***} -0.049	-0.554 0.416^{***} -0.001^{***} -0.032^{***} -211.80^{***} 0.000 -25.320^{***} -4.316^{**} -4.093^{*} -3.131 -1.302 -14.536^{**} 0.380^{***} -0.384 0.334^{***}	1.553 0.421*** -0.01*** -0.245 -0.031*** -202.09*** -3.092* -3.803 -2.756 -2.061 -15.003*** 0.379*** -2.827 0.321*** -0.058	0.277 0.428*** -0.01*** -0.185 -0.031*** -199.59*** 0.000 -24.88*** -3.477 -3.526 -1.759 -1.448 -15.117** 0.644 0.331*** -0.046	1.740 0.428*** -0.001*** -194.58*** 0.000 -24.69*** -3.447 -3.462 -2.261 -1.810 -15.285** 0.327*** -2.067 0.327***	0.162 0.426*** -0.001*** -0.031*** -0.031*** -0.000 -25.34*** -3.949* -3.964* -2.338 -1.584 -14.718** 0.382*** -0.286 0.329*** -0.050	1.914 0.423*** -0.001*** -0.261 -0.031*** -199.22*** 0.000 -25.20*** -3.606* -3.935* -2.266 -2.089 -14.500** 0.376*** -3.049 0.322*** -0.063	0.416 0.420*** -0.01*** -0.031*** -198.98*** 0.000 -24.32*** -3.799* -3.557 -3.223 -1.051 -17.244*** 0.411*** 0.495 0.327*** -0.025	0.271 0.419*** -0.016** -0.031*** -199.14*** 0.000 -24.66*** -3.705* -3.840 -3.412 -1.145 -17.753*** 0.422*** 0.315 0.332*** -0.030	0.572 0.426*** -0.018* -0.032*** -204.78*** -3.886* -4.022 -4.108 -1.350 -16.293** 0.405*** -1.554 0.328*** -0.021	0.656 0.426*** -0.001*** -0.032*** -203.29*** 0.000 -24.40*** -3.772* -3.896 -1.183 -17.129***

^a'T vs NT", "T vs NTa" and "T vs NTb" refer to the sample on which the PS estimation anticipating the outcome equation estimation is performed. Therefore, estimation results differ across the three comparisons for the different estimated residuals of the respective treatment equation.

Statistical significance: *** 1%, ** 5%, * 10%.

LEGEND:

T = treated units; NTa = voluntary untreated units; NTb = involuntary untreated units.

(1) = (CFE); (2) = (SEPSE+CFE); (3) = (SECFE); (4) = (SEPSE+SECFE).

RHO = spatial autoregressive coefficient; GEO1 = Italian NUTS1 region "Islands"; GEO2 = Italian NUTS1 region "North-East"; GEO3 = Italian NUTS1 region "North-West"; GEO4 = Italian NUTS1 region "South"; UAA = Utilised Agricultural Area; CAP = (capital stock/GPV)*1000; EMAT = (energy and materials expenditure/GPV)*1000; LAB = (AWU/GPV)*1000; SER = (services expenditure/GPV)*1000; SFAWU = share of family labour on total farm AWU; ALT1 = Altitude class "Coastal Hill"; ALT2 = Altitude class "Inland Mountain"; ALT3 = Altitude class "Coastal Mountain"; ALT4 = Altitude class "Plain"; FOR = share of forests on total farm land; FIX = share of fixed costs on total farm costs; DEV = annual absolute deviation of weather conditions (temperature and rainfall) with respect to the local average; OGA = share of Other Gainful Activities on total farm GPV; AGE = age of the farm holder; LSU = (Livestock Units/GPV)*1000; END = estimated residual of the treatment equation; TF1-10: type of farming 1 to 10.

Table 6 – Control function GMM estimation of the outcome equation for the NT group: without SAR term and without spatial treatment (CFE), without SAR term and with spatial treatment (SEPSE+CFE), with SAR term without spatial treatment (SECFE), with SAR term and spatial treatment (SEPSE+SECFE).^a

(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) <th></th> <th colspan="10">2008-2014T vs NTT vs NTaT vs NTb</th> <th></th>		2008-2014T vs NTT vs NTaT vs NTb											
BED - 0.011*** 0.021*** - 0.022*** 0.022*** 0.022*** 0.021*** 0.065 0.669 GE01 3.28**** 75.35*** 75.55*** 1.59**** 1.73*** 81.85*** 81.72*** 81.85*** 81.72*** 81.85*** 81.72*** 81.85*** 81.72*** 81.85*** 81.72*** 81.85*** 81.72*** 81.85*** 81.72*** 81.85*** 81.72*** 81.85*** 81.72*** 81.85*** 81.72*** 81.85*** 81.85*** 81.85*** 81.85*** 81.72*** 81.85*** 81.72*** 42.85*** 62.85*** 0.25**** 62.85*** 0.25**** 62.85*** 0.25**** 0.25**** 0.22**** 62.95*** 0.22**** 62.95*** 0.22**** 62.95*** 0.22**** 62.95*** 0.22**** 62.95*** 0.22**** 62.95*** 0.22**** 62.95*** 0.22**** 62.95*** 0.22**** 62.95*** 0.22**** 62.95*** 0.22**** 62.95*** 0.22**** 62.95*** 62.95*** 62.95*** 62.95*		(1)			(4)	(1)			(A)	(1)			(4)
Const. 75.65*** 75.75*** 75.7*** 75.7*** 75.7*** 75.7*** 75.7*** 75.7*** 75.7*** 75.7*** 75.7*** 75.7*** 75.7***	BUIO	(1)	(2)			(1)	(2)			(1)	(2)		
GEOD 2.28*** 2.28*** 2.28*** 2.28*** 4.78** 1.78** 4.78*** 4.78**** 4.78****		75 151***	75 3/18***			75 187***	7/ 980***			93 282***	92 000***		
GEDC 355*** 3.84*** 3.70**** 4.20*** 4.20**** 4.44*** 5.430*** 1.17*** 9.030** 1.17*** 9.030** 1.17*** 9.030*** 1.17*** 9.030*** 1.17*** 9.030*** 1.17*** 9.030*** 1.17**** 1.17**** 1.17****													
GR03 6.22*** 6.32*** <th7.3****< th=""> <th7.3****< th=""> <th7.3*< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th7.3*<></th7.3****<></th7.3****<>													
GFGA 0.38*** 3.38*** 0.38*** 0.38*** 0.271*** 0.711*** 0.711*** 0.711*** 0.711*** 0.722*** 0.227*** 0.207** 0.207** 0.207** 0.207** 0.207** 0.207** 0.207** 0.207** 0.207** 0.207** 0.207** 0.207** 0.206** 0.206** 0.206** 0.206** 0.206** 0.206** 0.206** 0.207** 0.206** 0.207** 0.208*** 0.208*** 0.208*** <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
SFR 0.002*** 0.002*** 0.002*** 0.002*** 0.002*** 0.002*** 0.007 0.008 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.006 0.074 0.054 0.056 0.055 0.055 0.055<													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
OGA 0.019 0.019 0.013 0.011 0.008 0.007 0.0064 0.074 0.064 0.077 0.064 AGE 0.099*** 0.099*** 0.099*** 0.099*** 0.099*** 0.099*** 0.090** 0.005 0.077* 0.077* 0.064 0.077* 0.064 0.077* 0.077** 0.078*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000**** 0.000**** 0.000**** 0.000**** <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
LSU 0.057*** 0.056*** 0.056*** 0.055*** 0.055*** 0.752** 0.747* 0.781* 0.810* END 3.372 2.560 4.489 1.916 4.27 2.413 5.668 2.194 6.588 0.024 8.721 2.449 FII-10 Yes													
END 3.372 2.560 4.489 1.916 4.217 2.413 5.668 2.194 6.988 0.024 8.721 2.449 TTI-10 Vis Yes													
TFI-10 Yes Yes<						L							
2015-2020 T vs NTa T vs NTb (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (1) (1) (2) (3) <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>													
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	111-10	Yes	Yes	Yes	Yes	Yes			Yes	Yes	Yes	Yes	Yes
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							2015-20	20					
RHO Col -0.08*** -0.08*** -0.08*** -0.08*** -0.08*** -0.08*** -0.09** -0.08*** -1.38** <th< td=""><td></td><td></td><td>т</td><td>' ve NT</td><td></td><td></td><td>Twe</td><td>NT₂</td><td></td><td></td><td>Twe</td><td>NTh</td><td></td></th<>			т	' ve NT			Twe	NT ₂			Twe	NTh	
Const 73.500*** 72.528*** 74.822*** 75.251*** 73.017*** 77.519*** 75.259*** 84.484*** 76.660*** 89.283*** 81.148*** GEO1 4.122*** -3.386*** 3.152*** -2.888*** 3.556*** -3.048*** -2.263*** -2.125*** 1.5.900*** 1.038*** -15.551*** 10.148*** GEO2 3.388*** 3.832*** 2.996*** 3.418*** 3.127*** 4.053*** 2.814*** 3.639*** -6.715 1.1.753 -7.606 -2.274 GEO4 -1.87*** -1.757*** -1.456** -1.483*** -1.429** -1.368** -1.142* 3.631*** 0.206*** 0.206*** 0.206*** 0.206*** 0.206*** 0.206*** 0.206*** 0.206*** 0.206*** 0.206*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.002** 0.022** 0.022** 0.022** 0.022** 0.022** 0.022** 0.022** 0.022** 0.022** 0.022** 0.022** 0.		(1)			(4)	(1)			(4)	(1)			(4)
GEO1 -4.122*** -3.836*** -3.152*** -2.088*** -2.039*** -2.125*** -15.900*** -10.838*** -15.651*** -10.148*** GEO2 4.750*** 4.920**** 4.989*** 5.131*** 4.959*** 5.216*** 5.573*** -0.358 -2.590 0.195 -2.222 GEO3 3.38*** 3.832*** 2.996*** 3.418*** 1.439* -1.368* -1.142* -3.343 -3.377 -3.802 UAA 0.304*** 0.301*** 0.301*** 0.301*** 0.301*** 0.301*** 0.000*** 0.002*** 0.02*** 0.02*** 0.02*** 0.02*** 0.02*** 0.02*** 0.000*** 0.000***	RHO	(1)		(3)		(1)		(3)		(1)		(3)	(!)
GE024,750***4,920***4,989***5,131***4,959***5,349***5,216***5,73***-0.358-2.5900.195-2.224GE033.38***3.32****2.996***3.418***3.127***4.053***2.814***3.693***6.7151.7737.766-2.274GE04-1.874***1.753***-1.571**-1.466**-1.439**0.310***0.360***0.3771-3.843-3.787-3.802UAA0.304***0.301***0.300***0.300***0.300***0.000****0.00*****0.00*****0.00****0.00****0.00*			(2)	(3) -0.088***	-0.087***		(2)	(3) -0.086***	-0.085***		(2)	<u>(3)</u> -0.099	-0.104
GE03 3.38^{***} 3.83^{***} 2.99^{***} 3.41^{***} 4.05^{***} 2.814^{***} 3.69^{***} -6.715 -1.753 -7.606 -2.274 GE04 -1.874^{***} -1.75^{***} -1.671^{**} -1.46^{***} -1.439^{**} -1.36^{***} -1.142^{**} -3.771 -3.843 -3.787 -3.802 UAA 0.00^{***}	Const	73.500***	(2) 72.528***	(3) -0.088*** 75.852***	-0.087*** 74.822***	75.251***	(2) 73.017***	(3) -0.086*** 77.519***	-0.085*** 75.259***	84.484***	(2) 76.660***	(3) -0.099 89.283***	-0.104 81.148***
GE04 $\cdot 1.874^{\ast\ast\ast}$ $\cdot 1.753^{\ast\ast\ast}$ $\cdot 1.571^{\ast\ast}$ $\cdot 1.466^{\ast\ast}$ $\cdot 1.483^{\ast\ast\ast}$ $\cdot 1.342^{\ast}$ $\cdot 1.342^{\ast}$ $\cdot 3.771$ $\cdot 3.843$ $\cdot 3.787$ $\cdot 3.802$ UAA $0.304^{\ast\ast\ast}$ $0.301^{\ast\ast\ast}$ $0.300^{\ast\ast\ast}$ $0.300^{\ast\ast\ast}$ $0.301^{\ast\ast\ast}$ $0.301^{\ast\ast\ast}$ $0.206^{\ast\ast\ast}$ $0.206^{\ast\ast\ast}$ $0.206^{\ast\ast\ast}$ $0.206^{\ast\ast\ast}$ $0.200^{\ast\ast\ast}$ $0.206^{\ast\ast\ast}$ $0.000^{\ast\ast}$ <	Const GEO1	73.500***	(2) 72.528*** -3.836***	(3) -0.088*** 75.852*** -3.152***	-0.087*** 74.822*** -2.888***	75.251*** -3.596***	(2) 73.017*** -3.048***	(3) -0.086*** 77.519*** -2.633***	-0.085*** 75.259*** -2.125***	84.484*** -15.900***	(2) 76.660*** -10.838***	(3) -0.099 89.283*** -15.651***	-0.104 81.148*** -10.148***
UAA 0.304*** 0.301*** 0.303*** 0.300*** 0.302*** 0.308*** 0.301*** 0.216*** 0.206*** 0.220*** 0.208*** UAA ² 0.000*** 0.002*** 0.005*** 0.005** 0.005** 0.005**	Const GEO1 GEO2	73.500*** -4.122*** 4.750***	(2) 72.528*** -3.836*** 4.920***	(3) -0.088*** 75.852*** -3.152*** 4.989***	-0.087*** 74.822*** -2.888*** 5.131***	75.251*** -3.596*** 4.959***	(2) 73.017*** -3.048*** 5.349***	(3) -0.086*** 77.519*** -2.633*** 5.216***	-0.085*** 75.259*** -2.125*** 5.573***	84.484*** -15.900*** -0.358	(2) 76.660*** -10.838*** -2.590	(3) -0.099 89.283*** -15.651*** 0.195	-0.104 81.148*** -10.148*** -2.222
UAA ³ 0.000*** 0.005*** 0.005*** <	Const GEO1 GEO2 GEO3	-4.122*** 4.750*** 3.388***	(2) 72.528*** -3.836*** 4.920*** 3.832***	(3) -0.088*** 75.852*** -3.152*** 4.989*** 2.996***	-0.087*** 74.822*** -2.888*** 5.131*** 3.418***	75.251*** -3.596*** 4.959*** 3.127***	(2) 73.017*** -3.048*** 5.349*** 4.053***	(3) -0.086*** 77.519*** -2.633*** 5.216*** 2.814***	-0.085*** 75.259*** -2.125*** 5.573*** 3.693***	84.484*** -15.900*** -0.358 -6.715	(2) 76.660*** -10.838*** -2.590 -1.753	(3) -0.099 89.283*** -15.651*** 0.195 -7.606	-0.104 81.148*** -10.148*** -2.222 -2.274
CAP -0.320*** -0.321*** -0.433*** -0.433*** -0.302*** -0.401*** -0.414*** -0.593 -0.606 -0.608 -0.608 EMAT 0.002** 0.002** 0.002** 0.002** 0.002** 0.002** 0.002** 0.002** -0.024** -0.025** -0.05** -0.05** -0.05** -0.05** -0.05** -0.05** -0.05** -0.05** -0.05** -0.05** -0.05** -0.05** -0.05** -0.05** <td>Const GEO1 GEO2 GEO3 GEO4</td> <td>73.500*** -4.122*** 4.750*** 3.388*** -1.874***</td> <td>(2) 72.528*** -3.836*** 4.920*** 3.832*** -1.753***</td> <td>(3) -0.088*** 75.852*** -3.152*** 4.989*** 2.996*** -1.571**</td> <td>-0.087*** 74.822*** -2.888*** 5.131*** 3.418*** -1.466**</td> <td>75.251*** -3.596*** 4.959*** 3.127*** -1.683***</td> <td>(2) 73.017*** -3.048*** 5.349*** 4.053*** -1.439**</td> <td>(3) -0.086*** 77.519*** -2.633*** 5.216*** 2.814*** -1.368**</td> <td>-0.085*** 75.259*** -2.125*** 5.573*** 3.693*** -1.142*</td> <td>84.484*** -15.900*** -0.358 -6.715 -3.771</td> <td>(2) 76.660*** -10.838*** -2.590 -1.753 -3.843</td> <td>(3) -0.099 89.283*** -15.651*** 0.195 -7.606 -3.787</td> <td>-0.104 81.148*** -10.148*** -2.222 -2.274 -3.802</td>	Const GEO1 GEO2 GEO3 GEO4	73.500*** -4.122*** 4.750*** 3.388*** -1.874***	(2) 72.528*** -3.836*** 4.920*** 3.832*** -1.753***	(3) -0.088*** 75.852*** -3.152*** 4.989*** 2.996*** -1.571**	-0.087*** 74.822*** -2.888*** 5.131*** 3.418*** -1.466**	75.251*** -3.596*** 4.959*** 3.127*** -1.683***	(2) 73.017*** -3.048*** 5.349*** 4.053*** -1.439**	(3) -0.086*** 77.519*** -2.633*** 5.216*** 2.814*** -1.368**	-0.085*** 75.259*** -2.125*** 5.573*** 3.693*** -1.142*	84.484*** -15.900*** -0.358 -6.715 -3.771	(2) 76.660*** -10.838*** -2.590 -1.753 -3.843	(3) -0.099 89.283*** -15.651*** 0.195 -7.606 -3.787	-0.104 81.148*** -10.148*** -2.222 -2.274 -3.802
EMAT 0.002** 0.002*** 0.002*** 0.002*** 0.002*** 0.002*** 0.002*** 0.024*** -0.025*** -0.058*** -0.056*** -0.056*** -0.056*** -0.056*** -3.51*** -34.4120*** -33.31*** -35.701*** -33.414*** -35.995**** ALT3 -2.650** -0.668*** -0.706 -0.361 -0.361 -0.206 -2.965 -2.865 -2.865 -2.865 -2.865	Const GEO1 GEO2 GEO3 GEO4 UAA	73.500*** -4.122*** 4.750*** 3.388*** -1.874*** 0.304***	(2) 72.528*** -3.836*** 4.920*** 3.832*** -1.753*** 0.301***	(3) -0.088*** -3.152*** 4.989*** 2.996*** -1.571** 0.303***	-0.087*** 74.822*** -2.888*** 5.131*** 3.418*** -1.466** 0.300***	75.251*** -3.596*** 4.959*** 3.127*** -1.683*** 0.310***	(2) 73.017*** -3.048*** 5.349*** 4.053*** -1.439** 0.302***	(3) -0.086*** 77.519*** -2.633*** 5.216*** 2.814*** -1.368** 0.308***	-0.085*** 75.259*** -2.125*** 5.573*** 3.693*** -1.142* 0.301***	84.484*** -15.900*** -0.358 -6.715 -3.771 0.216***	(2) 76.660*** -10.838*** -2.590 -1.753 -3.843 0.206***	(3) -0.099 89.283*** -15.651*** 0.195 -7.606 -3.787 0.220***	-0.104 81.148*** -10.148*** -2.222 -2.274 -3.802 0.208***
LAB -10.059 -10.041 -15.433 -14.87 -9.186 -9.087 -15.84 -15.148 -1 <	Const GEO1 GEO2 GEO3 GEO4 UAA UAA ²	73.500*** -4.122*** 4.750*** 3.388*** -1.874*** 0.304*** 0.000***	(2) 72.528*** -3.836*** 4.920*** 3.832*** -1.753*** 0.301*** 0.000***	(3) -0.088*** 75.852*** 4.989*** 2.996*** -1.571** 0.303*** 0.000***	-0.087*** 74.822*** -2.888*** 5.131*** 3.418*** -1.466** 0.300*** 0.000***	75.251*** -3.596*** 4.959*** 3.127*** -1.683*** 0.310*** 0.000***	(2) 73.017*** -3.048*** 5.349*** 4.053*** -1.439** 0.302*** 0.000***	(3) -0.086*** 77.519*** -2.633*** 5.216*** 2.814*** -1.368** 0.308*** 0.000***	-0.085*** 75.259*** -2.125*** 5.573*** 3.693*** -1.142* 0.301*** 0.000***	84.484*** -15.900*** -0.358 -6.715 -3.771 0.216*** 0.000**	(2) 76.660*** -10.838*** -2.590 -1.753 -3.843 0.206*** 0.000**	(3) -0.099 89.283*** -15.651*** 0.195 -7.606 -3.787 0.220*** 0.000***	-0.104 81.148*** -10.148*** -2.222 -2.274 -3.802 0.208*** 0.000**
SER 0.000 0	Const GEO1 GEO2 GEO3 GEO4 UAA UAA ² CAP	73.500*** -4.122*** 4.750*** 3.388*** -1.874*** 0.304*** 0.000*** -0.320***	(2) 72.528*** -3.836*** 4.920*** 3.832*** -1.753*** 0.301*** 0.000*** -0.321***	(3) -0.088*** 75.852*** 4.989*** 2.996*** -1.571** 0.303*** 0.000*** -0.443***	-0.087*** 74.822*** -2.888*** 5.131*** 3.418*** -1.466** 0.300*** 0.000*** -0.438***	75.251*** -3.596*** 4.959*** 3.127*** -1.683*** 0.310*** 0.000*** -0.302***	(2) 73.017*** -3.048*** 5.349*** 4.053*** -1.439** 0.302*** 0.000*** -0.304***	(3) -0.086*** 77.519*** -2.633*** 5.216*** 2.814*** -1.368** 0.308*** 0.308*** 0.000*** -0.417***	-0.085*** 75.259*** -2.125*** 5.573*** 3.693*** -1.142* 0.301*** 0.000*** -0.414***	84.484*** -15.900*** -0.358 -6.715 -3.771 0.216*** 0.000** -0.593	(2) 76.660*** -10.838*** -2.590 -1.753 -3.843 0.206*** 0.000** -0.606	(3) -0.099 89.283*** -15.651*** 0.195 -7.606 -3.787 0.220*** 0.000*** -0.608	-0.104 81.148*** -10.148*** -2.222 -2.274 -3.802 0.208*** 0.000** -0.618
SFAWU -43.475^{***} -43.22^{***} -43.376^{***} -44.167^{***} 44.120^{***} 44.420^{***} -33.331^{***} -35.701^{***} -33.414^{***} -35.995^{***} ALT1 -2.265^{***} -2.325^{***} -2.723^{***} -2.768^{***} -1.954^{***} -2.111^{***} -2.418^{***} -2.552^{***} 4.529^{**} -3.919^{**} -4.699^{***} -4.040^{***} ALT2 -0.650 -0.647 -0.273 -0.268 -0.740 -0.706 -0.361 -0.309 3.973 1.845 3.967 1.652 ALT3 -4.749^{***} -5.297^{***} -6.246^{***} -7.666^{***} -4.903^{***} -5.318^{***} -6.485^{***} -2.60 -2.965 -2.865 -3.579 ALT4 0.723 0.881 0.192 0.361 0.484 0.833 -0.059 0.269 -2.605 -2.865 -3.569 FOR -6.718^{***} -7.401^{***} -7.495^{***} -8.52^{***} -6.942^{***} -8.476^{***} -2.050 -5.29^{***} -2.68^{***} -7.67^{***} -6.942^{***} -8.476^{***} -2.050 -5.29^{***} -2.867 -7.67^{***} -6.942^{***} -8.476^{***} -2.050 -5.29^{***} -2.689^{***} -2.695^{***} -7.61^{***} -9.942^{***} -9.067^{***} -0.069 -0.023 -0.071 -0.021 DEV -6.906^{***} -7.018^{***} -7.671^{***} -9.016^{***} -0.103^{****} -0.108^{***} -0.019^{***} <td>Const GEO1 GEO2 GEO3 GEO4 UAA UAA² CAP EMAT</td> <td>73.500*** -4.122*** 4.750*** 3.388*** -1.874*** 0.304*** 0.000*** 0.320*** 0.002**</td> <td>(2) 72.528*** 4.920*** 3.832*** -1.753*** 0.301*** 0.000*** 0.022**</td> <td>(3) -0.088*** 75.852*** 4.989*** 2.996*** -1.571** 0.303*** 0.000*** -0.443*** 0.002***</td> <td>-0.087*** 74.822*** -2.888*** 5.131*** 3.418*** -1.466** 0.300*** 0.000*** 0.000***</td> <td>75.251*** -3.596*** 4.959*** 3.127*** -1.683*** 0.310*** 0.000*** 0.002**</td> <td>(2) 73.017*** 5.349*** 4.053*** -1.439** 0.302*** 0.000*** 0.304*** 0.002**</td> <td>(3) -0.086*** 77.519*** -2.633*** 5.216*** 2.814*** -1.368** 0.308*** 0.000*** -0.417*** 0.002**</td> <td>-0.085*** 75.259*** -2.125*** 5.573*** 3.693*** -1.142* 0.301*** 0.000*** -0.414*** 0.002**</td> <td>84.484*** -15.900*** -0.358 -6.715 -3.771 0.216*** 0.000** -0.593</td> <td>(2) 76.660*** -10.838*** -2.590 -1.753 -3.843 0.206*** 0.000** -0.606</td> <td>(3) -0.099 89.283*** -15.651*** 0.195 -7.606 -3.787 0.220*** 0.000*** -0.608</td> <td>-0.104 81.148*** -10.148*** -2.222 -2.274 -3.802 0.208*** 0.000** -0.618</td>	Const GEO1 GEO2 GEO3 GEO4 UAA UAA ² CAP EMAT	73.500*** -4.122*** 4.750*** 3.388*** -1.874*** 0.304*** 0.000*** 0.320*** 0.002**	(2) 72.528*** 4.920*** 3.832*** -1.753*** 0.301*** 0.000*** 0.022**	(3) -0.088*** 75.852*** 4.989*** 2.996*** -1.571** 0.303*** 0.000*** -0.443*** 0.002***	-0.087*** 74.822*** -2.888*** 5.131*** 3.418*** -1.466** 0.300*** 0.000*** 0.000***	75.251*** -3.596*** 4.959*** 3.127*** -1.683*** 0.310*** 0.000*** 0.002**	(2) 73.017*** 5.349*** 4.053*** -1.439** 0.302*** 0.000*** 0.304*** 0.002**	(3) -0.086*** 77.519*** -2.633*** 5.216*** 2.814*** -1.368** 0.308*** 0.000*** -0.417*** 0.002**	-0.085*** 75.259*** -2.125*** 5.573*** 3.693*** -1.142* 0.301*** 0.000*** -0.414*** 0.002**	84.484*** -15.900*** -0.358 -6.715 -3.771 0.216*** 0.000** -0.593	(2) 76.660*** -10.838*** -2.590 -1.753 -3.843 0.206*** 0.000** -0.606	(3) -0.099 89.283*** -15.651*** 0.195 -7.606 -3.787 0.220*** 0.000*** -0.608	-0.104 81.148*** -10.148*** -2.222 -2.274 -3.802 0.208*** 0.000** -0.618
ALT1 -2.265^{***} -2.325^{***} -2.723^{***} -2.768^{***} -1.954^{***} -2.111^{***} -2.418^{***} -2.552^{***} -4.529^{**} -3.919^{**} -4.699^{**} -2.552^{***} -2.550^{**} -2.550^{**} -2.650^{**} -2.955^{**} -2.650^{**} -2.955^{**} -2.650^{**} -2.650^{**} -2.650^{**} -2.670^{**} -2.670^{**} -2.550^{**} -2.650^{**} -2.650^{**} -2.650^{**} -2.670^{**} -2.650^{**} -2.650^{**} -2.650^{**} -2.670^{**} -2.650^{**} -2.650^{**} -2.650^{**} -2.670^{**} -2.670^{**} -2.670^{**} -2.670^{**} -2.670^{**} -2.670^{**} -2.670^{**} -2.670^{**} -2.670^{**} -2.670^{**} -2.670^{**} -2.670^{**} -2.670^{**} -2.670^{**} -2.694^{**} -2.694^{**} -2.694^{**} -2.694^{**} -2.694^{**} -2.694^{**} -2.694^{**} -2.694^{**} -2.6	Const GEO1 GEO2 GEO3 GEO4 UAA UAA ² CAP EMAT LAB	73.500*** -4.122*** 4.750*** 3.388*** 0.304*** 0.004*** 0.000*** -0.320*** 0.002** -10.059	(2) 72.528*** -3.836*** 4.920*** 3.832*** -1.753*** 0.301*** 0.301*** 0.321*** 0.002** -10.041	(3) -0.088*** -3.152*** 4.989*** 2.996*** -1.571** 0.303*** 0.000*** -0.443*** 0.002*** -15.403	-0.087*** 74.822*** -2.888*** 5.131*** 3.418*** -1.466** 0.000*** 0.000*** 0.002*** -14.887	75.251*** -3.596*** 4.959*** 3.127*** 0.83*** 0.310*** 0.002*** -0.302*** 0.002** -9.186	(2) 73.017*** -3.048*** 4.053*** -1.439** 0.302*** 0.000*** 0.304*** 0.002** -9.087	(3) -0.086*** 77.519*** -2.63**** 5.216*** 2.814*** -1.368** 0.000*** -0.417*** 0.002** -15.854	-0.085*** 75.259*** -2.125*** 5.573*** 3.693*** 0.301*** 0.001*** 0.002** -15.148	84.484*** -15.900*** -0.358 -6.715 -3.771 0.216*** 0.000** -0.593 -0.024**	(2) 76.660*** -10.838*** -2.590 -1.753 -3.843 0.206*** 0.000** -0.606 -0.024**	(3) -0.099 89.283*** -15.651*** 0.195 -7.606 -3.787 0.20*** 0.000*** -0.608 -0.024**	-0.104 81.148*** -10.148*** -2.222 -2.274 -3.802 0.208*** 0.000** -0.618 -0.023**
ALT2 -0.650 -0.647 -0.273 -0.268 -0.740 -0.706 -0.361 -0.309 3.973 1.845 3.967 1.652 ALT3 -4.749^{+++} -5.297^{+++} -6.246^{+++} -6.668^{+++} -4.903^{++} -5.318^{+++} -6.485^{+++} -2.260 -2.965 -2.865 -3.579 ALT4 0.723 0.881 0.192 0.361 0.484 0.833 -0.059 0.289 -2.054 -1.313 -2.287 -1.452 FOR -6.718^{+++} -7.401^{+++} -7.495^{+++} -8.185^{+++} -6.262^{+++} -7.63^{+++} -8.476^{+++} -2.050 -5.429 -2.194 -5.869 FIX 0.005^{++} 0.005^{++} 0.005^{++} 0.005^{++} -6.942^{+++} -8.476^{+++} -2.050 -5.429 -2.194 -5.869 FIX 0.005^{++} 0.005^{++} 0.005^{++} 0.005^{++} 0.005^{++} -0.025 -0.021 -0.071 -0.021 DEV -6.906^{++} -7.18^{++} -7.60^{+++} -9.904^{+++} -8.826^{+++} -9.420^{+++} 9.067^{+++} 2.160 0.761 0.919 -0.978^{++} DEV -6.906^{++} -7.018^{++} -7.60^{+++} -9.904^{+++} -9.420^{+++} 9.106^{++++} 2.160 0.761 0.919 -0.978^{++} DEV -6.906^{+++} -7.18^{+++} -0.107^{+++} -0.101^{++++} -0.111^{+++} -0.010^{++++} 0.010^{+++} 0.010^{++++} $0.108^$	Const GEO1 GEO2 GEO3 GEO4 UAA UAA ² CAP EMAT LAB SER	73.500*** -4.122*** 4.750*** 3.388*** 0.304*** 0.000*** -0.320*** 0.002** -10.059 0.000	(2) 72.528*** 4.920*** 3.836*** 0.301*** 0.000*** 0.002** -10.041 0.000	(3) -0.088*** 75.852*** 4.989*** 2.996*** -1.571** 0.303*** 0.000*** -0.443*** 0.002*** -15.403 0.000	-0.087*** 74.822*** -2.888*** 5.131*** 3.418*** 0.300*** 0.300*** 0.438*** 0.002*** -14.887 0.000	75.251*** -3.596*** 4.959*** 3.127*** 0.310*** 0.000*** -0.302*** 0.002** -9.186 0.000	(2) 73.017*** -3.048*** 5.349*** 4.053*** -1.439** 0.302*** 0.000*** 0.002** -9.087 0.000	(3) -0.086*** 77.519*** -2.633*** 5.216*** 2.814*** -1.368** 0.308*** 0.308*** 0.308*** 0.308*** 0.417*** 0.002** -15.854 0.000	-0.085*** 75.259*** -2.125*** 5.573*** 3.693*** -1.142* 0.301*** 0.000*** -0.414*** 0.002** -15.148 0.000	84.484*** -15.900*** -0.358 -6.715 -3.771 0.216*** 0.000** -0.593 -0.024** 0.057***	(2) 76.660*** -10.838*** -2.590 -1.753 -3.843 0.206*** 0.000** -0.606 -0.024**	(3) -0.099 89.283*** 0.155 -7.606 -3.787 0.220*** 0.000*** -0.608 -0.024**	-0.104 81.148*** -10.148*** -2.222 -2.274 -3.802 0.208*** 0.000** -0.618 -0.023** -0.057***
ALT3 -4.749^{***} -5.29^{****} -6.246^{****} -6.668^{****} -4.903^{***} -5.318^{****} -6.485^{****} -2.260 -2.965 -2.865 -3.579 ALT4 0.723 0.881 0.192 0.361 0.484 0.833 -0.059 0.289 -2.054 -1.313 -2.287 -1.452 FOR -6.718^{***} -7.401^{***} -7.495^{***} -8.185^{***} -6.622^{***} -7.63^{***} -6.485^{***} -2.060 -5.429 -2.194 -5.869 FIX 0.005^{**} 0.005^{**} 0.005^{**} 0.005^{**} 0.005^{**} -0.069 -0.023 -0.071 -0.021 DEV -6.906^{**} -7.18^{**} -7.691^{***} -9.904^{***} -9.420^{***} -9.067^{***} 2.160 0.761 0.919 -0.978 OGA 0.111^{***} 0.110^{***} 0.104^{***} 0.103^{***} 0.103^{***} 0.103^{***} 0.103^{***} 0.103^{***} 0.103^{***} 0.103^{***} 0.103^{***} 0.103^{***} 0.103^{***} 0.103^{***} 0.103^{***} 0.103^{***} 0.104^{***} 0.103^{***} 0.104^{***} 0.103^{***} 0.103^{***} 0.104^{***} 0.103^{***} 0.104^{***} 0.103^{***} 0.103^{***} 0.104^{***} 0.103^{***} 0.104^{***} 0.103^{***} 0.104^{***} 0.104^{***} 0.103^{***} 0.104^{***} 0.104^{***} 0.104^{***} 0.104^{***} 0.104^{***} 0.104^{***} 0.104^{***} <td< td=""><td>Const GEO1 GEO2 GEO3 GEO4 UAA UAA² CAP EMAT LAB SER SFAWU</td><td>73.500*** -4.122*** 4.750*** 3.38*** 0.304*** 0.000*** -0.320*** 0.002** -10.059 0.000 -43.475***</td><td>(2) 72.528*** 4.920*** 3.832*** -1.753*** 0.301*** 0.002** -10.041 0.000 -43.222***</td><td>(3) -0.088*** 75.852*** 4.3852*** 2.996*** -1.571** 0.000*** 0.002*** 0.002*** -15.403 0.000 -43.376***</td><td>-0.087*** 74.822*** -2.888*** 5.131*** 3.418*** -1.466** 0.300*** 0.000*** -0.438*** -14.887 0.000 -43.081***</td><td>75.251*** -3.596*** 4.959*** 3.127*** -1.683*** 0.310*** 0.000*** -0.302*** -9.186 0.000 -44.167***</td><td>(2) 73.017*** -3.048*** 5.349*** 4.053*** -1.439** 0.302*** 0.304*** 0.304*** 0.304*** 0.304*** 0.304*** 0.304*** 0.304*** 0.304***</td><td>(3) -0.086*** 77.519*** 5.216*** 2.83*** 0.308*** 0.000*** -0.417*** 0.002** -15.854 0.000 -44.120***</td><td>-0.085*** 75.259*** -2.125*** 3.693*** -1.142* 0.301*** 0.000*** -0.414*** 0.002** -15.148 0.000 -43.458***</td><td>84.484*** -15.900*** -0.358 -6.715 -3.771 0.216*** 0.000** -0.593 -0.024** -0.057*** -33.331***</td><td>(2) 76.660*** -10.838*** -2.590 -1.753 -3.843 0.206*** 0.000** -0.606 -0.024** -0.606 -0.024**</td><td>(3) -0.099 89.283*** 0.155 -7.606 -3.787 0.220*** 0.000*** -0.608 -0.024** -0.024** -33.414***</td><td>-0.104 81.148*** -10.148*** -2.222 -2.274 -3.802 0.208*** 0.000** -0.618 -0.023** -0.057*** -35.995***</td></td<>	Const GEO1 GEO2 GEO3 GEO4 UAA UAA ² CAP EMAT LAB SER SFAWU	73.500*** -4.122*** 4.750*** 3.38*** 0.304*** 0.000*** -0.320*** 0.002** -10.059 0.000 -43.475***	(2) 72.528*** 4.920*** 3.832*** -1.753*** 0.301*** 0.002** -10.041 0.000 -43.222***	(3) -0.088*** 75.852*** 4.3852*** 2.996*** -1.571** 0.000*** 0.002*** 0.002*** -15.403 0.000 -43.376***	-0.087*** 74.822*** -2.888*** 5.131*** 3.418*** -1.466** 0.300*** 0.000*** -0.438*** -14.887 0.000 -43.081***	75.251*** -3.596*** 4.959*** 3.127*** -1.683*** 0.310*** 0.000*** -0.302*** -9.186 0.000 -44.167***	(2) 73.017*** -3.048*** 5.349*** 4.053*** -1.439** 0.302*** 0.304*** 0.304*** 0.304*** 0.304*** 0.304*** 0.304*** 0.304*** 0.304***	(3) -0.086*** 77.519*** 5.216*** 2.83*** 0.308*** 0.000*** -0.417*** 0.002** -15.854 0.000 -44.120***	-0.085*** 75.259*** -2.125*** 3.693*** -1.142* 0.301*** 0.000*** -0.414*** 0.002** -15.148 0.000 -43.458***	84.484*** -15.900*** -0.358 -6.715 -3.771 0.216*** 0.000** -0.593 -0.024** -0.057*** -33.331***	(2) 76.660*** -10.838*** -2.590 -1.753 -3.843 0.206*** 0.000** -0.606 -0.024** -0.606 -0.024**	(3) -0.099 89.283*** 0.155 -7.606 -3.787 0.220*** 0.000*** -0.608 -0.024** -0.024** -33.414***	-0.104 81.148*** -10.148*** -2.222 -2.274 -3.802 0.208*** 0.000** -0.618 -0.023** -0.057*** -35.995***
ALT4 0.723 0.881 0.192 0.361 0.484 0.833 -0.059 0.289 -2.054 -1.313 -2.287 -1.452 FOR -6.718^{***} -7.401^{***} -7.495^{***} -8.185^{***} -6.262^{***} -7.763^{***} -6.847^{***} -2.050 -5.429 -2.194 -5.869 FIX 0.005^{**} 0.103^{**} 0.103^{**} 0.103^{**} 0.103^{**} 0.103^{**} 0.103^{**} 0.103^{**} 0.103^{**} 0.103^{**} 0.012^{**} 0.016^{**} 0.006^{**} 0.006^{**} 0.005^{**} 0.04^{**} 0.04^{**} 0.012^{**} 0.016^{**} 0.010^{**} 0.011^{**} 0.006^{**} 0.011^{**} 0.010^{**} 0.014^{**} 0.014^{**} 0.014^{**} 0.011^{**} 0.010^{**} 0.011^{**} 0.010^{**} 0.011^{**} 0.006^{**}	Const GEO1 GEO2 GEO3 GEO4 UAA UAA ² CAP EMAT LAB SER SFAWU ALT1	73.500*** -4.122*** 4.750*** 3.388*** -1.874*** 0.304*** 0.000*** -0.320*** -10.059 0.000 -43.475*** -2.265***	(2) 72.528*** 4.920*** 3.832*** -1.753*** 0.301*** 0.000*** -0.321*** 0.002** -10.041 0.000 -43.222*** -2.325***	(3) -0.088*** 75.852*** 4.3152*** 2.996*** -1.571** 0.303*** 0.000*** -0.443*** 0.000 -43.376*** -2.723***	-0.087*** 74.822*** -2.888*** 5.131*** 3.418*** -1.466** 0.300*** 0.000*** -0.438*** -14.887 0.000 -43.081*** -2.768***	75.251*** -3.596*** 4.959*** 3.127*** -1.683*** 0.310*** 0.000*** -0.302*** -9.186 0.000 -44.167*** -1.954***	(2) 73.017*** 5.349*** 4.053*** -1.439** 0.302*** 0.302*** 0.304*** 0.304*** 0.304*** -9.087 0.000 -43.527*** -2.111***	(3) -0.086*** 77.519*** 5.216*** 5.216*** 2.814*** 0.308*** 0.308*** 0.000*** -0.417*** -15.854 0.000 -44.120*** -2.418***	-0.085*** 75.259*** -2.125*** 5.573*** 3.693*** -1.142* 0.301*** 0.000*** -0.414*** 0.002** -15.148 0.000 -43.458*** -2.552***	84.484*** -15.900*** -0.358 -6.715 -3.771 0.216*** 0.000** -0.593 -0.024** -0.057*** -33.331*** -4.529*	(2) 76.660*** -10.838*** -2.590 -1.753 -3.843 0.206*** 0.000** -0.606 -0.024** -0.606 -0.024** -0.658*** -35.701*** -3.919*	(3) -0.099 89.283*** 0.195 -7.606 -3.787 0.220*** 0.000*** -0.608 -0.024** -0.024** -0.026*** -33.414*** -4.699*	-0.104 81.148*** -10.148*** -2.222 -2.274 -3.802 0.208*** 0.000** -0.618 -0.023** -0.057*** -35.995*** -4.040*
FOR -6.718*** -7.401*** -7.495*** -8.185*** -6.262*** -7.63*** -6.942*** -8.476*** -2.050 -5.429 -2.194 -5.869 FIX 0.005** 0.005** 0.005** 0.005** 0.005** 0.005** -0.069 -0.023 -0.071 -0.021 DEV -6.906** -7.018** -7.609*** -7.671*** -9.094*** -8.826*** -9.420*** -9.067*** 2.160 0.761 0.919 -0.978 OGA 0.111*** 0.110*** 0.109*** 0.103**** 0.103**** 0.103*** 0.012*** 0.088 0.142 0.084 0.42 AGE -0.119*** -0.101**** 0.037** -0.116**** -0.104*** 0.012 -0.016 0.006 -0.025 LSU 0.040*** 0.040*** 0.050** 0.037** 0.044** 0.044** 0.714*** 0.708*** 0.716*** END 8.84 0.070 8.070 -0.222 21.172*** 4.906 19.63***	Const GEO1 GEO2 GEO3 GEO4 UAA UAA ² CAP EMAT LAB SER SFAWU ALT1 ALT2	73.500*** -4.122*** 4.750*** 3.388*** -1.874*** 0.304*** 0.000*** -0.320*** 0.002** -10.059 0.000 -43.475*** -2.255*** -0.650	(2) 72.528*** 4.920*** 3.832*** 1.753*** 0.301*** 0.002** -0.321*** 0.002** -10.041 0.000 -43.222*** -2.325*** -0.647	(3) -0.088*** 75.852*** 4.989*** 2.996*** -1.571** 0.303*** 0.000*** -0.443*** 0.002*** -15.403 0.000 -43.376*** -2.723*** -0.273	-0.087*** 74.822*** -2.888*** 5.131*** 3.418*** -1.466** 0.300*** 0.000*** 0.002*** -0.438*** 0.002*** -14.887 0.000 -43.081*** -2.768*** -0.268	75.251*** -3.596*** 4.959*** 3.127*** -1.683*** 0.310*** 0.000*** -0.302*** 0.002** -9.186 0.000 -44.167*** -1.954*** -0.740	(2) 73.017**** -3.048*** 5.349*** 4.053*** 0.302*** 0.302*** 0.000*** -0.304*** 0.002** -9.087 0.000 -43.527*** -2.111*** -0.706	(3) -0.086*** 77.519*** 5.216*** 2.814*** 0.308*** 0.000*** -0.417*** 0.002** -15.854 0.000 -44.120*** -2.418*** -0.361	-0.085*** 75.259*** -2.125*** 3.693*** -1.142* 0.301*** 0.000*** -0.414*** 0.002** -15.148 0.000 -43.458*** -2.552*** -0.309	84.484*** -15.900*** -0.358 -6.715 -3.771 0.216*** 0.000** -0.593 -0.024** -0.057*** -33.331*** -4.529* 3.973	(2) 76.660**** -10.838*** -2.590 -1.753 -3.843 0.206*** 0.000** -0.606 -0.024** -0.058*** -35.701*** -3.919* 1.845	(3) -0.099 89.283*** 0.195 -7.606 -3.787 0.220*** 0.000*** -0.608 -0.024** -0.056*** -33.414*** -4.699** 3.967	-0.104 81.148*** -10.148*** -2.222 -2.274 -3.802 0.208*** 0.000** -0.618 -0.023** -0.023*** -0.057*** -35.995*** -4.040* 1.652
FIX 0.005** 0.006** 0.010** 0.10** 0.00** 0.00**** 0.00**** 0.00*** 0.	Const GEO1 GEO2 GEO3 GEO4 UAA UAA ² CAP EMAT LAB SER SFAWU ALT1 ALT2 ALT3	73.500*** -4.122*** 4.750*** 3.388*** -1.874*** 0.304*** 0.000*** -0.320*** 0.002** -10.059 0.000 -43.475*** -2.265*** -0.650 -4.749***	(2) 72.528*** 4.920*** 3.836*** 0.301*** 0.000*** -0.321*** 0.002** -10.041 0.000 -43.222*** -2.325*** -0.647 -5.297***	(3) -0.088*** 75.852*** 4.989*** 2.996*** -1.571** 0.303*** 0.000*** -0.443*** 0.002*** -15.403 0.000 -43.376*** -0.273 -6.246***	-0.087*** 74.822*** -2.888*** 5.131*** -1.466** 0.300*** 0.000*** -0.438*** 0.002*** -14.887 0.000 -43.081*** -2.768*** -0.268 -6.668***	75.251*** -3.596*** 4.959*** -1.683*** 0.310*** 0.000*** -0.302*** 0.002** -9.186 0.000 -44.167*** -1.954*** -0.740 -3.561*	(2) 73.017**** -3.048*** 5.349*** 4.053*** -1.439** 0.302*** 0.304*** 0.002** -9.087 0.000 -43.527*** -2.111*** -0.706 -4.903**	(3) -0.086*** 77.519*** -2.633*** 5.216*** 2.814*** -1.368** 0.308*** 0.308*** 0.000*** -0.417*** 0.002** -15.854 0.000 -44.120*** -2.418*** -0.361 -5.318***	-0.085*** 75.259*** -2.125*** 5.573*** -1.142* 0.301*** 0.000*** -0.414*** 0.002** -15.148 0.000 -43.458*** -2.552*** -0.309 -6.485***	84.484*** -15.900*** -0.358 -6.715 -3.771 0.216*** 0.000** -0.593 -0.024** -3.331*** -4.529* 3.973 -2.260	(2) 76.660*** -10.838*** -2.590 -1.753 -3.843 0.206*** 0.000** -0.606 -0.024** -0.606 -0.024** -3.5701*** -3.919* 1.845 -2.965	(3) -0.099 89.283*** -15.651*** 0.195 -7.606 -3.787 0.220*** 0.000*** -0.608 -0.024** -0.608 -0.024** -33.414*** -4.699** 3.967 -2.865	-0.104 81.148*** -10.148*** -2.222 -2.274 -3.802 0.208*** 0.000** -0.618 -0.023** -0.057*** -3.595*** -4.040* 1.652 -3.579
DEV -6.906** -7.018** -7.609*** -7.671*** -9.904*** -8.826*** -9.420*** -9.967*** 2.160 0.761 0.919 -0.978 OGA 0.111*** 0.110*** 0.109*** 0.104*** 0.105*** 0.103*** 0.033*** 0.105*** 0.033*** 0.033*** 0.105*** 0.012 -0.016 0.006 -0.025 LSU 0.040*** 0.040*** 0.037** 0.037** 0.044** 0.044** 0.714*** 0.705*** 0.705*** END 8.384 0.070 8.070 -0.222 21.172*** 4.906 19.603*** 3.851 22.294 -0.768 22.774 -2.319 TF1-10 Yes	Const GEO1 GEO2 GEO3 GEO4 UAA UAA ² CAP EMAT LAB SER SFAWU ALT1 ALT2 ALT3 ALT4	73.500*** -4.122*** 4.750*** 3.388*** -1.874*** 0.304*** 0.000*** -0.320*** 0.002** -10.059 0.000 -43.475*** -2.265*** -0.650 -4.749*** 0.723	(2) 72.528*** -3.836*** 4.920*** 3.832*** -1.753*** 0.301*** 0.0321*** 0.002** -0.321*** 0.002** -10.041 0.000 -43.222*** -0.647 -5.297*** 0.881	(3) -0.08*** 75.852*** 4.989*** 2.996*** -1.571** 0.303*** 0.000*** -0.443*** 0.002*** -15.403 0.000 -43.376*** -2.723*** -0.273 -6.246*** 0.192	-0.087*** 74.822*** -2.888*** 5.131*** 3.418*** -1.466** 0.300*** 0.002*** -0.438*** 0.002*** -14.887 0.000 -43.081*** -2.768*** -0.268 -6.668*** 0.361	75.251*** -3.596*** 4.959*** -1.683*** 0.310*** 0.000*** -0.302*** 0.002** -9.186 0.000 -44.167*** -0.9186 0.000 -44.167*** -0.740 -3.561* 0.484	(2) 73.017*** -3.048*** 5.349*** 4.053*** -1.439** 0.302*** 0.302*** 0.304*** 0.002** -9.087 0.000 -43.527*** -2.111*** -0.706 -4.903** 0.833	(3) -0.086*** 77.519*** -2.633*** 5.216*** 2.814*** -1.368** 0.308*** 0.308*** 0.000*** -0.417*** 0.002** -15.854 0.000 -44.120*** -2.418*** -0.361 -5.318*** -0.059	-0.085*** 75.259*** -2.125*** 5.573*** 3.693*** -1.142* 0.301*** 0.002** -0.414*** 0.002** -15.148 0.000 -43.458*** -0.309 -6.485*** 0.289	84.484*** -15.900*** -0.358 -6.715 -3.771 0.216*** 0.000** -0.593 -0.024** -33.331*** -4.529* 3.973 -2.260 -2.054	(2) 76.660*** -10.838*** -2.590 -1.753 -3.843 0.206*** 0.000** -0.606 -0.024** -35.701*** -3.919* 1.845 -2.965 -1.313	(3) -0.099 89.283*** 0.155 -7.606 -3.787 0.220*** 0.000*** -0.608 -0.024** -0.056*** -33.414*** -4.699** 3.967 -2.285 -2.287	-0.104 81.148*** -10.148*** -2.222 -2.274 -3.802 0.208*** 0.000** -0.618 -0.023** -0.057*** -35.995*** -4.040* 1.652 -3.579 -1.452
OGA 0.111*** 0.110*** 0.109*** 0.104*** 0.103*** 0.103*** 0.033*** 0.033*** 0.033*** 0.031*** 0.033*** 0.012 0.088 0.142 0.084 0.142 AGE -0.119*** -0.111*** -0.07*** -0.099*** -0.133*** -0.116*** -0.121*** -0.014*** 0.012 -0.016 0.006 -0.025 LSU 0.040*** 0.040*** 0.040*** 0.044** 0.044** 0.714*** 0.708*** 0.710*** 0.705*** END 8.384 0.070 8.070 -0.222 21.172*** 4.906 19.603*** 3.851 22.294 -0.768 22.774 -2.319 TF1-10 Yes Yes <td< td=""><td>Const GEO1 GEO2 GEO3 UAA UAA² CAP EMAT LAB SER SFAWU ALT1 ALT2 ALT3 ALT4 FOR</td><td>73.500*** -4.122*** 4.750*** 3.388*** 0.304*** 0.000*** -0.320*** 0.002** -0.002** -10.059 0.000 -43.475*** -2.265*** -0.650 -4.749*** 0.723 -6.718***</td><td>(2) 72.528*** 4.920*** 3.836*** 0.301*** 0.301*** 0.000*** 0.002** -10.041 0.000 -43.222*** -2.325*** -0.647 -5.25*** 0.881 -7.401***</td><td>(3) -0.08*** 75.852*** 4.989*** 2.996*** -1.571** 0.303*** 0.000*** -0.443*** 0.002*** -15.403 0.000 -43.376** -2.723*** -0.273 -6.246*** 0.192 -7.495***</td><td>-0.087*** 74.822*** -2.888*** 5.131*** 3.418*** -1.466** 0.300*** 0.000*** -0.438*** 0.000*** -14.887 0.000 -43.081*** -2.768*** -0.268 -6.668*** 0.361 -8.185***</td><td>75.251*** -3.596*** 4.959*** 3.127*** -1.683*** 0.310*** 0.002*** -0.302*** -0.302*** -9.186 0.000 -44.167*** -1.954*** -0.740 -3.561* 0.484 -6.262***</td><td>(2) 73.017*** -3.048*** 5.349*** 4.053*** -1.439** 0.302*** 0.304*** 0.304*** 0.304*** 0.304*** -9.087 0.000 -43.527*** -2.111*** -0.706 -4.903** 0.833 -7.763***</td><td>(3) -0.086*** 77.519*** -2.633*** 5.216*** 2.814*** -1.368** 0.308*** 0.308*** 0.308*** 0.000*** -0.417*** 0.002** -15.854 0.000 -44.120*** -2.418*** -0.361 -5.318*** -0.059 -6.942***</td><td>-0.085*** 75.259*** -2.125*** 3.693*** -1.142* 0.301*** 0.000*** -0.414*** 0.002** -15.148 0.000 -43.458*** -2.552*** -0.309 -6.485*** 0.289 -8.476***</td><td>84.484*** -15.900*** -0.358 -6.715 -3.771 0.216*** 0.000** -0.593 -0.024** -33.331*** -4.529* 3.973 -2.260 -2.054 -2.050</td><td>(2) 76.660*** -10.838*** -2.590 -1.753 -3.843 0.206*** 0.000** -0.606 -0.024** -3.010* -3.919* 1.845 -2.965 -1.313 -5.429</td><td>(3) -0.099 89.283*** 0.195 -7.606 -3.787 0.220*** 0.000*** -0.608 -0.024** -0.024** -33.414*** -4.699** 3.967 -2.865 -2.287 -2.194</td><td>-0.104 81.148*** -10.148*** -2.222 -2.274 -3.802 0.208*** 0.000** -0.618 -0.023** -0.057*** -4.040* 1.652 -3.579 -1.452 -5.869</td></td<>	Const GEO1 GEO2 GEO3 UAA UAA ² CAP EMAT LAB SER SFAWU ALT1 ALT2 ALT3 ALT4 FOR	73.500*** -4.122*** 4.750*** 3.388*** 0.304*** 0.000*** -0.320*** 0.002** -0.002** -10.059 0.000 -43.475*** -2.265*** -0.650 -4.749*** 0.723 -6.718***	(2) 72.528*** 4.920*** 3.836*** 0.301*** 0.301*** 0.000*** 0.002** -10.041 0.000 -43.222*** -2.325*** -0.647 -5.25*** 0.881 -7.401***	(3) -0.08*** 75.852*** 4.989*** 2.996*** -1.571** 0.303*** 0.000*** -0.443*** 0.002*** -15.403 0.000 -43.376** -2.723*** -0.273 -6.246*** 0.192 -7.495***	-0.087*** 74.822*** -2.888*** 5.131*** 3.418*** -1.466** 0.300*** 0.000*** -0.438*** 0.000*** -14.887 0.000 -43.081*** -2.768*** -0.268 -6.668*** 0.361 -8.185***	75.251*** -3.596*** 4.959*** 3.127*** -1.683*** 0.310*** 0.002*** -0.302*** -0.302*** -9.186 0.000 -44.167*** -1.954*** -0.740 -3.561* 0.484 -6.262***	(2) 73.017*** -3.048*** 5.349*** 4.053*** -1.439** 0.302*** 0.304*** 0.304*** 0.304*** 0.304*** -9.087 0.000 -43.527*** -2.111*** -0.706 -4.903** 0.833 -7.763***	(3) -0.086*** 77.519*** -2.633*** 5.216*** 2.814*** -1.368** 0.308*** 0.308*** 0.308*** 0.000*** -0.417*** 0.002** -15.854 0.000 -44.120*** -2.418*** -0.361 -5.318*** -0.059 -6.942***	-0.085*** 75.259*** -2.125*** 3.693*** -1.142* 0.301*** 0.000*** -0.414*** 0.002** -15.148 0.000 -43.458*** -2.552*** -0.309 -6.485*** 0.289 -8.476***	84.484*** -15.900*** -0.358 -6.715 -3.771 0.216*** 0.000** -0.593 -0.024** -33.331*** -4.529* 3.973 -2.260 -2.054 -2.050	(2) 76.660*** -10.838*** -2.590 -1.753 -3.843 0.206*** 0.000** -0.606 -0.024** -3.010* -3.919* 1.845 -2.965 -1.313 -5.429	(3) -0.099 89.283*** 0.195 -7.606 -3.787 0.220*** 0.000*** -0.608 -0.024** -0.024** -33.414*** -4.699** 3.967 -2.865 -2.287 -2.194	-0.104 81.148*** -10.148*** -2.222 -2.274 -3.802 0.208*** 0.000** -0.618 -0.023** -0.057*** -4.040* 1.652 -3.579 -1.452 -5.869
AGE -0.119*** -0.111*** -0.107*** -0.099*** -0.133*** -0.116*** -0.121*** -0.014*** 0.012 -0.016 0.006 -0.025 LSU 0.040*** 0.040*** 0.040*** 0.040*** 0.012 0.012 0.016 0.006 -0.025 END 8.384 0.070 8.070 -0.222 21.172*** 4.906 19.603*** 3.851 22.294 -0.768 22.774 -2.319 TF1-10 Yes	Const GEO1 GEO2 GEO3 GEO4 UAA UAA ² CAP EMAT LAB SER SFAWU ALT1 ALT2 ALT3 ALT4 FOR FIX	73.500*** -4.122*** 4.750*** 3.38*** 0.304*** 0.002** -0.022** -10.059 0.000 -43.475*** -2.265*** -0.650 -4.749*** 0.723 -6.718*** 0.005**	(2) 72.528*** 4.920*** 3.836*** 0.301*** 0.301*** 0.000*** -0.321*** 0.002** -1.0.41 0.000 -43.222*** -2.325*** -0.647 -5.297*** 0.881 -7.401*** 0.005**	(3) -0.08*** 75.852*** 4.989*** 2.996*** -1.571** 0.303*** 0.000*** -0.443*** 0.002*** -15.403 0.000 -43.376** -2.723*** -0.273 -6.246*** 0.192 -7.495*** 0.005*	-0.087*** 74.822*** -2.888*** 5.131*** 3.418*** -1.466** 0.300*** 0.000*** -0.438*** 0.002*** -14.887 0.000 -43.081*** -2.768*** -0.268 -6.668*** 0.361 -8.185*** 0.005**	75.251*** -3.596*** 4.959*** 3.127*** -1.683*** 0.310*** 0.0002*** -0.302*** -0.302*** -9.186 0.000 -44.167*** -1.954*** -0.740 -3.561* 0.484 -6.262*** 0.005**	(2) 73.017*** -3.048*** 5.349*** 4.053*** -1.439** 0.302*** 0.304*** 0.304*** 0.304*** 0.304*** -9.087 0.000 -43.527*** -2.111*** -0.706 -4.903** 0.833 -7.763*** 0.005**	(3) -0.086*** 77.519*** 5.216*** 2.814*** -1.368** 0.308*** 0.000*** -0.417*** 0.002** -15.854 0.000 -44.120*** -2.418*** -0.361 -5.318*** -0.059 -6.942*** 0.005**	-0.085*** 75.259*** -2.125*** 3.693*** -1.142* 0.301*** 0.000*** -0.414*** 0.002** -15.148 0.000 -43.458*** -2.552*** -0.309 -6.485*** 0.289 -8.476*** 0.005**	84.484*** -15.900*** -0.358 -6.715 -3.771 0.216*** 0.000** -0.593 -0.024** -33.331*** -4.529* 3.973 -2.260 -2.054 -2.050 -0.069	(2) 76.660*** -10.83*** -2.590 -1.753 -3.843 0.206*** 0.000** -0.024** -3.0024** -3.019* 1.845 -2.965 -1.313 -5.429 -0.023	(3) -0.099 89.283*** 0.195 -7.606 -3.787 0.220*** 0.000*** -0.608 -0.024** -0.024** -33.414*** -4.699** 3.967 -2.865 -2.287 -2.194 -0.071	-0.104 81.148*** -10.148*** -2.222 -2.274 -3.802 0.208*** 0.000** -0.618 -0.023** -0.023** -0.057*** -35.995*** -4.040* 1.652 -3.579 -1.452 -5.869 -0.021
LSU 0.040*** 0.040*** 0.050** 0.050** 0.037** 0.044** 0.044** 0.714*** 0.708*** 0.710*** 0.705*** END 8.384 0.070 8.070 -0.222 21.172*** 4.906 19.603*** 3.851 22.294 -0.768 22.774 -2.319 TF1-10 Yes Yes </td <td>Const GEO1 GEO2 GEO3 GEO4 UAA UAA² CAP EMAT LAB SER SFAWU ALT1 ALT2 ALT3 ALT4 FOR FIX DEV</td> <td>73.500*** -4.122*** 4.750*** 3.388*** -1.874*** 0.304*** 0.000*** -0.320*** -10.059 0.000 -43.475*** -2.265*** -0.650 -4.749*** 0.723 -6.718*** 0.005** -6.906**</td> <td>(2) 72.528*** 4.920*** 3.832*** -1.753*** 0.301*** 0.002** -10.041 0.000 -43.222*** -2.325*** -0.647 -5.297*** 0.881 -7.401*** 0.005** -7.018**</td> <td>(3) -0.088*** 75.852*** -3.152*** 2.996*** -1.571** 0.303*** 0.000*** -0.443*** 0.000 -443.376*** -2.723*** -0.273 -6.246*** 0.192 -7.495*** 0.005** -7.609***</td> <td>-0.087*** 74.822*** -2.888*** 5.131*** 3.418*** -1.466** 0.300*** 0.000*** -0.438*** 0.002*** -14.887 0.000 -43.081*** -2.768*** 0.361 -8.185*** 0.005** -7.671***</td> <td>75.251*** -3.596*** 4.959*** 3.127*** -1.683*** 0.000*** -0.302*** 0.002** -9.186 0.000 -44.167*** -1.954*** -0.740 -3.561* 0.484 -6.262*** 0.005** -9.094***</td> <td>(2) 73.017*** -3.048*** 5.349*** 4.053*** -1.439** 0.302*** 0.302*** 0.304*** 0.304*** 0.304*** -9.087 0.000 -43.527*** -2.111*** -0.706 -4.903** 0.833 -7.763*** 0.005** -8.826***</td> <td>(3) -0.086*** 77.519*** 5.216*** 2.834*** -1.368** 0.000*** -0.417*** 0.002** -15.854 0.000 -44.120*** -2.418*** -0.361 -5.318*** 0.059 -6.942*** 0.005** -9.420***</td> <td>-0.085*** 75.259*** -2.125*** 5.573*** 3.693*** -1.142* 0.301*** 0.000*** -0.414*** 0.002** -15.148 0.000 -43.458*** -2.552*** -0.309 -6.485*** 0.289 -8.476*** 0.005** -9.067***</td> <td>84.484*** -15.900*** -0.358 -6.715 -3.771 0.216*** 0.000** -0.593 -0.024** -33.331*** -4.529* 3.973 -2.260 -2.054 -2.055 -0.069 2.160</td> <td>(2) 76.660*** -10.838*** -2.550 -1.753 -3.843 0.206*** 0.000** -0.606 -0.024** -0.606 -0.024** -3.5.701*** -3.919* 1.845 -2.965 -1.313 -5.429 -0.023 0.761</td> <td>(3) -0.099 89.283*** 0.155 -7.606 -3.787 0.220*** 0.000*** -0.608 -0.024** -3.3414*** -4.699** 3.967 -2.865 -2.287 -2.194 -0.071 0.919</td> <td>-0.104 81.148*** -10.148*** -2.222 -2.274 -3.802 0.208*** 0.000** -0.618 -0.023** -0.037*** -35.995*** -4.040* 1.652 -3.579 -1.452 -3.589 -0.021 -0.978</td>	Const GEO1 GEO2 GEO3 GEO4 UAA UAA ² CAP EMAT LAB SER SFAWU ALT1 ALT2 ALT3 ALT4 FOR FIX DEV	73.500*** -4.122*** 4.750*** 3.388*** -1.874*** 0.304*** 0.000*** -0.320*** -10.059 0.000 -43.475*** -2.265*** -0.650 -4.749*** 0.723 -6.718*** 0.005** -6.906**	(2) 72.528*** 4.920*** 3.832*** -1.753*** 0.301*** 0.002** -10.041 0.000 -43.222*** -2.325*** -0.647 -5.297*** 0.881 -7.401*** 0.005** -7.018**	(3) -0.088*** 75.852*** -3.152*** 2.996*** -1.571** 0.303*** 0.000*** -0.443*** 0.000 -443.376*** -2.723*** -0.273 -6.246*** 0.192 -7.495*** 0.005** -7.609***	-0.087*** 74.822*** -2.888*** 5.131*** 3.418*** -1.466** 0.300*** 0.000*** -0.438*** 0.002*** -14.887 0.000 -43.081*** -2.768*** 0.361 -8.185*** 0.005** -7.671***	75.251*** -3.596*** 4.959*** 3.127*** -1.683*** 0.000*** -0.302*** 0.002** -9.186 0.000 -44.167*** -1.954*** -0.740 -3.561* 0.484 -6.262*** 0.005** -9.094***	(2) 73.017*** -3.048*** 5.349*** 4.053*** -1.439** 0.302*** 0.302*** 0.304*** 0.304*** 0.304*** -9.087 0.000 -43.527*** -2.111*** -0.706 -4.903** 0.833 -7.763*** 0.005** -8.826***	(3) -0.086*** 77.519*** 5.216*** 2.834*** -1.368** 0.000*** -0.417*** 0.002** -15.854 0.000 -44.120*** -2.418*** -0.361 -5.318*** 0.059 -6.942*** 0.005** -9.420***	-0.085*** 75.259*** -2.125*** 5.573*** 3.693*** -1.142* 0.301*** 0.000*** -0.414*** 0.002** -15.148 0.000 -43.458*** -2.552*** -0.309 -6.485*** 0.289 -8.476*** 0.005** -9.067***	84.484*** -15.900*** -0.358 -6.715 -3.771 0.216*** 0.000** -0.593 -0.024** -33.331*** -4.529* 3.973 -2.260 -2.054 -2.055 -0.069 2.160	(2) 76.660*** -10.838*** -2.550 -1.753 -3.843 0.206*** 0.000** -0.606 -0.024** -0.606 -0.024** -3.5.701*** -3.919* 1.845 -2.965 -1.313 -5.429 -0.023 0.761	(3) -0.099 89.283*** 0.155 -7.606 -3.787 0.220*** 0.000*** -0.608 -0.024** -3.3414*** -4.699** 3.967 -2.865 -2.287 -2.194 -0.071 0.919	-0.104 81.148*** -10.148*** -2.222 -2.274 -3.802 0.208*** 0.000** -0.618 -0.023** -0.037*** -35.995*** -4.040* 1.652 -3.579 -1.452 -3.589 -0.021 -0.978
END 8.384 0.070 8.070 -0.222 21.172*** 4.906 19.603*** 3.851 22.294 -0.768 22.774 -2.319 TF1-10 Yes	Const GEO1 GEO2 GEO3 GEO4 UAA UAA ² CAP EMAT LAB SER SFAWU ALT1 ALT2 ALT3 ALT4 FOR FIX DEV OGA	73.500*** -4.122*** 4.750*** 3.388*** -1.874*** 0.304*** 0.000*** -0.320*** 0.002** -0.059 0.000 -43.475*** -2.265*** -0.650 -4.749*** 0.723 -6.718*** 0.005** -6.906** 0.111***	(2) 72.528*** 4.920*** 3.832*** 0.301*** 0.000*** -0.321*** 0.002** -10.041 0.000 -43.222*** -2.325*** -0.647 -5.297*** 0.881 -7.401*** 0.005** -7.018** 0.110***	(3) -0.088*** 75.852*** 4.989*** 2.996*** -1.571** 0.303*** 0.000*** -0.443*** 0.000*** -15.403 0.000 -43.376*** -2.723** -0.273 -6.246*** 0.102** -7.495***	-0.087*** 74.822*** -2.888*** 5.131*** 3.418*** -1.466** 0.300*** 0.000*** -0.438*** 0.002*** -0.43.081*** -2.768*** -0.268 -6.668*** 0.361 -8.185*** 0.005** -7.671*** 0.109***	75.251*** -3.596*** 4.959*** 3.127*** -1.683*** 0.310*** 0.000*** -0.302*** 0.000 -44.167*** -1.954*** -0.740 -3.561* 0.484 -6.262*** 0.005** -9.094*** 0.005**	(2) 73.017*** -3.048*** 5.349*** 4.053*** 0.302*** 0.302*** 0.000*** -0.304*** 0.002** -0.304*** -0.304*** -0.000 -43.527*** -2.111*** -0.706 -4.903** 0.833 -7.763*** 0.005** -8.826*** 0.103***	(3) -0.086*** 77.519*** 5.216*** 2.834*** 0.308*** 0.000*** -0.417*** 0.002** -0.417*** -0.050 -44.120*** -2.418*** -0.361 -5.318*** 0.005** -9.420*** 0.105***	-0.085*** 75.259*** -2.125*** 5.573*** -1.142* 0.301*** 0.000*** -0.414*** 0.002** -15.148 0.000 -43.458*** -2.552*** -0.309 -6.485*** 0.289 -8.476*** 0.005** 9.065***	84.484*** -15.900*** -0.358 -6.715 -3.771 0.216*** 0.000** -0.593 -0.024** -0.0593 -0.024** -3.331*** -4.529* 3.973 -2.260 -2.054 -2.050 -0.069 2.160 0.088	(2) 76.660**** -10.838*** -2.590 -1.753 -3.843 0.206*** 0.000** -0.606 -0.024** -0.606 -0.024** -3.606 -0.024** -3.919* 1.845 -2.965 -1.313 -5.429 -0.023 0.761 0.142	(3) -0.099 89.283*** 0.195 -7.606 -3.787 0.220*** 0.000*** -0.024** -0.024** -0.024** -33.414*** -4.699** 3.967 -2.865 -2.287 -2.194 -0.071 0.919 0.084	-0.104 81.148*** -10.148*** -2.222 -2.274 -3.802 0.208*** 0.000** -0.618 -0.022** -0.057*** -35.995*** -4.040* 1.652 -3.579 -1.452 -5.869 -0.021 -0.978 0.142
TF1-10 Yes	Const GEO1 GEO2 GEO4 UAA UAA ² CAP EMAT LAB SER SFAWU ALT1 ALT2 ALT3 ALT4 FOR FIX DEV OGA AGE	73.500*** -4.122*** 4.750*** 3.388*** -1.874*** 0.304*** 0.002** -0.320*** 0.002 -43.475*** -2.265*** -0.650 -4.749*** 0.723 -6.718*** 0.005** -6.906** 0.111*** -0.119***	(2) 72.528*** -3.836*** 4.920*** 3.832*** -1.753*** 0.301*** 0.002** -0.321*** 0.002** -10.041 0.000 -43.222*** -0.647 -5.297*** 0.881 -7.401*** 0.005** -7.018** 0.110*** -0.111***	(3) -0.08*** 75.852*** -3.152*** 4.989*** 2.996*** -1.571** 0.303*** 0.000*** -0.43*** 0.002*** -15.403 0.000 -43.376*** -2.723*** -0.273 -6.246*** 0.192 -7.495*** 0.005** -7.609*** 0.110***	-0.087*** 74.822*** -2.888*** 5.131**** -1.466** 0.300*** 0.002*** 0.438*** 0.002*** -14.887 0.000 -43.081*** -2.768*** 0.361 -8.185*** 0.361 -8.185*** 0.005** -7.671*** 0.109*** -0.099***	75.251*** -3.596*** 4.959*** 1.683*** 0.310*** 0.000*** -0.302*** 0.000 -44.167*** -1.954*** -0.740 -3.561* 0.484 -6.262*** 0.005** -9.094*** 0.104*** -0.133***	(2) 73.017**** -3.048*** 5.349*** 4.053*** -1.439** 0.302*** 0.000*** -0.304*** 0.002** -0.304*** 0.000 -43.527*** -2.111*** -0.706 -4.903** 0.833 -7.763*** 0.833 -7.763*** 0.833 -7.763*** 0.833 -7.763*** 0.833 -7.763*** 0.833 -7.763*** 0.833 -7.763*** 0.005** -8.826** 0.103*** -0.116***	(3) -0.086*** 77.519*** 5.216*** 2.83*** 0.308*** 0.000*** -0.417*** 0.002** -0.417*** -1.5.854 0.000 -44.120*** -2.418*** -0.361 -5.318*** -0.059 -6.942*** 0.005** -9.420*** 0.105*** -0.121***	-0.085*** 75.259*** -2.125*** 5.573*** 0.301*** 0.000*** -0.414*** 0.002** -15.148 0.000 -43.458*** -2.552*** -0.309 -6.485*** 0.289 -8.476*** 0.289 -8.476*** 0.005** -9.067*** 0.103***	84.484*** -15.900*** -0.358 -6.715 -3.771 0.216*** 0.000** -0.593 -0.024** -0.057*** -3.331*** -4.529* 3.973 -2.260 -2.054 -2.050 -0.069 2.160 0.088 0.012	(2) 76.660*** -10.838*** -2.590 -1.753 -3.843 0.206*** 0.000** -0.606 -0.024** -35.701*** -3.919* 1.845 -2.965 -1.313 -5.429 -0.023 0.761 0.142 -0.016	(3) -0.099 89.283*** 0.195 -7.606 -3.787 0.220*** 0.000*** -0.608 -0.024** -0.608 -0.024** -33.414*** -4.699* 3.967 -2.865 -2.287 -2.194 -0.071 0.919 0.084 0.006	-0.104 81.148*** -10.148*** -2.222 -2.274 -3.802 0.208*** 0.000** -0.618 -0.023** -0.057*** -3.599*** -4.040* 1.652 -3.579 -1.452 -5.869 -0.021 -0.978 0.142 -0.025
	Const GEO1 GEO2 GEO3 GEO4 UAA UAA ² CAP EMAT LAB SFAWU ALT1 ALT2 ALT3 ALT4 FOR FIX DEV OGA AGE LSU	73.500*** -4.122*** 4.750*** 3.388*** -1.874*** 0.304*** 0.002** -0.320*** 0.002 -43.475*** -2.265*** -0.650 -4.749*** 0.723 -6.718*** 0.005** -6.906** 0.111*** -0.119*** 0.040***	(2) 72.528*** -3.836*** 4.920*** 3.832*** -1.753*** 0.301*** 0.002** -0.321*** 0.002** -10.041 0.000 -43.222*** -0.647 -5.297*** 0.881 -7.401*** 0.005** 0.10*** 0.111*** 0.040***	(3) -0.08*** 75.852*** -3.152*** 4.989*** 2.996*** -1.571** 0.303*** 0.000*** -0.443*** 0.002*** -15.403 0.000 -43.376*** -2.723*** 0.102** -0.273 -6.246*** 0.192 -7.495*** 0.107*** 0.107*** 0.107*** 0.050**	-0.087*** 74.822*** -2.888*** 5.131*** -1.466** 0.300*** 0.002*** -0.438*** 0.002*** -14.887 0.000 -43.081*** -2.768*** 0.361 -8.185*** 0.361 -8.185*** 0.005**	75.251*** -3.596*** 4.959*** 1.683*** 0.310*** 0.000*** -0.302*** 0.002** -9.186 0.000 -44.167*** -1.954*** -0.740 -3.561* 0.484 -6.262*** 0.484 -6.262*** 0.005** -9.094*** 0.133*** 0.037**	(2) 73.017*** -3.048*** 5.349*** 4.053*** -1.439** 0.302*** 0.302*** 0.304*** 0.002** -9.087 0.000 -43.527*** 0.000 -43.527*** 0.005** 0.833 -7.763*** 0.005** 0.005** 0.005** 0.005** 0.016*** 0.037**	(3) -0.086*** 77.519*** -2.633*** 5.216*** 2.814*** -1.368** 0.308*** 0.000*** -0.417*** 0.002** -15.854 0.000 -44.120*** -2.418*** -0.361 -5.318*** 0.005** -0.059 -6.942*** 0.005*** 0.105*** 0.121*** 0.044**	-0.085*** 75.259*** -2.125*** 5.573*** -1.142* 0.301*** 0.000*** -0.414*** 0.002** -15.148 0.000 -43.458*** -2.552*** -0.309 -6.485*** 0.289 -8.476*** 0.289 -8.476*** 0.005** -9.067*** 0.103*** 0.104***	84.484*** -15.900*** -0.358 -6.715 -3.771 0.216*** 0.000** -0.593 -0.024** -3.331*** -4.529* 3.973 -2.260 -2.054 -2.059 -0.069 2.160 0.088 0.012 0.714***	(2) 76.660*** -10.838*** -2.590 -1.753 -3.843 0.206*** 0.000** -0.606 -0.024** -3.919* 1.845 -2.965 -1.313 -5.429 -0.023 0.761 0.142 -0.016 0.708***	(3) -0.099 89.283*** 0.155 -7.606 -3.787 0.220*** 0.000*** -0.608 -0.024** -0.608 -0.024** -33.414*** -4.699** 3.967 -2.865 -2.287 -2.194 -0.071 0.919 0.084 0.006 0.710***	-0.104 81.148*** -10.148*** -2.222 -2.274 -3.802 0.208*** 0.000** -0.618 -0.023** -0.057*** -3.5995*** -4.040* 1.652 -3.579 -1.452 -5.869 -0.021 -0.978 0.142 -0.025 0.705***
	Const GEO1 GEO3 GEO4 UAA UAA ² CAP EMAT LAB SER SFAWU ALT1 ALT2 ALT3 ALT4 FOR FIX DEV OGA AGE LSU END	73.500*** -4.122*** 4.750*** 3.388*** -1.874*** 0.304*** 0.000*** -0.320*** 0.002** -10.059 0.000 -43.475*** -2.265*** -0.650 -4.749*** 0.723 -6.718*** 0.005** -6.906** 0.111*** 0.040*** 8.384	(2) 72.528*** 4.920*** 3.836*** 0.301*** 0.301*** 0.002** -0.321*** 0.002** -10.041 0.000 -43.222*** -10.041 0.000 -43.222*** -0.647 -5.297*** 0.881 -7.401*** 0.005** -7.018** 0.110*** 0.111*** 0.111*** 0.040** 0.070	(3) -0.08*** 75.852*** -3.152*** 2.996*** -1.571** 0.303*** 0.000*** -0.443*** 0.002*** -15.403 0.000 -43.376** -2.723*** -0.273 -6.246*** 0.192 -7.495*** 0.000** -7.609*** 0.110*** -0.107*** 0.050** 8.070	-0.087*** 74.822*** -2.888*** 5.131*** 3.418*** -1.466** 0.300*** 0.000*** -0.438*** 0.002*** -14.887 0.000 -43.081*** -2.768*** 0.000 -43.081*** -0.268 -6.668** 0.361 -8.185*** 0.005** -0.059** -0.222	75.251*** -3.596*** 4.959*** 1.1683*** 0.310*** 0.000*** -0.302*** 0.002** -9.186 0.000 -44.167*** -0.740 -3.561* 0.484 -6.262*** 0.005** -9.094*** 0.005** -9.094*** 0.005** -9.094*** 0.005** -9.094*** 0.005** -9.094*** 0.005** -9.094*** 0.005** -9.094*** 0.005** -9.094*** 0.005** -9.094*** 0.005** -9.094*** 0.005** -9.094*** 0.005** -9.094*** -0.005** -9.094*** -0.005** -9.094*** -0.005** -9.094*** -0.005** -9.094*** -0.005** -9.094*** -0.005** -9.094*** -0.005** -9.094*** -0.005** -9.094*** -0.005** -9.094*** -0.005** -9.094*** -0.005**	(2) 73.017*** -3.048*** 5.349*** 4.053*** -1.439** 0.302*** 0.302*** 0.304*** 0.002** -9.087 0.000 -43.527*** -2.111*** 0.005** -4.903** 0.833 -7.763*** 0.005** -8.826*** 0.103*** 0.103*** 0.116*** 0.037** 4.906	(3) -0.086*** 77.519*** -2.633*** 5.216*** 2.814*** -1.368** 0.308*** 0.000*** -0.417*** 0.002** -15.854 0.000 -44.120*** -2.418*** -0.361 -5.318*** -0.059 -6.942*** 0.005** -9.420*** 0.121*** 0.121*** 0.044**	-0.085*** 75.259*** -2.125*** 5.573*** 0.603*** 0.301*** 0.000*** -0.414*** 0.002** -15.148 0.000 -43.458*** -2.552*** -0.309 -6.485*** 0.289 -8.476*** 0.005*** 0.005*** 0.005*** 0.103*** 0.104*** 0.104***	84.484*** -15.900*** -0.358 -6.715 -3.771 0.216*** 0.000** -0.593 -0.024** -33.331*** -4.529* 3.973 -2.260 -2.054 -2.050 -0.069 2.160 0.088 0.012 0.714*** 22.294	(2) 76.600*** -10.838*** -2.590 -1.753 -3.843 0.206*** 0.000** -0.606 -0.024** -3.019* -3.919* 1.845 -2.965 -1.313 -5.429 -0.023 0.761 0.142 -0.016 0.708*** -0.016	(3) -0.099 89.283*** 0.155 -7.606 -3.787 0.220*** 0.000*** -0.608 -0.024** -33.414*** -33.414*** -3.967 -2.865 -2.287 -2.194 -0.071 0.919 0.084 0.006 0.710*** 22.774	-0.104 81.148*** -10.148*** -2.222 -2.274 -3.802 0.208*** 0.000** -0.618 -0.023** -0.057*** -4.040* 1.652 -3.579 -1.452 -5.869 -0.021 -0.978 0.142 -0.025 0.705*** -2.319

a"T vs NT", "T vs NTa" and "T vs NTb" refer to the sample on which the PS estimation anticipating the outcome equation estimation is performed. Therefore, estimation results differ across the three comparisons for the different estimated residuals of the respective treatment equation.

Statistical significance: *** 1%, ** 5%, * 10%.

LEGEND:

T = treated units; NTa = voluntary untreated units; NTb = involuntary untreated units.

(1) = (CFE); (2) = (SEPSE+CFE); (3) = (SECFE); (4) = (SEPSE+SECFE).

GEO1 = Italian NUTS1 region "Islands"; GEO2 = Italian NUTS1 region "North-East"; GEO3 = Italian NUTS1 region "North-West"; GEO4 = Italian NUTS1 region "South"; UAA = Utilised Agricultural Area; CAP = (capital stock/GPV)*1000; EMAT = (energy and materials expenditure/GPV)*1000; LAB = (AWU/GPV)*1000; SER = (services expenditure/GPV)*1000; SFAWU = share of family labour on total farm AWU; ALT1 = Altitude class "Coastal Hill"; ALT2 = Altitude class "Inland Mountain"; ALT3 = Altitude class "Coastal Mountain"; ALT4 = Altitude class "Plain"; FOR = share of forests on total farm land; FIX = share of fixed costs on total farm costs; DEV = annual absolute deviation of weather conditions (temperature and rainfall) with respect to the local average; OGA = share of Other Gainful Activities on total farm GPV; AGE = age of the farm holder; LSU = (Livestock Units/GPV)*1000; END = estimated residual of the treatment equation; TF1-10: type of farming 1 to 10.

(estimated standard erro	1 /			
	AT	1	AT	
	2008-2014	2015-2020	2008-2014	2015-2020
T vs NT	7 000 (0 220)***	5 222 (0 24()***	7 207 (1 707)***	4 170 (1 441)***
PSM	7.088 (0.328)***	5.332 (0.346)***	7.297 (1.787)***	4.178 (1.441)***
SEPSE	12.695 (0.334)***	8.788 (0.356)***	5.837 (1.861)***	5.066 (1.421)***
SPSM	6.82 (0.318)***	6.981 (0.339)***	7.399 (1.687)***	7.158 (1.389)***
SEPSEM	6.077 (0.309)***	5.927 (0.352)***	8.088 (1.646)***	5.962 (1.406)***
$\triangle PSM vs SEPSEM$	1.011	-0.595	-0.791	-1.784
RA	1.784 (1.84)	3.82 (1.335)***	7.191 (1.154)***	5.78 (1.015)***
CFE	44.952 (18.534)**	-7.153 (11.984)	3.99 (6.792)	-2.35 (8.593)
SEPSE+CFE	3.061 (7.419)	-6.052 (7.37)	4.984 (3.602)	5.713 (3.454)*
SRA	3.281 (1.898)	2.951 (1.681)*	7.164 (1.166)***	5.413 (1.011)***
SECFE	40.737 (18.267)**	-8.666 (12.083)	2.703 (7.238)	-2.45 (8.272)
SEPSE+SECFE	-3.115 (7.788)	-9.141 (7.689)	5.485 (3.844)	5.548 (3.496)
\triangle CFE vs (SEPSE+SECFE)	48.067	1.988	-1.495	-7.898
T vs NTa				
PSM	6.482 (0.337)***	3.536 (0.372)***	4.053 (1.763)**	5.876 (1.508)***
SEPSE	13.691 (0.353)***	10.306 (0.384)***	6.352 (1.783)***	3.479 (1.435)**
SPSM	6.987 (0.324)***	6.403 (0.341)***	6.592 (1.683)***	7.792 (1.415)***
SEPSEM	6.191 (0.327)***	6.205 (0.341)***	6.746 (1.663)***	6.587 (1.397)***
△ PSM vs SEPSEM	0.291	-2.669	-2.693	-0.711
RA	1.808 (1.866)	3.863 (1.372)***	7.315 (1.161)***	6.344 (1.026)***
CFE	39.547 (17.563)**	-6.473 (10.672)	3.372 (6.696)	-13.996 (11.023)
SEPSE+CFE	1.886 (7.22)	-6.451 (6.382)	5.257 (3.609)	2.056 (3.833)
SRA	3.281 (1.923)*	2.809 (1.743)	7.33 (1.175)***	5.943 (1.023)***
SECFE	35.668 (17.073)**	-8.158 (10.722)	1.801 (7.231)	-12.929 (10.424)
SEPSE+SECFE	-4.275 (7.642)	-9.026 (6.675)	5.44 (3.856)	2.521 (3.676)
\triangle CFE vs (SEPSE+SECFE)	43.822	2.553	-2.068	-16.517
T vs NTb				
PSM	7.768 (1.339)***	1.913 (1.169)	9.157 (1.738)***	0.627 (1.606)
SEPSE	4.175 (1.465)***	1.846 (1.174)	6.194 (1.904)***	0.278 (1.544)
SPSM	5.747 (1.316)***	2.57 (1.148)**	6.407 (1.701)***	-0.775 (1.544)
SEPSEM	0.165 (1.547)	0.369 (1.137)	0.374 (2.02)	-2.109 (1.54)
△ PSM vs SEPSEM	7.603	1.544	8.783	2.736
RA	2.525 (2.05)	2.748 (1.317)**	3.781 (2.51)	2.311 (1.409)
CFE	-5.312 (14.195)	-8.535 (12.249)	-3.094 (25.375)	-19.595 (18.771)
SEPSE+CFE	0.828 (5.676)	5.009 (3.635)	3.72 (8.659)	2.967 (4.842)
SRA	2.923 (2.073)	2.664 (1.316)**	4.223 (2.554)*	2.246 (1.403)
SECFE	-5.427 (14.133)	-8.624 (12.241)	-4.361 (25.099)	-20.083 (18.774)
SEPSE+SECFE	-0.883 (6.091)	5.486 (3.647)	1.964 (9.854)	4.183 (4.851)
$\triangle CFE vs (SEPSE+SECFE)$	-4.429	-14.021	-5.058	-23.778
Statistical giomificances *** 10/ **			2	

Table 7 – ATE and ATT estimates under the different specifications and estimation strategies (estimated standard errors in parenthesis).

Statistical significance: *** 1%, ** 5%, * 10%.

LEGEND: T = treated units; NTa = voluntary untreated units; NTb = involuntary untreated units; PSM = Propensity Score Matching; SEPSE = Spatially Explicit Propensity Score Estimation; SPSM = Spatially-weighted Propensity Score Matching; SEPSEM = Spatially Explicit Propensity Score Estimation and Matching; RA = Regression Adjustment; CFE = Control-Function Estimation; SEPSE+CFE = Spatially Explicit Propensity Score Estimation; SRA= Spatial Regression Adjustment; SECFE = Spatially Explicit Control-Function Estimation; SEPSE+SECFE = Spatially Explicit Propensity Score Estimation+Spatially Explicit Control-Function Estimation; SEPSE+SECFE = Spatially Explicit Propensity Score Estimation+Spatially Explicit Control-Function Estimation.

ANNEX

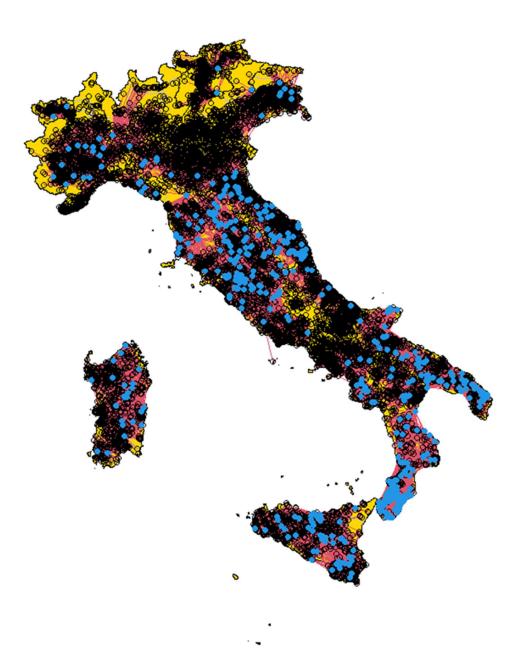

Period:		2008-2014		2015-2020			
<i>Treatment set:</i> <i>Variable:</i>	Т	NTa	NTb	Т	NTa	NTb	
Dutcome variable (y) Average	39.74	27.79	32.21	34.57	28.16	33.75	
Standard Deviation	32.66	27.92	32.21 32.53	29.41	26.61	29.75	
Confounders (X):							
JEO0							
Frequency GEO1	0.266	0.195	0.338	0.255	0.169	0.244	
Frequency	0.136	0.129	0.285	0.078	0.092	0.194	
GEO2	0.150	0.12)	0.205	0.078	0.092	0.174	
Frequency	0.051	0.250	0.119	0.169	0.262	0.117	
GEO3							
Frequency	0.040	0.179	0.033	0.041	0.202	0.091	
GEO4 Frequency	0.507	0.247	0.224	0.457	0.276	0.354	
JAA	0.507	0.247	0.224	0.437	0.270	0.554	
Average	34.92	28.70	37.60	32.02	28.35	32.91	
Standard Deviation	50.63	50.63	55.63	49.65	44.53	48.07	
CAP	0.002	0.003	0.003	0.003	0.004	0.003	
Average Standard Deviation	0.002	0.003 0.009	0.003 0.004	0.003 0.004	0.004 0.010	0.003	
EMAT	0.011	0.009	0.004	0.004	0.010	0.007	
Average	0.299	0.302	0.199	0.180	0.318	0.244	
Standard Deviation	2.359	2.380	0.295	0.138	1.908	1.323	
AB	0.050	0.044	0.040	0.040	0.040	0.042	
Average Standard Deviation	0.060 0.395	0.044 0.231	0.049 0.178	0.040 0.040	0.042 0.159	0.043 0.141	
SER	0.395	0.231	0.178	0.040	0.139	0.141	
Average	0.181	0.065	0.127	0.071	0.079	0.082	
Standard Deviation	2.220	0.773	0.987	0.221	0.914	0.724	
SFAWU		0.070					
Average Standard Deviation	0.707 0.270	0.862 0.223	0.807 0.268	0.795 0.256	0.872 0.215	0.773 0.270	
FOR	0.270	0.223	0.208	0.236	0.215	0.270	
Average	0.050	0.040	0.068	0.079	0.044	0.061	
Standard Deviation	0.129	0.124	0.152	0.159	0.128	0.154	
FIX	6 600			a 00 f			
Average Standard Deviation	6.688 55.42	7.832 111.0	3.453 8.421	2.936 6.004	7.546 119.1	3.969 13.54	
RAIN	33.42	111.0	8.421	0.004	119.1	13.34	
Average	854.45	860.78	817.60	799.21	770.35	745.33	
Standard Deviation	218.40	223.65	221.44	262.46	203.64	207.38	
DEV	0.1.41	0.070	0.076	0.020	0.057	0.027	
Average Standard Deviation	0.141 0.207	0.060 0.118	0.076	-0.029	-0.057	-0.027	
OGA	0.207	0.118	0.181	0.119	0.106	0.168	
Average	6.343	3.732	6.827	4.487	4.872	6.659	
Standard Deviation	18.34	13.88	18.87	14.54	16.31	18.06	
AGE						10.00	
Average Standard Deviation	51.34 13.94	54.89	46.76	50.59	54.91	49.20	
Standard Deviation	13.94	13.46	13.35	14.10	13.36	13.35	
Average	0.155	2.139	0.397	0.181	2.882	3.065	
Standard Deviation	0.537	63.14	2.180	0.957	50.64	62.51	
AT							
Average	40.65	42.87	41.52	41.51	43.10	41.58	
Standard Deviation	2.401	2.453	2.501	2.614	2.359	2.673	

Table A1 – Descriptive statistics of model variables for the 6 sub-samples

(Table A1 continues)						
LON Average Standard Deviation TF0	14.22 2.536	12.09 2.629	12.63 2.134	13.97 2.468	12.17 2.673	13.20 2.507
Frequency	0.016	0.092	0.033	0.051	0.087	0.038
TF1 Frequency	0.038	0.108	0.036	0.037	0.112	0.030
TF2 Frequency	0.139	0.146	0.249	0.140	0.130	0.167
TF3 Frequency	0.252	0.117	0.136	0.188	0.117	0.180
TF4 Frequency	0.008	0.047	0.022	0.010	0.052	0.027
TF5 Frequency	0.103	0.089	0.144	0.092	0.095	0.128
TF6 Frequency	0.263	0.029	0.075	0.238	0.026	0.139
TF7 Frequency	0.019	0.138	0.097	0.042	0.112	0.057
TF8 Frequency	0.065	0.114	0.091	0.106	0.136	0.099
TF9 Frequency	0.097	0.120	0.116	0.097	0.132	0.137
ES0 Frequency	0.230	0.296	0.319	0.241	0.313	0.299
ES1 Frequency	0.498	0.417	0.454	0.523	0.454	0.493
ES2 Frequency	0.273	0.288	0.227	0.236	0.233	0.208
ALT0 Frequency ALT1	0.344	0.303	0.429	0.398	0.311	0.414
ALT1 Frequency ALT2	0.282	0.147	0.169	0.189	0.126	0.194
AL12 Frequency ALT3	0.109	0.201	0.219	0.216	0.208	0.176
ALT3 Frequency ALT4	0.092	0.008	0.028	0.027	0.006	0.027
Frequency EDU0	0.173	0.342	0.155	0.171	0.349	0.189
EDU0 Frequency EDU1	0.360	0.228	0.399	0.388	0.266	0.420
Frequency EDU2	0.141	0.133	0.147	0.131	0.151	0.118
EDU2 Frequency EDU3	0.008	0.006	0.011	0.010	0.009	0.019
EDU3 Frequency EDU4	0.149	0.037	0.125	0.150	0.043	0.121
EDU4 Frequency EDU5	0.079	0.194	0.072	0.062	0.138	0.063
EDUS Frequency EDU6	0.254	0.370	0.224	0.220	0.367	0.243
EDU6 Frequency EDU7	0.010	0.033	0.022	0.035	0.025	0.011
EDU7 Frequency	-	-	-	0.004	0.001	0.005

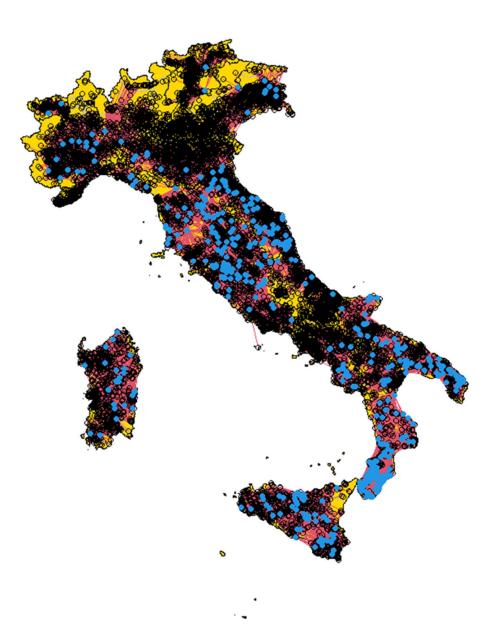

LEGEND: GEO1 = Italian NUTS1 region "Islands"; GEO2 = Italian NUTS1 region "North-East"; GEO3 = Italian NUTS1 region "North-West"; GEO4 = Italian NUTS1 region "South"; UAA = Utilised Agricultural Area; CAP = (KW/GPV); MAT = (materials expenditure/GPV); LAB = (AWU/GPV)*1000; LSU = (Livestock Units/GPV)*1000; SER = (services expenditure/GPV); FAWU = share of family labour on total farm AWU; TF1 = Type of Farming "Grazing livestock"; TF3 = Type of Farming "Fruits"; TF4 = Type of Farming "Grazing livestock"; TF3 = Type of Farming "Grazing livestock"; TF3 = Type of Farming "Fruits"; TF4 = Type of Farming "Mixed crops&livestock"; TF6 = Type of Farming "Other field crops"; TF9 = Type of Farming "Wine growing"; ES1 = Economic Size class "Medium"; ES2 = Economic Size class "Small"; ALT1 = Altitude class "Coastal Hill"; ALT2 = Altitude class "Coastal Mountain"; ALT3 = Altitude class "Coastal Mountain"; ALT4 = Altitude class "Plain"; SDEV = annual absolute deviation of the farm sing forests on total farm GPV; AGE = age of the farm holder; EDU1 = Technical education of the farm holder; EDU2 = University-level education of the farm holder; EDU4 = Elementary-level education of the farm holder; EDU5 = Middle-school level education of the farm holder.

Figure A1 – Map representing the adopted W: T vs NT, period 2008-2014

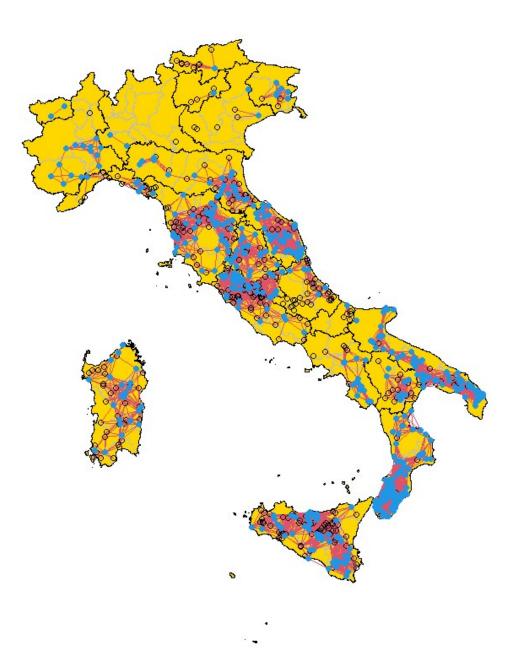

- Legend: Non-treated units (NT) Treated units (T) Spatial interaction

Figure A2 – Map representing the adopted W: T vs NTa, period 2008-2014

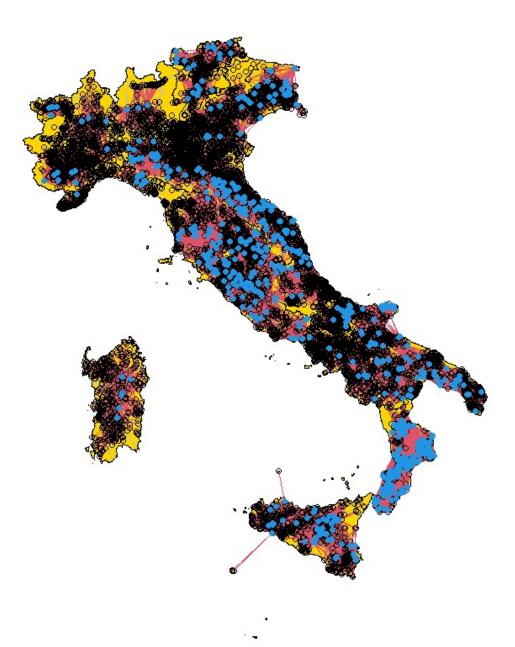

- Non-treated units (NTa) Treated units (T) Spatial interaction 0

Figure A3 – Map representing the adopted W: T vs NTb, period 2008-2014

- Non-treated units (NTb) Treated units (T) Spatial interaction o
- •

Figure A4 – Map representing the adopte d W: T vs NT, period 2015-2020

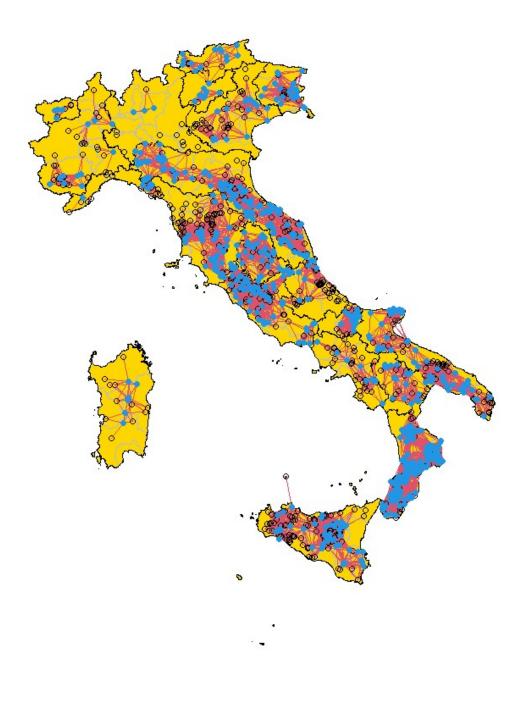

- Non-treated units (NT) Treated units (T) Spatial interaction ο

Figure A5 – Map representing the adopted W: T vs NTa, period 2015-2020

- Non-treated units (NTa) Treated units (T) Spatial interaction o

Figure A6 – Map representing the adopted W: T vs NTb, period 2015-2020

- Legend: Non-treated units (NTb) Treated units (T) Spatial interaction