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Abstract

This article investigates the risk-return relationship of managed portfolios when two
risk indicators, the Tracking Error Volatility (TEV) and the Value-at-Risk (VaR),
are both constrained not to exceed pre-set maximum values. While in some cases
these constraints may not be mutually compatible, it is often possible to find portfo-
lios that satisfy both constraints. In this paper, we analyze the problem of choosing
among these.

Focusing on the trade-off between the joint restrictions that can be imposed on
both risk indicators, we define the Risk Balancing Frontier (RBF), a new portfolio
boundary in the traditional absolute risk-total return space, that contains all the
portfolios characterized by the minimum VaR attainable for each TEV level. We
show that the RBF is the set of all tangency portfolios between two well-known fron-
tiers: the so-called Constrained Tracking Error Volatility Frontier (Jorion, 2003) and
the Constrained Value-at-Risk Frontier (Alexander and Baptista, 2008). Thus, the
RBF is useful for analyzing the agency problem in delegated portfolio management.

The RBF does not have a closed-form definition and must be determined nu-
merically: to this aim, we develop a fast and accurate algorithm.
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Reconciling TEV and VaR in Active Portfolio
Management: A New Frontier

Riccardo Lucchetti, Mihaela Nicolau,

Giulio Palomba, Luca Riccetti

1 Introduction

In contemporary financial markets, most investors delegate their investment de-
cisions to professionals and establish agency relationships, whose impact on finan-
cial markets and on economic development at the macro level is considered very
important by the literature (Stracca, 2006). Therefore, an accurate analysis of the
risk-return relationship in modern financial markets must take into account the is-
sues of delegated portfolio management, when the objectives of the investor (the
principal) and of the asset manager (the agent), are not perfectly aligned.

In this context, the literature is oriented, on the one hand, to the determination
of optimal contracts between the portfolio manager and the investor that rewards
performance relative to a benchmark, and, on the other hand, to the link between
the manager compensation package and their behavior with respect to risk expos-
ure (Ingan and Pinheiro, 2015). This article addresses the constraints imposed by
investors on their agents.

As explained by Chow (1995), investors who choose a mutual fund with an
active management strategy do so to maximize their utility, which is a function of
portfolio return, variance and tracking error. Since returns are uncertain, Chow
argues that investors may decide to compare the performance against a benchmark,
but they are “still concerned with the prospect of losing money”; therefore, they
“seek portfolios with high return, low standard deviation and low tracking error”.
Empirical evidence supports this idea, as most practitioners employ both total and
relative risk measures. Consequently, in this paper, we will focus on both total and
relative risk measures and, in particular, on active management aimed at maximizing
the investor’s utility.

One of the constraints most commonly used in portfolio management is to limit
the asset manager’s activity by setting a maximum value on the tracking error
volatility (TEV), where the tracking error is the difference between the portfolio
and the benchmark return. Thus, the portfolio risk is kept closer to that of the
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selected benchmark. Another possible constraint on the activity of asset manager
is a limit to the Value-at-Risk (VaR), the most widely used absolute risk measure,
in order to keep the maximum possible loss below a certain threshold with a given
probability.

As is well known, the active approach aims to outperform a benchmark portfolio,
while the goal of the passive approach is to match the performance of the bench-
mark;1 the latter approach is exemplified by index funds of the exchanged traded
funds (ETF) that replicate the benchmark’s composition and performance.

Financial literature has documented the partial shift from active to passive man-
agement during the past decades in the wealth management market (see, for in-
stance, Anadu, Kruttli, McCabe and Osambela, 2020). The growth of ETFs and
passive management is due to many causes, but the two (arguably) most important
reasons are high fees and under-performance by many mutual and hedge funds. The
former is in fact correlated to the latter: when fees are high, the asset manager
needs higher and higher returns in order to compensate the fee and to obtain a fur-
ther gain for investors. The latter could be due by various factors such as increased
market efficiency, lack of skills by some asset managers, or inadequate restrictions
imposed by risk management offices.2 The shift from active to passive investing has
raised several concerns in the literature about the stability of financial markets (see
e. g. Bolla, Kohler and Wittig, 2016; Ben-David, Franzoni and Moussawi, 2018;
Bhattacharya and O’Hara, 2018). Anadu, Kruttli, McCabe and Osambela (2020)
find that passive strategies may dampen liquidity and redemption risks, but can also
amplify market volatility and increase industry concentration.

The growth in passive management, however, has not displaced active manage-
ment strategies completely. Moreover, ETFs are themselves being used more and
more often as a tool for active managment, since two-thirds of the new ETFs issued
in the first six months of 2021 were active funds.3 In fact, a close analysis on longer
time periods reveals that there is no clear winner in active versus passive investing,
but their relative performance is a cyclical phenomenon4. Moreover, the economic

1Some literature, however, has tried to reconcile the two approaches arguing that in prac-
tice a combination of the two may improve overall portfolio results. See for example Flood and
Ramachandran (2000).

2According to Morningstar’s Active/Passive Barometer (Johnson, 2019), 48% of active U.S.
stock funds survived and outperformed their average passive peer over the 12 months through
June 2019, up from 37% in the previous year, but “in general, actively managed funds have failed
to survive and beat their benchmarks, especially over longer time horizons” and “the cheapest
funds succeeded more than twice as often as the priciest ones”. Smith (2017) states “Endowments
and foundations have turned to passive investments after hedge funds disappointed with high fees
and poor performance”.

3See https://www.nasdaq.com/articles/active-funds-are-dominating-2021-etf-launches-2021-07-14.
4See https://www.hartfordfunds.com/insights/market-perspectives/equity/

cyclical-nature-active-passive-investing.html.
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recovery after the Covid-19 pandemic is based on fiscal and monetary stimuli that
will probably determine a return to active management. The active investment will
arguably be the most appropriate in the context of increasing inflation rates and
subsidies targeted to industries that are currently under-represented in passively
managed portfolios.

Therefore, we feel that new contributions to the existing literature on active
portfolio management are necessary, especially with a view to determine strategies
for improving portfolio performance when the investor-agent relationship are taken
into account. This article analyzes those situations in which asset managers face
a joint constraint on the TEV and the VaR. Although the existence of a portfo-
lio consistent with both constraints is generally not guaranteed, a non-empty set
of portfolios that satisfy both exists (see Palomba and Riccetti, 2012), when the
constraints are not too stringent. In these cases, a trade-off emerges between the
minimization of the value of the two risk indicators. Our focus is on those feasible
portfolios for which the TEV and the VaR are lower than their pre-set maximum
values.

More generally, we frame the problem of portfolio choice by considering the
different objectives of the investor and of the asset manager due to their different
risk appetite, a situation frequently met in delegated portfolio management. We
classify portfolios on the basis of the following criterion: if a portfolio P can be
modified so as to improve the utility of one party without damaging the other and
to remain feasible at the same time, then it is clearly sub-optimal in terms of risk-
return. In this paper, we concentrate on the set S of portfolios that satisfy the
following criterion: if P ∈ S, no other portfolios exist in a neighborhood of P such
that the objective functions of both parties increase.

Thus, from the perspective of economic theory, the set S could be considered
as a set of “Pareto-efficient” portfolios. The entire analysis is performed in the
usual (σP , µP ) space, where σP and µP are absolute risk (standard deviation of the
returns) and the expected total return of portfolio P . To be specific, we define a
new portfolio frontier that contains all portfolios for which the VaR constraint is
minimized for each TEV level. Therefore, this boundary can be seen as a set of
equilibria that necessarily includes the benchmark, where the TEV equals zero by
definition, as a special case.

We therefore consider the issue of keeping the two types of risk under control,
while choosing efficient combinations in terms of portfolio risk and return. This is
consistent with the theoretical framework developed by Jorion (2003) and the actual
practice in the asset management industry. In this paper, we argue that a proper
strategy for taking into account different risk measures jointly may significantly
mitigate such shortcomings.

The remainder of this article proceeds as follows: after a literature review in
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section 2, we introduce in Section 3 our new portfolio boundary, and we discusse its
properties and financial implications. In this context, we also present the numerical
method for representing it as a curve in the (σP , µP ) space. Section 4 provides a
short empirical example, and finally Section 5 concludes.

2 Literature review

Several authors have proposed strategies to improve the portfolio performance relat-
ive to market performance (an index, or a näıve portfolio) and carry out horse races
among portfolios. One of the most prominent papers in this literature is DeMiguel,
Garlappi and Uppal (2009). Other relevant papers are, for example, Tu and Zhou
(2011) who improve significantly on the performance of the equally weighted port-
folio via optimal combinations of known portfolios (more precisely, those defined
by Markowitz, 1952; Jorion, 1996; MacKinlay and Pástor, 2000; Kan and Zhou,
2007), while Jiang, Du, An and Zhang (2021) propose an allocation strategy that
outperforms the näıve portfolio in terms of absolute risk and Sharpe ratio.

The issue of the possible inadequate restrictions imposed by the risk management
office is analyzed by Riccetti (2012, 2017). As Riccetti (2012) argues, asset managers
often follow their benchmarks passively, even if they receive a fee from investors to be
active and beat the benchmark; this behavior could also be caused by risk managers
who set a low fixed level of maximum TEV, often making the benchmark difficult
to beat. To overcome this problem, the proposed solution is applying a lower limit
on the TEV so as to force the asset manager to follow an active strategy. The same
analysis is extended in Riccetti (2017): in order to help asset managers to (i) keep
the risk of the portfolio (relatively) close to that of the selected benchmark, and
(ii) beat the benchmark and maximize the investors’ utility moving away from the
benchmark, it is suggested that risk management offices should set consistent limits
on TEV and VaR.

The analysis of the relationship between various risk measures and portfolio ef-
ficiency has traditionally been undertaken by considering geometrical objects in the
(σP , µP ) space. The Mean-Variance frontier (MVF) introduced by Markowitz (1952)
is the cornerstone for defining other portfolio frontiers in the (σP , µP ) space. The
MVF is also crucial because it divides the plane into two regions, and identifies the
surface area at its left as the set of inadmissible portfolios. Another relevant bound-
ary is the Mean-TEV frontier (MTF), introduced by Roll (1992). This corresponds
to a horizontal translation of the MVF since it is derived by minimizing the TEV
rather than the portfolio variance. An important feature is that the benchmark
portfolio necessarily lies on it.

Considering the constraints of maximum TEV and VaR, two other portfolio
frontiers play a key role. Jorion (2003) introduces the Constrained TEV Frontier
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(CTF), an elliptic portfolio frontier in the mean-variance space which takes an egg-
like shape in the (σP , µP ) space. The interesting feature is that the maximum
TEV delimits a closed and bounded set of feasible portfolios that lie around the
benchmark; the more stringent the TEV becomes, the more this boundary narrows
around the benchmark itself. Alexander and Baptista (2008) define the Constrained
VaR Frontier (CVF) as a positive-slope linear portfolio boundary in the (σP , µP )
space, to the left of which all portfolios satisfy the VaR constraint. Since the vertical
intercept of this function is equal to the negative of the VaR limit, the intercept gets
higher as the constraint becomes tighter. These two frontiers are the starting point
for our analysis, and we will use them for illustrating the compatibility issues for
the TEV and the VaR constraints in Section 3. Building on previous work by
Alexander and Baptista (2008), Palomba and Riccetti (2012) analyzed the space of
feasible portfolios that satisfy both TEV and VaR constraints, and introduced the
Fixed VaR-TEV Frontier (FVTF), thus obtaining various scenarios according to the
predetermined values assigned to the two risk indicators.5

The literature on the relationships between different portfolio frontiers has sub-
sequently developed in several directions. For example, Alexander and Baptista
(2010) propose a strategy for active portfolio management in which they introduce
a new portfolio frontier that contains all portfolios which minimize the TEV for
any given ex ante portfolio alpha, where alpha is the intercept of the linear regres-
sion of the portfolio return on the benchmark return. This approach provides a new
viewpoint about the active management strategies and identifies portfolios that sim-
ultaneously satisfy more than one criterion. In this context, Stucchi (2015) studies
the relationships between the contributions of Roll (1992), Jorion (2003), Alexander
and Baptista (2008, 2010) and Palomba and Riccetti (2012), and proposes a unified
approach in order to summarize their results into a single optimal allocation strategy
that works under different additional risk constraints.

Other authors consider portfolio performance under simultaneous TEV and weight
constraints compliance, starting from the contribution of Bajeux-Besnainou, Belhaj,
Maillard and Portait (2011) up to the work of Daly and Van Vuuren (2020) in which
new constrained portfolio frontiers are defined. Recently, Du Sart and Van Vuuren
(2021) focus on two portfolios lying on the Jorion’s CTF and analyse their com-
position and performance in comparison with the maximum Sharpe Ratio portfolio.
Using data from South Africa, they illustrate how these portfolios perform during
bull and bear markets.

Moreover, a large number of contributions put forward enhancements of Jorion’s
original proposal by introducing constraints on different quantities (see, for instance,
Ammann and Zimmermann, 2001; El-Hassan and Kofman, 2003; Maxwell, Daly,
Thomson and Van Vuuren, 2018; Maxwell and Van Vuuren, 2019). Bertrand (2010)

5A graphical representation of these objects is given Figure D.1 in the appendix.
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proposes an alternative to Jorion’s approach by introducing the Constant Risk Aver-
sion frontier. This boundary is based on the risk aversion parameter, defined as the
marginal rate of substitution between the portfolio variance and expected return.
Another recent contribution is provided by Stowe (2019), who reformulates the mod-
els by Best and Grauer (1990) and Jorion (2003) by considering the maximization
of a quadratic utility function under several combinations of linear and quadratic
constraints that correspond to different restrictions on the portfolio expected return
or on the TEV.

Finally, Palomba and Riccetti (2019) focus on the portfolio efficiency issue when
restriction to TEV, VaR and possibly to the overall variance are jointly set. The
main result is the formal definition of some portfolio frontiers that satisfy all the
restrictions on risk indicators and contain only non-dominated portfolios in terms
of variance and return.

3 Minimum VaR given a maximum TEV: a new

portfolio frontier

As we remarked earlier, the TEV and the VaR constraints may be binding, or not.
Consider Figure 1, where Jorion’s CTF and Alexander and Baptista’s CVF are
depicted.

Figure 1: Tangency portfolio K (TEV = T0 and VaR = V0)

(a) stringent TEV, weak VaR restriction (b) stringent VaR, weak TEV restriction
µP

σP

B•

K
•

MVF

MTF

CVF

CTF

−V0

µP

σP

B•
•K

MVF

MTF

CVF

CTF

−V0

Legend: MVF: Mean-Variance Frontier; MTF: Mean-TEV Frontier; CVF: Constrained

VaR frontier; B: Benchmark portfolio; K: Tangency portfolio; V0: Target VaR.

The case of incompatible restrictions arises when the oval boundary lies com-
pletely to the right of the linear one, and there are no intersections. Otherwise, their
intersection contains all portfolios that jointly satisfy the inequalities TEV ≤ T0 and
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VaR ≤ V0, where T0 and V0 are the constraints faced by asset managers. If the CTF
and the CVF are tangent, a unique portfolio is available for the asset manager, and
strict equality holds for both restriction TEV = T0 and VaR = V0. In this case, we
define this unique portfolio K ≡ (σK , µK) as the tangency portfolio, while we use
the symbol B to indicate the benchmark the TEV is computed against.

The scenario in Figure 1(a) occurs when the restrictions are mainly aimed at
reducing relative risk, so that the constraint on the VaR of the portfolio K is not
particularly severe. Conversely, in the scenario in Figure 1(b) the maximum TEV is
larger, so the VaR limit on K is more binding. The eccentricity of the CTF and the
intercept of the CVF can be taken as graphical hints on how stringent the constraints
on the TEV and on the VaR are. Since the portion of the plane delimited by the
CTF increases with T0, it is apparent from Figure 1 that the position of portfolio K
depends on both T0 and V0, with a trade-off between the two.

Since our aim is to define a new portfolio boundary in the traditional (σP , µP )
space, we identify a subset of efficient VaR-TEV portfolios such that the VaR is
minimized for a given TEV. This subset enjoys a Pareto property: if portfolios
are chosen on the preferences of the parties, and these can be represented by the
TEV and the VaR, choices outside the subset would be sub-optimal. The tangency
portfolio K in Figure 1 possesses exactly all these characteristics.

3.1 The Risk Balancing Frontier (RBF)

In our analysis, we use the same setup as in Alexander and Baptista (2008) and
Palomba and Riccetti (2012). We assume that the parties can choose among n risky
assets, with µ being the n-dimensional column vector of expected returns, and Σ
their covariance matrix, which we assume nonsingular. We define the parameters
a = ι′Σ−1ι, b = ι′Σ−1µ and c = µ′Σ−1µ, where ι =

[
1 1 . . . 1

]′
is an n-

dimensional column vector. We also define ωC as the ‘Global Minimum Variance’
portfolio and C as the corresponding point on the (σP , µP ) plane; ωC has expected
return µC = b/a and σ2

C = 1/a, while µB and σ2
B are the benchmark return and

variance.
We make the customary assumptions of unlimited short sales, quadratic utility

function and/or normally distributed returns; these assumptions rule out skewed
and leptokurtic return distributions, so that the portfolio standard deviation is the
unique risk factor. The analytical definition of the CTF and CVF boundaries in the
(σP , µP ) space are provided by equations

d(σ2
P − σ2

B − T0)2+4∆2(µP − µB)2−4∆1(σ2
P − σ2

B − T0)(µP − µB)−4dδBT0=0 (1)

µP = zθσP − V0, (2)

where d = c − b2/a, ∆1 = µB − µC , ∆2 = σ2
B − σ2

C , δB = ∆2 − ∆1/d; zθ is the
standard normal quantile (with 0.5 ≤ θ < 1) and T0 and V0 are the constraints set
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on TEV and VaR. Equation (1) was introduced by Jorion (2003), and identifies a set
of points in (σP , µP ) space that takes a (somewhat distorted) oval shape. Equation
(2), instead, was put forward in Alexander and Baptista (2008) and produces an
upward-sloped straight line.

Given the distribution of the portfolio returns, the VaR is VP = zθσP −µP . Since√
d is the asymptotic slope of the Markowitz Mean-Variance frontier, two distinct

cases arise: the high confidence case, for which the VaR line has a steeper slope
than the asymptotic slope of the MVF (zθ >

√
d), and a low confidence level, in the

opposite case.
For any portfolio P ∈ (σP , µP ), define T (P ) as the TEV of P with respect to the

chosen benchmark B and V (P, θ) = zθσP −µP its VaR for a given risk level θ. Now
consider the portfolio that minimizes the VaR subject to a given TEV = T0 given
by

P̂ (T0, θ) = argmin
T (P )=T0

V (P, θ); (3)

we define the Risk Balancing Frontier (RBF from here on) as the subset of (σP , µP )
space containing all portfolios P̂ (T0, θ) for T0 ∈ (0, Tmax); the bold line plotted in
Figure 2 provides a graphical example. The rest of the paper will focus on the case
zθ >

√
d (high confidence case), that we consider the most realistic, in the light of

the fact that risk management offices customarily set θ very close to 1. Note also
that the minimization of V (P, θ) is defined under the constraint T (P ) = T0; in fact,
it may be more realistic to consider the weak-inequality constraint T (P ) ≤ T0. This
issue will be analyzed in Section 3.3.

Figure 2: The Risk Balancing Frontier (RBF)
µP

σP

B•

M
•

J0•

J1
•

•
K

•
Z

CVF
MVF

MTF

CTF

RBF

−V0

From an analytical point of view, the RBF corresponds to a specific locus, entirely
contained within the Mean-Variance frontier where the equality CTF(σ2

P , µP ;T0) =
CVF(σ2

P , µP ;V0) holds and the VaR for each portfolio is the minimum attainable for
a given TEV = T0. The RBF identifies a continuous set of points in the (σP , µP )
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space; this property derives from the RBF being an envelope of several optima
under a continuously-varying constraint. It can therefore be thought of as the set
of portfolios that correspond to all possible risk-return space coordinates of the
tangency portfolio K for increasing levels of T0 (see Figure 2).

Along this path, two notable points can be identified:

the portfolio Z, defined as the portfolio in which the variance is minimized;

the portfolio M, defined as the portfolio for which the efficiency loss6 is zero. M
corresponds to the contact point with the MVF, and minimizes the VaR among
all admissible portfolios.

The definition of the RBF implies that its position in the (σP , µP ) space depends
on the benchmark coordinates, as well as the location of the zero efficiency loss
portfolio M . The boundary shape is independent of the slope of the CVF, zθ, and
that of the horizontal axis of the CTF, ∆1.

In order to analyze the properties of the whole set of portfolios, however, it is
convenient to define formally the RBF as the solution to a constrained optimization
problem, which is what we do in the next subsection.

3.2 Derivation of the RBF

In order to find an explicit solution to equation (3), we re-state the optimization
problem as

max −VaR = zθσP (ω)− µP (ω)

sub
√

TEV =
√
T0

fully invested portfolio

⇒
min VaR = zθ

√
ω′Σω − ω′µ

sub
√

(ω − ωB)′Σ(ω − ωB) =
√
T0

ω′ι = 1,

(4)

where ωB is the benchmark portfolio. Equation (4) leads to the following Lag-
rangian:

L(ω, T0) = zθ
√
ω′Σω−ω′µ−λ1[

√
(ω − ωB)′Σ(ω − ωB)−

√
T0]−λ2[ω′ι−1], (5)

where the scalars λ1 and λ2 are the shadow prices. For the first order conditions we
get

∇(ω, T0) = r(ω, θ)Σω − µ− λ1
1√
T0

Σ(ω − ωB)− λ2ι = 0 (6)

6We use the customary definition of efficiency loss as the horizontal distance in the (σP , µP )
space between a portfolio and the Markowitz frontier MVF.
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where r(ω, θ) =
zθ

σP (ω)
is a strictly positive scalar function; equation (6) may be

transformed by premultiplying ∇(ω, T0) by the inverse of Σ,

∇∗(ω, T0) = r(ω, θ)ω −Σ−1µ− λ1
1√
T0

(ω − ωB)− λ2Σ
−1ι = 0; (7)

therefore, the solutions for the shadow prices are as follows:

λ∗1 =

√
T0

µP − µB
[r(ω, θ)(µP − µC)− d] (8)

λ∗2 =
r(ω, θ)− b

a
(9)

By combining equations (7), (8) and (9), for a given level of T0 we get

ω∗ =
µP − µB
D(ω, θ)

{
Σ−1µ+

[
r(ω, θ)

a
− µC

]
Σ−1ι− 1

µP − µB
[r(ω, θ)(µP − µC)− d]ωB

}
= − 1

D(ω, θ)
[r(ω, θ)(µP − µC)− d]ωB + b

µP − µB
D(ω, θ)

ωQ + a
µP − µB
D(ω, θ)

[
r(ω, θ)

a
− µC

]
ωC ,

where ω∗ is the optimal portfolio for a given value of the tracking error volatility
T0,7 D(ω, θ) ≡ d − ∆1r(ω, θ), while ωQ = b−1Σ−1µ and ωC = a−1Σ−1ι are the
‘Maximum Sharpe-Ratio’ and the ‘Global Minimum Variance’ portfolios lying on
the MVF.

Therefore, an implicit definition of the optimal portfolio ω∗ can be given as

ω∗ = x1(ω∗)ωB + x2(ω∗)ωQ + x3(ω∗)ωC , (10)

where 

x1(ω∗) = 1− r(ω∗, θ)

D(ω∗, θ)
(ω∗ − ωB)′µ

x2(ω∗) =
b

D(ω∗, θ)
(ω∗ − ωB)′µ

x3(ω∗) =

[
r(ω∗, θ)− b

D(ω∗, θ)

]
(ω∗ − ωB)′µ,

(11)

and our Risk Balancing Frontier can be thought of as the set of the points on the
(σP , µP ) space corresponding to the portfolios ω∗ for any given level of T0. As
equation (10) shows, these portfolios can be represented as a linear combination of
three well-known portfolios, namely the benchmark portfolio, the ‘Maximum Sharpe-
Ratio’ portfolio, and the ‘Global Minimum Variance’ portfolio, with the three scalar

7In order to avoid excessively burdensome notation, we use the notation ω∗ instead of ω∗(T0).
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weights summing to unity; these weights are functions of ω∗ and may be outside the
[0, 1] interval. Since the benchmark belongs to the RBF by definition when T0 = 0,
we get x1(ω∗) = 1, x2(ω∗) = 0 and x3(ω∗) = 0; conversely, we do not get the triples

x(ω∗) =
[
0 1 0

]′
and x(ω∗) =

[
0 0 1

]′
for portfolios ωQ and ωC because they

do not lie on the RBF.
The triples with x1(ω∗) = 0, x2(ω∗) 6= 0 and x3(ω∗) 6= 0 deserve special attention

because equation (10) reduces to the well-known Mutual Fund Separation Theorem
(Merton, 1972) in which any portfolio belonging to the Mean-Variance boundary
can be written as a proper linear combination of ωC and ωQ. Under this condition
the RBF and the efficient branch of the MVF must have a common portfolio.

Note that an explicit solution to equation (10) cannot be found analytically, and
numerical techniques are called for. A convenient method to determine the locus is
to apply the BFGS numerical optimization algorithm for a grid of values for T0.8

A description of the algorithm is best given by referring to the geometrical objects
depicted in Figure 2. For any given level of the restriction T0, the return of the
tangency portfolio K will lie in the interval µ0(T0) ≤ µK ≤ µ1(T0), where µ0(T0)
and µ1(T0) are the TEV-dependent expected returns of the endpoints J0 and J1.
These are the CTF-constrained minimum variance allocation

J0 ≡ (σ2
B + T0 − 2

√
T0∆2, µB −∆1

√
T0/∆2) (12)

and the one with the highest expected return

J1 ≡ (σ2
B + T0 + 2∆1

√
T0/d, µB +

√
dT0). (13)

Point J1 also corresponds to the position where the hyperbolic MTF crosses the oval
CTF (see Jorion, 2003; Palomba and Riccetti, 2019). Consequently, for any given
expected return µ ∈ [J0(T0), J1(T0)], the function

S(T0, µ) = σ2
B + T0 +

2

d

{
∆1(µ− µB)−

√
dδB[dT0 − (µ− µB)2]

}
(14)

returns the risk for the portfolio on the arc J̆0J1 which minimizes the VaR for a
given T0.

The RBF is found by calculating (14) on a numerical grid T0 = 0, h, 2h, 3h, . . . , Tmax,
where h is an arbitrary and numerically small increment. Our algorithm can there-
fore be described as:

1. starting from T0 = 0, calculate the extremal returns µ0(T0) and µ1(T0),

2. set µ̄ as the midpoint between µ0(T0) and µ1(T0),

8See Broyden (1970); Fletcher (1970); Goldfarb (1970); Shanno (1970).
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3. minimize numerically the VaR V (µ) = zθ
√
S(T0, µ) − µ via the BFGS al-

gorithm using µ̄ as a starting point and call µ∗ the solution;

4. determine the coordinates of the resulting portfolio ω∗ using equation (14),

5. increment T0 by h and repeat until T0 = Tmax.

For each point on the RBF, the corresponding portfolio ω∗ can be found using the
method outlined in Appendix B.

3.3 Geometrical properties of the RBF in the standard case

The RBF, as defined in the previous section, is a continuum of portfolios, indexed
by the TEV T0; when T0 = 0, ω∗ is the benchmark portfolio, and different choices
for T0 lead to different optima ω∗. This set can be split into the following 3 non-
overlapping subsets for increasing values of T0:

RBF = RBF1 ∪ RBF2 ∪ RBF3.

These subsets are identified by the fact that

1. there exists a TEV level TZ such that the variance of the portfolio ωZ = ω(TZ)
is a minimum within the RBF (see Appendix A for a proof);

2. there exists a TEV level TM such that portfolio ωM = ω(TM) minimizes
the VaR. Since we assume that the manager’s confidence level zθ is high,
such portfolio is Markowitz-efficient. From a geometrical point of view, the
minimum VaR portfolio M is the tangency portfolio between the linear CVF
and the Markowitz’ MVF. The analytical proof is provided in section 3.3.2.

It is useful to distinguish the two cases TZ ≤ TM , which we refer to as the
“standard” case, and the reverse case TZ > TM , that occurs when a benchmark
with high risk and return is chosen. We call this case the “aggressive benchmark”
case. In the former case we have

RBF1 = {ω∗ : 0 ≤ TEV ≤ TZ}, RBF2 = {ω∗ : TZ < TEV ≤ TM},
RBF3 = {ω∗ : TEV > TM} (15)

while, in the aggressive case, these subsets are defined as

RBF1 = {ω∗ : 0 ≤ TEV < TM}, RBF2 = {ω∗ : TM ≤ TEV ≤ TZ},
RBF3 = ∅. (16)
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These subsets possess different properties from the financial point of view. We
will focus on the standard case first and leave the analysis of the aggressive case for
subsection 3.4.

As claimed in Section 3.1, the RBF is an envelope that contains all the tangency
portfolios between the CTF and CVF curves. Analytically, each point of this frontier
yields the solution of a system containing both equations (1) and (2). Palomba and
Riccetti (2012) show that the solution is a fourth degree equation in the mean-
variance space and proved that the solution depends on the benchmark coordinates
together with the values of T0, V0 and the confidence level θ.

Figure 3: The RBF in the standard case
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M
•
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From Figure 3 several important characteristics of the RBF become apparent:
the boundary on the (σP , µP ) space takes a horseshoe-like shape, with one endpoint
necessarily at B, where T0 = 0. The subsets RBF1 and RBF2 correspond to the arcs
B̄Z, Z̆M , and the points to the right of M form the subset RBF3. The situation in
which the benchmark portfolio lies on the efficient branch9 of the MVF is notable,
since in this case the arc B̆M on the RBF lies on the MVF.

3.3.1 The arc B̄Z

Since portfolio B identifies the passive strategy T0 = 0, as the TEV increases the arc
J̆0J1 moves away from B; therefore, as a rule, the arc B̄Z can be thought of a line
starting from B and going in the North-West direction, with decreasing efficiency
loss. In practice, for each portfolio P ∈ RBF1, asset managers obtain σP ≤ σB and
VP ≤ VB.

Let Z ≡ (σZ , µZ) be the minimum variance portfolio lying on the RBF: the
existence of such portfolio is proven in Appendix A and implies that asset managers

9The situation of a benchmark located in the inefficient branch would have no practical relev-
ance.
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can jointly satisfy the pair of constraints TEV = T0 and VaR = V0 so as to select
a position in which they can also minimize overall portfolio risk. Thus, the arc B̄Z
is the subset of the RBF where an increase in the TEV limit implies a tighter VaR
restriction, leading to more efficient portfolios. In other words, along the B̄Z arc the
TEV and VaR move in opposite directions, and a trade-off exists between relative
risk (the TEV) and both measures of absolute portfolio risk (the VaR and σP ).

3.3.2 The arc Z̄M

In order to analyze the properties of the intermediate subset RBF2, we begin by
considering the portfolio

ω̂ = argmin
ω∈RBF

V aR(ω);

that minimizes the VaR along the RBF for a given TEV = T0. Since the first shadow
price in equation (8) yields the variation of the objective function with respect to
T0

∂V aR(ω)

∂T0

=
√
T0
r(ω, θ)(µP − µC)− d

µP − µB
,

then ω̂ must satisfy

∂V aR(ω)

∂T0

= 0 ⇒ µ̂ = ω̂′µ = µC +
d

zθ
σ(ω̂). (17)

Now consider M , defined earlier as the portfolio that minimizes the VaR among
admissible portfolios: Palomba and Riccetti (2012) prove that its coordinates on the
(σP , µP ) space are

M ≡

(
z2
θ

z2
θ − d

σ2
C , µC + d

σC√
z2
θ − d

)
. (18)

Geometrically, M ≡ (σM , µM) is the contact portfolio between the MVF and the
linear boundary CVF, and the associated VaR equals VM = zθσM − µM = −µC +√
σ2
C(z2

θ − d). This is the most binding assignable VaR because lower values lead to
infeasible portfolios.

Since

µM = µC +
d

zθ
σ(ω̂) = µC +

dσC√
z2 − d

= µ̂, (19)

portfolio M satisfies condition (17). From this result it is easy to see why the
RBF takes the shape shown in Figure 2: starting from the benchmark B, we have
(ωP −ωB)′µ ≥ 0, and therefore the VaR decreases first until it reaches its minimum
at portfolio M , and then it rises again for µP > µM .

Most of the properties of the points along Z̆M are the same as those of B̄Z;
notably, moving from Z to M , and thus allowing for larger TEV, still leads to
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portfolios that have lower VaR and feature decreasing efficiency loss. However,
contrary to the B̄Z case, this comes at the price of a larger variance.

3.3.3 The upper branch

This subset of the RBF must be considered because the optimization problem (3)
is defined with an equality constraint, rather than an inequality, as would perhaps
be more appropriate. Therefore, we discuss it here for the sake of completeness, but
its practical relevance is more limited than the previous two subsets.

By a simple economic argument, under an inequality constraint TEV ≤ T0 the
RBF stops at M : from point M onward, there are progressively less stringent VaR
constraints and the portfolio risk grows larger. The upper branch of the RBF defines
an increasing line in the (σP , µP ) space that lies underneath the MVF and moves
away from it in the North-East direction. This part of the boundary is the least
attractive to investors with a high level of risk aversion: despite the portfolio returns
being large, increasing the tolerable risk relative to the benchmark B leads to riskier
portfolios in terms of overall variance and Value-at-Risk. Hence, the point M can
be thought of as a watershed between two opposite TEV-VaR relationships. Given
these premises, we may call this subset the “daredevil” segment of the RBF.

Figure 4: Relationships along the RBF
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Figure 4 summarizes the relationships along the RBF between all the relevant
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portfolio quantities; note the special importance of the three reference portfolios
B, Z and M . Moving from the benchmark B, the portfolio variance and the VaR
follow a convex and non-monotonic relationship, while the expected return of the
portfolios always increases. The lower-right plot displays the relationship between
the two absolute risk measures. Starting from the benchmark, the overall initial risk
reduction is accompanied by a progressively more stringent VaR. From portfolio Z
onward, the overall portfolio variance increases, while the efficiency loss reduces until
the portfolio M is reached. From the point M onward the efficiency loss increases
and is accompanied by progressively larger values of T0 and V0.

The discussion above entails an important implication: setting a maximum value
of the TEV lower than the one of the Z portfolio is a questionable choice for the risk
manager, since along the B̄Z arc either the expected return and all the absolute risk
indicators can be improved by raising the TEV. Moving along the upper branch,
any choice beyond M would only lead to extremely risky positions, so it would be
a rather extreme one in practice.

3.4 The aggressive benchmark

In the “aggressive benchmark” case, the benchmark B is itself a high risk-high return
portfolio. This situation arises when the benchmark return and variance are greater
than the one of the minimum VaR portfolio M . In this context, B is the portfolio
with the highest available expected return on the RBF, but this feature is linked to
a strong risk. As a consequence, loosening the TEV constraint makes it optimal to
reduce the associated risk, rather than increase the portfolio return, and equation
(16) holds instead of (15). Figure 5 shows the shape of the RBF in the case of an
aggressive benchmark.

Figure 5: Aggressive benchmark
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The boundary starts from the benchmark and proceeds South-West, reaches the
tangency portfolio M and stops at the point of minimum risk Z.
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Technically, the RBF can be extended beyond portfolio Z for values of the TEV
higher than TZ , but from a financial point of view this would lead to inefficient port-
folios, i.e. dominated under any possible metric (variance, return, VaR or portfolio
efficiency loss).10 Therefore, we truncate the boundary at Z and set the condition
RBF3 = ∅ in equation (16). Using equation (17), the condition (ωP − ωB)′µ < 0

always holds so the VaR increases all along the arc Z̆M .

3.5 Economic and financial implications

In this section, we analyze the properties of the RBF for active portfolio management
from the viewpoints of the asset manager and of the investor. As argued above, VaR
and TEV constraints are such that the RBF is non-empty and a VaR-TEV efficient
choice is possible; the question then is: how should the two parties choose the
portfolio among the Pareto-optimal ones?

In order to address this question, we consider the misalignment of investors’
objectives with those of asset managers. Financial literature points out that deleg-
ated asset management involves layering of agency relationships, and the number of
conflicts of interest between investors and their agents is likely to increase together
with the complexity of agency relationships, with consequences on the optimal com-
pensation contract. The incentive issue is very important, as portfolio theory field
customarily builds on the idea that the agent could be led to selecting higher-risk
and higher-return assets out of the structure of contract compensation. Theoret-
ically, aligning the objectives of the investor and of the asset manager implies a
simultaneous control on returns through the profit sharing rule, on performance
measures against a benchmark and on risk-taking through the constraints on the
TEV (Bank for International Settlements, 2003).

Our work is based on the investor’s customary choice to set limits to TEV and
VaR so as to limit risk exposure in a context when the asset manager’s compensation
depends on the ability to outperform the benchmark in terms of return (µP > µB).
Thus, the asset manager could face sanctions if the VaR or, more importantly, the
TEV exceeds the maximum threshold.

Given this limitation, the asset manager’s optimal strategy might be to keep
the TEV low and stick close to the benchmark, while placing a few “bets” by over-
weighting assets that are likely to over-perform. Thus, it is also possible to keep
the VaR close to the benchmark’s, with relatively little effort on the manager’s
side. This behavior has been described by several authors, such as Ineichen (2004),
who focuses on the poor returns of the relative performance paradigm. Indeed, this

10In principle, this may not be strictly true, as it is conceivable that one could reach portfolios
with a higher return than µB for very large values of the TEV. However, we consider this scenario
as extremely unrealistic.
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framework can encourage asset managers to take too much risk or to be too pass-
ive. On one hand, Roll (1992) already noted that excess return optimization leads
to portfolios with a systematically higher risk than the benchmark; other authors,
such as Scowcroft and Sefton (2001), questioned the utility of a constraint on the
TEV. Jorion (2003) notes that the excess return-TEV framework induces the asset
manager to optimize in an excess return space only and to ignore the investor’s over-
all portfolio risk. However, the asset management industry maintains an emphasis
on relative risk, since absolute risk may simply be a consequence of the volatility of
the benchmark. Therefore, Jorion (2003) attempts to correct the problem of port-
folios with higher variance than the benchmark by placing an additional constraint
(beyond the maximum TEV) that forces portfolio volatility to be equal to that of
the benchmark.

On the other hand, the investor’s objective function depends positively on the
portfolio return and negatively on its absolute risk, as measured either by the VaR
or by its variance. If the benchmark performs poorly, the investor should benefit
from a strongly active management that reduces the losses even by increasing the
TEV. Riccetti (2012) shows that risk managers should bind the asset manager to a
minimum TEV level, so as to ensure that the asset manager is effectively undertaking
an active strategy; Lo (2008) contains an analysis on the problem of measuring how
active the asset manager is.

The inverse relationship between TEV and VaR along the Risk Balancing Fron-
tier produces a trade-off between the different objectives of the two parties. From
this perspective, the RBF could be seen as a useful tool in analyzing the misalign-
ment in objectives. For instance, Admati and Pfleiderer (1997) argue that the
rationale for a benchmark-adjusted compensation scheme is inconsistent with op-
timal risk-sharing and does not help in solving potential contracting problems with
the manager. In other words, if the investor is actively involved in the investment
decisions the resulting portfolio could be close to the Mean-Variance frontier, or
possibly on it. Otherwise, the main role is played by the asset manager, with two
possible scenarios. In one case, the constraint on the TEV can be very strict, and
the asset manager has little choice but to stick close to the benchmark and make
very little effort. Conversely, if the constraint on the TEV is too loose, then the
asset manager may end up selecting an overly risky portfolio in order to maximize
its return. Other contributors (He and Xiong, 2013) find that tight tracking error
constraints, alongside narrow mandates, can provide incentives for agents.

By focusing on the RBF, all the situations above can be clearly detected. The
optimal position for the investor is associated with portfolios near M , while the
other two cases are associated with portfolios close to B and any portfolio lying
on the upper branch. The investor should steer the asset manager towards an
active strategy, while keeping the portfolio risk under control at the same time: this
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translates into a maximum TEV greater than or equal to the one of portfolio M ,
and the setting of suitable maxima for the VaR and/or variance constraints.

4 Empirical example

In order to show how our RBF boundary works in practice, we carry out a short
numerical example, using the S&P100 market index as a benchmark and all its
constituents, listed in Table C.1 in Appendix C, as the universe of available risky
securities. The daily returns for both index and stocks were calculated using one
year of data covering two distinct periods: a pre-COVID period ranging from 2019-
01-01 to 2019-12-31, and the period that goes from 2020-04-01 to 2021-03-31, which
we define as the “post-COVID period”. The use of both periods is necessary to make
a comparison because, as illustrated by Figure 6, returns and volatility are generally
higher during the “post-COVID” period. With this brief empirical exercise, we
illustrate the behavior of the RBF in the (σP , µP ) space when the socio-economic
environmental conditions undergo a dramatic change, such as the one induced by
the COVID pandemic on the US stock market.

Figure 6: Constituents of S&P100 index in the two subsamples
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Table 1 reports several statistics for some portfolios of interest, namely the bench-
mark, the minimum variance and the minimum VaR on the RBF, and the Global
Minimum Variance and the Maximum Sharpe Ratio on the MVF.
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Table 1: Portfolio results

pre-COVID period post-COVID period

- MVF/MTF asymptotic slope (
√
d) 1.0460 0.6547

- confidence level at
√
d 0.8523 0.7437

- ∆1 = µB − µC 0.0665 0.0627
- ∆2 = σ2

B − σ
2
C 0.4787 1.3770

Portfolios: B C Q Z M B C Q Z M
Return 0.0696 0.0031 43.3041 0.2696 0.3046 0.1598 0.0970 1.5964 0.2594 0.2625
Risk (st. dev) 0.7752 0.3496 41.3870 0.4398 0.4530 1.3102 0.5827 2.3632 0.6341 0.6351
Sharpe ratio 0.0898 0.0088 1.0463 0.6129 0.6724 0.1219 0.1666 0.6755 0.4090 0.4134
Tracking Error 0.0000 -0.0665 43.2345 0.2000 0.2350 0.0000 -0.0627 1.4367 0.0996 0.1028
TEV 0.0000 0.4787 1707.9782 0.4074 0.5251 0.0000 1.3771 6.1836 1.3146 1.3925
Information Ratio∗ - -0.1390 0.0253 0.4908 0.4475 - -0.0455 0.2323 0.0758 0.0738
Efficiency loss 0.4747 0.0000 0.0000 0.0064 0.0000 1.3679 0.0000 0.0000 0.0011 0.0000
VaR 1.2054 0.5719 24.7715 0.4539 0.4406 1.9953 0.8614 2.2908 0.7836 0.7822

x1(ω) 1.0000 - - 0.1161 0.0000 1.0000 - - 0.0283 0.0000
x2(ω) 0.0000 - - 0.0060 0.0070 0.0000 - - 0.1071 0.1104
x3(ω) 0.0000 - - 0.8779 0.9930 0.0000 - - 0.8646 0.8896

Note: θ = 0.95 (High confidence level in both periods), CVF slope zθ = 1.645;
Risk Balancing Frontier (RBF): maximum TEV Tmax = 8.0, TEV increments: h = 10−4.
* Information Ratio = Tracking Error/TEV (see e.g Lee, 2000)

Figure 7 illustrates the MVF and the RBF boundaries for both periods. The
plots on the left offer a global view; those on the right zoom in around the RBF
minimum variance portfolio Z. As can be noticed, the risk-return coordinates of the
benchmark portfolio are very different between the two periods; during the pandemic
phase, the horizontal distance between B and the MVF is much greater, so the TEV
cannot be kept under control without serious efficiency losses. The graph also shows
that during the COVID period the portfolios have become riskier and with higher
expected returns. The only exception is the ‘Maximum Sharpe Ratio’ portfolio
Q whose values were also quite extreme, in terms of both risk and return, before
the pandemic. It is interesting to note that the efficiency loss for the Z portfolio
decreases in the COVID period, despite the drop in the portfolio return and the risk
increase. It should also be noted that portfolio Z displays a much higher TEV in
the COVID period and that this may have led managers to reduce the VaR.

The shift of the RBF towards riskier positions is mirrored by the adjustment
of the xi(ω) weights for the Z and M portfolios, and especially by the increase in
x2(ω) (see equation (10)). Therefore, there is a shift in favor of portfolio Q, whose
TEV is much higher in the pre-COVID period. On the other hand, the shift of
the MVF and RBF due to the instability caused by the pandemic has increased
the distance between the upper branches of the two curves: the efficiency loss for
an aggressive portfolio, which is minimal in the pre-COVID period, becomes quite
substantial afterwards.
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Figure 7: The Markowitz and Risk Balancing frontiers: before and after
pre-COVID period

µP

σP
B•C•

MVF

RBF

0 0.5% 1.0% 1.5% 2.0% 2.5%

0.5%

1.0%

1.5%

2.0%

µP

σP

B•
C •

Z•
M•

MVF RBF

0 0.25% 0.5% 0.75% 1.0%

0.1%

0.2%

0.3%

0.4%

0.5%

post-COVID period
µP

σP
B•C •

Q
•

MVF

RBF

0 0.5% 1.0% 1.5% 2.0% 2.5%

0.5%

1.0%

1.5%

2.0%

µP

σP

B•

C •

Z
•

M•

RBFMVF

0 0.25% 0.5% 0.75% 1.0% 1.25%

0.1%

0.2%

0.3%

0.4%

0.5%

5 Concluding remarks

In this paper, we develop a novel tool to analyze the issue of misalignment in ob-
jectives of investor and asset manager in the case of actively managed portfolios. In
doing so, we consider those situations when asset managers must jointly satisfy the
restrictions imposed by investors on two risk measures: the tracking error volatility
(TEV) and the Value-at-Risk (VaR). This framework creates a trade-off possibility
between the two constraints: when the TEV and the VaR restrictions hold at the
same time, the more stringent is one, the less binding is the other. The tool we
propose to analyze this situation is the Risk Balancing Frontier (RBF), a portfolio
boundary in the risk-return space that identifies all portfolios with minimum VaR
given a preset TEV level. We prove that the RBF can be expressed as a combination
of three basic portfolios, namely the benchmark, the ‘Maximum Sharpe Ratio’ and
the ‘Global Minimun Variance’ portfolios; we also study the boundary’s main geo-
metrical properties, and provide operational details about the computational issues
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involved.
From the financial point of view, our contribution proves that the RBF sheds

light on the different relationships between the two risk measures by considering the
RBF either as a whole or via its three separate subsets, with different character-
istics, described in section 3.3. In our opinion, this boundary could help solve the
traditional agency problem specific to delegated portfolio management. In order to
exemplify the practical usage of the RBF for analyzing actual market scenarios, we
provide an analysis of the SP100 index before and after the COVID pandemic.

Our approach could be further developed in several directions. For example,
introducing a risk free asset, management fees or transaction costs would certainly
make the analysis more realistic. Another possibility is to disallow short selling. This
corresponds to a severe restriction that often characterizes different fund policies
or contracts between managers and investors, but it comes at the cost of making
the algebra and the computational aspects much more complex. Finally, removing
the hypothesis of normally distributed returns would certainly represent a natural
extension: this possibility would enrich our analysis by generalizing for non-standard
distributions of returns but, on the other hand, would require a substantial and
complex revision of all portfolio frontiers involved in our proposed approach.
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Appendix A: The portfolio variance along the RBF

Equation (10) can be re-expressed as

ω∗ = Wx(ω∗)

whereW =
[
ωB ωQ ωC

]
is a n×3 matrix and x(ω∗)′ =

[
x1(ω∗) x2(ω∗) x3(ω∗)

]
.

The variance of each portfolio lying on the RBF is

σ∗2 = ω∗′Σω∗ = x(ω∗)′Ωx(ω∗) (A.1)

where the matrix Ω can be obtained as the quadratic form

Ω = W ′ΣW =

 σ2
B µB/b σ2

C

µB/b σ2
Q σ2

C

σ2
C σ2

C σ2
C

 =
2

b

bσ2
B µB µC

µB µQ µC
µC µC µC

 .
In order to find the variance-minimizing portfolio along the RBF we need to

solve the following problem

min σ∗2 = x(ω)′Ωx(ω)
sub G[x(ω)] = 0,

(A.2)

where

G[x(ω)] =

1
0
0

+

 −r(ω, θ)b
r(ω, θ)− b

 (ω − ωB)′µ

D(ω, θ)
−

x1(ω)
x2(ω)
x3(ω)

 .
The problem (A.2) consists of minimizing the portfolio variance in a trivariate

system where the portfolio weights are restricted to be those obtained in equation
(11). In this context, the restriction is nonlinear but it always guaranteed that such
weights sum up to unity. The Lagrangian is

L[x(ω), θ] = x(ω)′Ωx(ω)− λ′G[x(ω)],

therefore

∂L[x(ω), θ]

∂x(ω)

∣∣∣∣
ω=ω̂

= 0 ⇒ Ωx(ω̂)−G′[x(ω̂)]λ = 0, (A.3)

where G′[x(ω̂)] is the 3× 3 Jacobian matrix. Since we have

∂r(ω, θ)

∂x(ω)
= −r(ω, θ)

σ2
Ωx(ω),

∂D(ω, θ)

∂x(ω)
= ∆1

r(ω, θ)

σ2
Ωx(ω) and

∂(ω − ωB)′µ

∂x(ω)
= W ′µ,
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where ω = Wx(ω) and W ′µ =
[
µB µQ µC

]′
, we get

G′[x(ω)] =


−x(ω)′Ωφ[D(ω, θ)−∆1r(ω, θ)]− µ′W

r(ω, θ)

D(ω, θ)

−x(ω)′Ωφb∆1 + µ′W
b

D(ω, θ)

−x(ω)′Ωφ(d− b∆1) + µ′W
r(ω, θ)− b

D(ω, θ)



′

− I3

where φ =
(µ∗ − µB)

D(ω, θ)2

r(ω, θ)

σ2
is a scalar and I3 is the 3× 3 identity matrix.

Assuming that the matrix Ω is non-singular, from equation (A.3) the solution is

x(ω̂) = Ω−1G′[x(ω̂)]λ, (A.4)

and therefore, after substituting G[x(ω̂)] into the constraint, we get

λ̂ = {Ω−1G′[x(ω̂)]}−1x(ω̂) = G′[x(ω̂)]−1Ωx(ω̂).

Since by assumption Ω is positive definite, the existence of the solution (A.4) guar-
antees that the RBF admits a portfolio in which the overall risk is minimized.

28



Appendix B: Points and portfolio weights

For each n×1 vector ωP containing the portfolio weights, there exists a correspond-
ing point P on the (σP , µP ) space. Clearly, given ωP , the n-dimensional column
vector of expected returns µ and their covariance matrix Σ, the coordinates of P
can be easily determined by the usual equations

σP =
√
ω′PΣωP and µP = ω′Pµ.

As for the inverse problem, namely finding the portfolio weights given the couple
[σP µP ]′, one would have to solve a system of 2 equations in n variables, that obvi-
ously has infinitely many solutions. In this Appendix, we describe how to determine
the vector of portfolio weights ωK corresponding to any point K that lies on the
Risk Balancing Frontier.

All portfolios belonging to the RBF share two main characteristics: on the one
hand, they are characterized by the minimum VaR that can be reach for each TEV
level and, on the other, they are the tangency points between the linear CVF and
the “oval” CTF. The minimum VaR value V0 can be calculated via the algorithm
we introduced at the end of section 3.2; in this context, information is needed on
the benchmark portfolio weights ωB and on T0 restriction imposed to the TEV.
The tangency condition in the (σP , µP ) space implies that there is a single point K
associated to both measures of risk T0 and V0, and the vector of portfolio weights ωK

corresponds to the solution for the two optimization problems from which the CTF
and CVF are defined. In other words, assuming the vector ωJ as a portfolio lying
on the oval boundary and the vector ωAB as a portfolio on the linear boundary, K
is the only point where the equality ωJ = ωAB holds.

From the technical point of view, it is sufficient to apply the following results in
order to determine the portfolios lying on the RBF:

1. A portfolio belonging to the CTF (and therefore, to the arc J̆0J1) has equation

ωJ = ωB −
1

λ2

Σ−1(µ+ λ1ι+ λ3ΣωB), (B.1)

where

λ1 = −λ3 + b

a
, λ2 = −2

√
dδB

4T0∆2 − y2
, and λ3 = − 1

∆2

(
∆1 +

y

2
λ2

)
;

the parameters a, d, ∆1, ∆2, δB are defined in section 3.1, while y = σ2
J−σ2

B−T0

is computed via equation (14). (See Appendix C in Jorion, 2003, for the
complete proof)
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2. A portfolio that lies on the CVF (the straight line µP = zθσ
2
P − V0 in the

(σP , µP ) space) is defined by the linear combination

ωAB = X ωC + Y ωQ + Z ωB, (B.2)

where

X =
−k4 +

√
k2

4 − 4k3k5

2k3

, Y =
(k7 − k6X)

k6 + ad
, and Z = 1−X − Y.

The parameters are

k3 =
k2

6σ
2
Q + (ad)2σ2

B + 2adk6µB/b

(k6 + ad)2
− σ2

C ,

k4 = 2

[
σ2
C +
−k6k7σ

2
Q + adk8σ

2
B + (k6k8 − adk7)µB/b

(k6 + ad)2

]
,

k5 =
k2

7σ
2
Q + k2

8σ
2
B − (2/b)k7k8µB

(k6 + ad)2
−
(
V0 + µAB

zθ

)2

,

k6 = b(b− aµB),

k7 = ab(µAB − µB),

k8 = a(bµAB − c),

where a, b, c and d are the scalars already defined in section 3.1, µB is the
benchmark return, and σ2

B, σ2
Q = c/b2 and σ2

C = 1/a are the variances of
portfolios B, Q, and C. (See Appendix D in Alexander and Baptista, 2008,
for the proof).

For any given µ, Σ, ωB and T0, each point K ∈ RBF has the property that the
vectors in equations (B.1) and (B.2) coincide (the correspondive Value-at-Risk V0 is
a result of the optimization described in subsection 3.2).

A special situation arises for portfolio M , which lies on the Mean-Variance Fron-
tier. In this case the Mutual Fund Separation Theorem (Merton, 1972) estabilishes
that, for any portfolio P lying on the MVF, the portfolio weights can be conveniently
obtained via the linear combination

ωP = K ωQ + (1−K)ωC , (B.3)

where K =
µP − µC
µQ − µC

and µQ = c/b and µC = b/a are the returns of portfolios Q

and C. Equation (B.3) requires ωQ and ωC already defined before equation (10)
and does not depend of any portfolio variance. For its computation in portfolio M
it sufficient to set the target return µP = µM .
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Appendix C: Stock returns of the S&P 100
Table C.1: Descriptive statistics (in %)

subsample 1: pre COVID-19 subsample 2: post COVID-19

Stock name mean st.dev. min max mean st.dev. min max

1. 3M Company -0.018 1.584 -13.860 4.229 0.146 1.708 -7.288 7.352

2. Abbott Laboratories 0.092 1.213 -4.834 3.172 0.166 1.730 -4.869 7.557

3. AbbVie Inc. 0.018 1.738 -17.740 3.828 0.154 1.621 -5.682 7.172

4. Accenture 0.161 1.047 -3.942 5.065 0.207 1.890 -7.297 8.742

5. Adobe Inc. 0.148 1.478 -4.652 5.082 0.154 2.245 -6.251 8.705

6. Alphabet Inc. (Class A) 0.092 1.469 -7.798 9.185 0.220 1.948 -5.666 8.518

7. Altria Group 0.030 1.540 -7.164 4.034 0.138 1.664 -6.241 4.567

8. Amazon.com 0.071 1.416 -5.532 4.885 0.177 2.097 -7.902 7.631

9. American Express 0.107 1.062 -3.758 4.407 0.200 2.904 -9.515 19.380

10. American International Group 0.110 1.448 -9.465 6.552 0.261 3.261 -11.530 12.350

11. American Tower 0.155 1.130 -3.763 3.269 0.043 1.911 -5.353 9.012

12. Amgen Inc. 0.100 1.293 -3.847 5.779 0.089 1.711 -7.067 7.849

13. Apple Inc. 0.245 1.634 -10.490 6.610 0.253 2.289 -8.345 9.956

14. AT&T Inc. 0.132 1.107 -4.429 4.192 0.041 1.541 -6.326 6.963

15. Bank of America 0.142 1.435 -4.803 6.912 0.240 2.694 -10.580 13.270

16. Berkshire Hathaway 0.043 0.936 -5.650 2.827 0.128 1.424 -7.304 5.881

17. Biogen -0.010 3.021 -34.570 23.200 -0.047 3.724 -33.080 36.450

18. BlackRock Inc. 0.110 1.273 -4.466 3.596 0.215 1.913 -8.167 7.253

19. Boeing Co. 0.011 1.804 -7.032 6.063 0.205 4.083 -17.940 17.790

20. Booking Holdings 0.068 1.578 -11.610 6.352 0.210 2.730 -8.732 17.190

21. Bristol-Myers Squibb 0.091 1.625 -14.230 4.898 0.063 1.424 -5.906 6.618

22. Broadcom Inc. 0.100 1.845 -9.316 7.915 0.271 2.161 -6.997 7.474

23. Capital One Financial Corp. 0.118 1.495 -6.438 6.251 0.360 3.471 -12.090 15.630

24. Caterpillar Inc. 0.071 1.678 -9.569 5.320 0.276 2.250 -9.112 6.372

25. Charter Communications 0.201 1.334 -2.410 13.270 0.133 1.684 -7.465 6.930

26. Chevron Corporation 0.048 1.140 -5.072 4.510 0.163 2.553 -8.789 10.970

27. Cisco Systems 0.053 1.529 -9.009 6.443 0.118 1.812 -11.860 6.822

28. Citigroup Inc. 0.165 1.508 -5.420 5.091 0.225 3.158 -14.360 11.480

29. Colgate-Palmolive 0.068 0.997 -4.097 3.729 0.075 1.135 -2.722 5.078

30. Comcast Corp. 0.110 1.182 -3.484 5.345 0.180 1.791 -5.870 6.500

31. ConocoPhillips 0.018 1.729 -5.795 8.665 0.224 3.339 -8.616 13.410

32. Costco Wholesale Corp. 0.143 0.994 -2.980 4.963 0.094 1.272 -5.506 5.549

33. CVS Health 0.061 1.594 -8.447 7.186 0.103 1.777 -9.010 5.604

34. Danaher Corporation 0.165 1.254 -3.504 8.178 0.188 1.695 -7.274 5.833

35. Dow Inc. 0.068 2.059 -6.306 6.027 0.321 2.829 -10.440 9.053

36. Duke Energy 0.045 0.778 -2.882 2.229 0.084 1.651 -4.361 7.197

37. DuPont de Nemours Inc. -0.066 2.096 -9.681 16.390 0.321 2.446 -8.275 10.480

38. Eli Lilly and Company 0.061 1.289 -4.231 3.258 0.121 2.248 -9.533 14.570

39. Emerson Electric Co. 0.106 1.359 -3.806 3.673 0.256 2.185 -8.585 8.433

40. Exelon 0.025 0.964 -4.676 2.489 0.081 2.083 -9.482 10.350

41. Exxon Mobil Corp. 0.019 1.132 -4.112 3.621 0.178 2.765 -9.239 11.920

42. Facebook, Inc. 0.160 1.710 -7.802 10.270 0.218 2.379 -8.683 7.994

43. FedEx -0.023 2.016 -13.830 5.179 0.331 2.569 -8.616 11.090

44. Ford Motor Company 0.088 1.686 -7.746 10.210 0.357 2.868 -10.520 11.080

45. General Dynamics 0.053 1.193 -3.576 3.248 0.133 1.867 -6.199 6.333

46. General Electric 0.143 2.485 -11.990 11.020 0.195 3.224 -12.030 13.280

47. General Motors 0.048 1.517 -4.778 6.817 0.390 3.079 -8.149 9.300

48. Gilead Sciences 0.024 1.318 -4.464 4.495 -0.040 1.828 -4.988 9.288

49. Goldman Sachs 0.120 1.451 -4.279 9.115 0.295 2.310 -9.520 8.585

50. Honeywell 0.122 1.076 -4.015 3.718 0.194 1.964 -7.182 8.136
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Table C.1 — continued from previous page

subsample 1: pre COVID-19 subsample 2: post COVID-19

Stock name mean st.dev. min max mean st.dev. min max

51. Intel Corp. 0.102 1.686 -9.422 7.788 0.074 2.535 -17.720 7.644

52. International Business Machines 0.077 1.272 -5.682 8.124 0.091 1.953 -10.430 7.673

53. Johnson & Johnson 0.062 1.027 -6.422 2.994 0.097 1.188 -4.802 4.382

54. JPMorgan Chase & Co. 0.143 1.157 -4.241 4.581 0.215 2.412 -8.713 12.700

55. Kraft Heinz -0.095 2.648 -32.100 12.610 0.202 1.754 -5.244 5.561

56. Linde plc 0.124 1.197 -3.836 4.643 0.191 1.829 -7.270 8.163

57. Lockheed Martin 0.159 1.019 -2.544 5.504 0.043 1.647 -5.052 6.481

58. Lowe’s 0.108 1.632 -12.610 9.849 0.310 1.985 -9.368 7.689

59. Mastercard 0.177 1.329 -4.871 4.627 0.151 2.269 -8.462 11.510

60. McDonald’s 0.054 0.935 -5.173 2.305 0.126 1.460 -4.440 9.915

61. Medtronic plc 0.106 1.019 -6.662 3.193 0.112 1.933 -7.094 8.918

62. Merck & Co. 0.082 1.145 -4.807 3.467 0.013 1.447 -5.618 5.188

63. MetLife Inc. 0.092 1.238 -4.489 3.651 0.282 2.699 -9.473 10.450

64. Microsoft 0.177 1.231 -3.748 4.546 0.158 1.862 -6.395 7.174

65. Mondelēz International 0.132 0.953 -3.881 5.441 0.068 1.250 -4.980 4.676

66. Morgan Stanley 0.102 1.447 -4.773 4.207 0.327 2.427 -8.841 8.925

67. Netflix 0.073 2.152 -10.840 9.279 0.126 2.661 -8.985 15.580

68. NextEra Energy 0.146 0.882 -3.431 3.058 0.095 1.902 -9.767 5.644

69. Nike, Inc. 0.125 1.290 -6.842 4.588 0.185 1.886 -7.930 8.399

70. Nvidia Corporation 0.213 2.532 -14.880 7.002 0.271 2.878 -9.736 9.568

71. Oracle Corporation 0.068 1.226 -4.357 7.864 0.149 1.545 -6.754 6.434

72. PayPal 0.090 1.574 -5.229 8.211 0.357 2.788 -9.303 13.110

73. PepsiCo 0.098 0.860 -2.834 3.689 0.074 1.270 -4.803 5.579

74. Pfizer Inc. -0.024 1.186 -6.632 3.089 0.076 1.669 -7.574 7.411

75. Philip Morris International 0.113 1.506 -8.075 7.897 0.098 1.589 -6.144 4.595

76. Procter & Gamble 0.132 1.022 -3.952 4.750 0.089 1.158 -4.372 4.534

77. Qualcomm 0.180 2.391 -11.490 20.870 0.266 2.650 -9.244 14.170

78. Raytheon Technologies 0.134 1.291 -4.553 5.244 0.112 2.784 -8.404 14.220

79. Salesforce 0.070 1.594 -5.402 5.636 0.148 2.708 -8.908 23.150

80. Simon Property Group -0.020 1.116 -4.105 4.499 0.300 4.438 -15.380 24.580

81. Southern Company 0.163 0.868 -2.554 2.807 0.070 1.769 -7.675 9.717

82. Starbucks Corp. 0.128 1.189 -4.435 8.559 0.202 1.953 -8.502 7.249

83. T-Mobile US 0.071 1.268 -4.372 5.289 0.154 1.853 -6.395 9.574

84. Target Corporation 0.266 1.971 -5.818 18.590 0.297 1.783 -7.011 11.910

85. Tesla, Inc. 0.116 3.042 -14.630 16.270 0.710 4.739 -23.650 17.930

86. Texas Instruments 0.129 1.663 -7.776 7.174 0.255 2.021 -5.305 8.601

87. The Bank of New York Mellon 0.032 1.412 -10.010 5.538 0.143 2.251 -7.545 11.030

88. The Coca-Cola Company 0.076 1.062 -8.813 5.895 0.080 1.590 -6.544 6.278

89. The Home Depot 0.102 1.131 -5.592 4.301 0.197 1.587 -6.068 6.829

90. The Walt Disney Company 0.114 1.378 -5.067 10.930 0.248 2.323 -8.130 12.750

91. Thermo Fisher Scientific 0.153 1.397 -6.144 5.518 0.183 1.888 -8.432 7.438

92. U.S. Bancorp 0.107 1.010 -4.389 2.876 0.197 2.877 -8.433 11.990

93. Union Pacific Corporation 0.113 1.518 -6.243 8.367 0.179 1.810 -7.171 6.482

94. United Parcel Service 0.085 1.504 -8.476 8.308 0.241 2.054 -9.228 13.430

95. UnitedHealth Group 0.079 1.559 -5.321 7.844 0.159 1.853 -7.475 9.835

96. Verizon Communications 0.051 0.986 -4.462 3.667 0.047 1.103 -3.218 5.112

97. Visa Inc. 0.136 1.121 -4.945 4.218 0.107 1.894 -6.439 10.960

98. Walgreens Boots Alliance -0.043 1.718 -13.700 5.605 0.087 2.468 -10.130 7.213

99. Walmart 0.101 0.889 -3.327 5.932 0.075 1.400 -6.700 6.559

100. Wells Fargo 0.068 1.227 -4.426 3.696 0.130 3.104 -10.350 10.020

B S&P 100 0.098 0.797 -3.106 3.487 0.160 1.310 -5.853 6.438
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Appendix D: the Constrained Mean-TEV Frontier

and the Fixed VaR-TEV Frontier

This Appendix contains a brief geometrical illustration of the scenarios for the Con-
strained Mean-TEV Frontier (CMTF) by Alexander and Baptista (2008) and the
FVTF by Palomba and Riccetti (2012) arising from different VaR restrictions. The
Constrained Mean-TEV Frontier (CMTF) is a portfolio boundary satisfying the VaR
constraint, while the TEV is kept at its minimum value (Roll, 1992). The FVTF
considers the CTF as well.

In general, based on different VaR bounds, the CMTF could be

(a) an empty set if the CVF lies to the left of the MVF, i.e. in the set of inad-
missible portfolios;

(b) a single admissible portfolio when the CVF is tangent to the MVF;

(c) a segment, if the CVF crosses the MVF but not the MTF (but may be tangent
to the MTF);

(d) an arc, consecutive to two segments, if the CVF crosses both the MVF and
the MTF.

Assigning a VaR bound to each scenario, the FVTF could be

An empty set in three cases:

• in case (a) above,

• in case (b) above, when the tangency between the CVF and the MVF
does not satisfy the TEV restriction,

• in case (c) above, when the CVF crosses the MVF only.

A single portfolio when the CVF is tangent to the CTF (portfolio K where
TEV = T0 and VaR = V0)

A closed and bounded set in several cases:

• when the CVF crosses the CTF given by the segment and the left arc
identified by the two intersections;
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• when the CVF crosses all the other frontiers. This boundary have a
horseshoe-like shape: the linear frontier crosses both the CTF and the
MTF thus defining two arcs on the left whose endpoints are joined by
two segments;

• same as above, but the straight line passes through (at least) one inter-
section between the oval and the hyperbolic boundaries;

• where the set is given by the two left arcs defined by the two intersections
between the CTF and the MTF. In this case the VaR limit is not binding.

Clearly, an empty FVTF indicates that no admissible portfolio can satisfy the
joint limits on risk indicators, so these limits are incompatible. Otherwise, inside
this frontier, the asset manager has to face a trade-off: she can try to reduce the
VaR via a riskier active strategy that enlarges the TEV or try to reduce the relative
risk, but this implies a higher VaR near to that of the selected benchmark. Figure
D.1 shows the various scenarios in the (σP , µP ) space.

34



Figure D.1: CMTF and FVTF for different VaR bounds
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Appendix E: Supplementary material

All the data and the routines for the analysis carried out in this article can be found
at

http://utenti.dea.univpm.it/palomba/TEVaR/
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