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Abstract
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2014 Italian tax credit reform (the so-called “Renzi bonus”). Model uncertainty has a
great impact on the estimated treatment effects. BMA-based estimates point towards a
significant effect of the rebate on food consumption only for liquidity constrained house-
holds; conversely, model selection procedures sometimes produce results incompatible
with the consumption smoothing hypothesis.
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Bayesian Model Averaging for Propensity Score Match-
ing in Tax Rebate

Riccardo (Jack) Lucchetti Luca Pedini Claudia Pigini

1 Introduction

Propensity Score Matching (PSM) (Rosenbaum and Rubin, 1983) is a standard tool for
treatment evaluation in observational studies and it has been used in a wide range of
economic applications. However, the specification of the binary choice model used to
compute the Propensity Score (PS), namely the conditional probability of being treated
given a chosen set of characteristics, is often built with little attention to the choice of
explanatory variables, despite the fact that the selection of controls can dramatically
affect the matching and, as a result, the estimate of the causal effect (Heckman et al.,
1997; Caliendo and Kopeinig, 2008).

From a theoretical standpoint, the consequences of model selection can be assessed
in terms of the so-called bias-variance trade-off. Specifying the linear index using all the
available covariates may be tempting so as to gain a greater model flexibility and reduce
the approximation bias. However, over-parametrisation may lead to violations of basic
assumptions of PSM, such as the common support and balancing conditions, as well as
to overfitting and to a larger variance of the estimator. Parsimonious models, on the
other hand, may produce an inconsistent treatment effect estimator because of relevant
omitted variables (Heckman et al., 1997).

Economic theory may provide some background information to guide the practitioner
in the choice of covariates, albeit on a case-wise basis and depending on the specific treat-
ment analysed. More general strategies have been put forward by the related stream of
literature to help overcome this impasse. Rosenbaum and Rubin (1984) suggest using
the PS along with stratification matching and adjusting the set of covariates with in-
teractions or higher order polynomials, as long as the balance conditions are met. The
same recommendations are made by Dehejia and Wahba (1999). Rubin and Thomas
(1996) points out that discarding covariates should be always a mindful decision moti-
vated by the balancing conditions. Millimet and Tchernis (2009) emphasise instead the
advantage of estimating redundant models over parsimonious ones whenever the bias
reduction is larger than the increase in variance, arguing that overfitting has no negative
consequences.

Bryson et al. (2002) warn on the opposite problem of including too many variables,
as efficiency would be often affected in empirical applications. In addition, they also
question the quality of the resultant matching when redundant variables are included.
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There is also a related stream of literature dealing with treatment effects evaluation
in cases where the number of covariates is larger than the number of observations and
where model selection is tackled via the sparsity assumption and LASSO-like estimators
(Belloni et al., 2014, 2017; Chernozhukov et al., 2018). Finally, Brookhart et al. (2006)
take an intermediate position between parsimonious and inclusive specifications: vari-
ables that are unrelated to the treatment assignment but related to the outcome should
always be included, whereas the converse is not necessarily true.

The lack of a unique modelling strategy for the PS is a consequence of the impossi-
bility of choosing the true model specification, which clearly makes any kind of model
selection procedure, aimed to achieve an ideal bias-variance trade-off, inadequate. As
a consequence, a problem of model uncertainty (Chatfield, 1995) is introduced by con-
ditioning the analysis on a single model specification, under the assumption that such
specification is the true one.

Alternatively, model uncertainty can be dealt with by averaging estimates from a
range of different models, using weights that reflect the models’ goodness of fit. Model
averaging can be performed either in a frequentist or a Bayesian framework, where
the latter provides an immediate interpretation of weights as model probabilities and
a direct measure of the relative importance of covariates in the model specification.
Moreover, Bayesian Model Averaging (BMA) offers a computational advantage in high
dimensional model spaces as it is often based on Markov Chain Monte Carlo (MCMC)
samplers. Finally, the choice of the prior distributions can be exploited to perform model
regularisation. See Steel (2020) for a detailed discussion on the advantages of BMA over
the frequentist model averaging approach.

Model averaging for PSM has been considered by Kitagawa and Muris (2016) and Xie
et al. (2019) within the frequentist framework, whereas other solutions pertain specif-
ically to BMA. In particular, Kaplan and Chen (2014) propose a two-step strategy in
which PS model probabilities are first approximated by the Bayesian Information Cri-
terion (BIC) and used to sample model specific parameters by MCMC, that are then
employed to compute the PS and the resulting treatment effect. Notice that this ap-
proach is not based on simultaneous sampling of models and parameters, which results
in computational inefficiency and into low estimation accuracy, also due to the use of
BIC approximation.

Zigler and Dominici (2014) overcome these limitations by means of the Stochastic
Search Variable Selection (SSVS) (George and McCulloch, 1993), which allows for the
simultaneous sampling of model and parameters. PSM is framed within the control-
function approach: the outcome equation is specified as a function of both the treatment
and the PS, along with a set of controls. However, this gives rise to the so-called
“feedback effect”: since some covariates may appear in both the equations, for the PS
and outcome, posterior distributions for the outcome models can affect the PS ones.
This issue has been extensively debated, as it can severely undermine PS properties and
reliability (see also Cefalu et al., 2017).

In this paper, we propose to address the issue of model uncertainty in PSM by a BMA
approach that improves upon Kaplan and Chen (2014) and Zigler and Dominici (2014)
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as it avoids feedback effects and maintains a high degree of computational efficiency and
accuracy. To this end, we employ the Reversible Jump MCMC (RJMCMC) sampler
(Green, 1995; Holmes and Held, 2006; Lamnisos et al., 2009), which makes it possible
to simultaneously sample the models and their parameters, and consequently the PS
distribution across the model space; no two-step procedures are needed and, at the
same time, BIC approximations are avoided. Moreover, we consider PSM as a three-
step procedure, where the three steps are (a) the PS model (b) matching and (c) the
treatment effect evaluation. In this way, the model uncertainty issue directly affects
only the PS and the related model probabilities can be attached to each treatment effect
estimator.

Our proposed method is used for evaluating the economic impact of the 2014 Italian
tax credit reform (Decree Law 66/2014), also known as “Renzi bonus”, which introduced
a monthly wage increase of about e80 for all employees with an annual gross income
between e8145 and e26000. Tax reductions are often employed as means to counteract
the negative effects of recessions, as an increase in disposable income would supposedly
encourage household consumption. Yet the effectiveness of tax credit policies is widely
debated (Shapiro and Slemrod, 2003a,b, 2009). Furthermore, empirical evidence from
micro data has been found to be rather sensitive to methodological choices (Heim, 2007).

We use data from the Survey of Household Income and Wealth (SHIW) issued by the
Bank of Italy and estimate the treatment effect of the tax rebate on different types of
monthly consumption, such as total, food, non durables, car-related, and other durables
consumption. In line with the results provided by Neri et al. (2017), who evaluated the
effect of the Renzi bonus using the same data, we find a role of liquidity constraints,
as the treatment effect is significant only on the food consumption of households who
report greatest difficulty to make ends meet. In addition, we show that accounting for
model uncertainty leads to different evidence than that produced by a standard model
selection procedure, which would point toward an increase in food and other non durables
consumption for all households.

The rest of the paper is organised as follows: in Section 2 we briefly introduce the
mechanisms driving the consumption effects of tax rebate and illustrate the Italian 2014
policy intervention; Section 3 describes the proposed BMA for PSM; Section 4 introduces
the SHIW dataset and reports the relevant descriptive statistics; Section 5 provides the
estimation results; Section 6 discusses the results and contains the final remarks.

2 Background

Tax rebate policies are common stabilising instruments applied by policymakers to re-
duce the impact of the business cycle: these fiscal interventions are aimed to increase
household spending, thus countering the negative effect of recessions. Their effects on
consumption, however, might be difficult to measure. On the one hand, the permanent
income hypothesis predicts that transitory policy interventions should not affect con-
sumption: if individuals smooth consumption over their lifetime, a tax rate is effective
only as long as is perceived as permanent. Moreover, the intervention might be antici-
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pated, which makes it more difficult to analyse if consumers adjust their behaviour before
actual implementation. On the other hand, if households face liquidity constraints, an
increase in disposable income could raise consumption towards its life-cycle/desired level,
thereby generating a positive effect. For a review of the related theoretical literature,
see Jappelli and Pistaferri (2010).

Empirical literature on the effects of tax reductions on household consumption has
relied either on dedicated surveys, where respondents are asked how they wish to use
their extra funds (see Neri et al., 2017, for a review) or on expenditure survey microdata,
such as the one employed in this paper. As for the evaluations on general household con-
sumption and expenditure surveys, Wilcox (1989), Parker (1999), and Souleles (2002)
find a positive effect of tax cuts on consumption using a difference-in-difference ap-
proach. The findings provided by Souleles (1999) suggest that tax refunds are used for
non-durables by low-income/low-liquidity households, thus finding evidence of the role
of liquidity constraints, whereas high-income/high-liquidity individuals seem to prefer
durables expenditure. Johnson et al. (2006) find confirmation of a positive effect of tax
rebate policies, whose magnitude seems to be more pronounced in the case of liquidity
constraints. According Agarwal et al. (2007), consumers initially tend to save the bonus,
by increasing their credit line and thereby paying off debt, while an increase in spending
occurs afterwards. Finally, Parker et al. (2013) find that households spend most of the
rebate in durables.

Heim (2007) warns that the insights from these empirical findings should be inter-
preted with care: results tend to vary depending on the selected sample, the targeted
expenditure component, and the set of regressors used in the treatment evaluation model.
It is worth recalling that the positive effect on consumption of tax interventions is only
partly supported by the theoretical background and its evidence in empirical studies
might well be the result of non-obvious modelling choices. Conclusions on the effective-
ness of these policies should therefore drawn with caution, considering how costly they
may be.

According to Government estimates, the 2014 Italian Decree Law 66/2014, also
known as “Renzi bonus”, entailed a total transfer of e5.9 billion to households (for
about 10 million employees), which amounts to 0.4% of GDP. From a technical point of
view, the tax rebate was translated into an increase in the monthly salary or pension by
e80. Recipients were payroll employees or retired workers with a total annual income
between e8145 and e26000. The rebate was delivered directly in the monthly check,
starting in May 2014. Because the eligibility status was based on the 2014 income, which
has been verified only in 2015, several cases of classifications of people near the lower
threshold have occurred. In fact, it was estimated that about 1.5 million people were
incorrectly classified as eligible, and had to reimburse their bonus. Finally, it is worth
noting that the standard bonus amount of e80 was reduced for those people whose in-
come was e24000-26000 and for workers who found a job in 2014, as the bonus was
proportional to the number of months spent in employment during the year.

Neri et al. (2017) provide some empirical evidence of the 2014 tax rebate based on the
SHIW dataset, by extracting a panel for the years 2012 and 2014, using PSM to match
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treated and control groups and finally evaluating the treatment effect by difference-in-
difference. On the one hand, this way of performing difference-in-difference eliminates
some between-group heterogeneity, thus making the parallel trend assumption likely
to be satisfied in practice. On the other, the procedure can be viewed as pure PSM
where the outcome is the difference between consumption/expenditure in 2014 and in
2012. The estimated change in household expenditure amounts to 50%–60% of the sum
received, with larger responses for low-liquidity/low-income households, thus confirming
a role for liquidity constraints.

3 Methods

3.1 Propensity Score Matching and Model Uncertainty

Let Di be a treatment binary indicator for the i-th individual, i = 1, . . . , n, with Di = 1
for treated subjects. Covariates with pre-treatment individual and household informa-
tion are collected into the n×k matrix X. The number of possible subsets of the columns
of X is 2k; let M be set of models (the model space), with Mj being its j-th member
(j = 1, . . . , 2k); also, define Xj be the matrix containing the corresponding subset of
columns of X.

The PS, that is the conditional probability of being treated given a chosen set of
characteristics, is usually described via a generalised linear model of the form

g (E [Di|xij ]) = x′ijβj , (1)

where g (·) is an appropriate link function associated with a binary choice model, xij

is the vector of covariates for individual i from matrix Xj , and βj is the vector of
parameters specific to Mj .

PSM is traditionally performed sequentially, where first the PS is computed via
Maximum-Likelihood (ML) estimation of βj for a chosen Mj , then matching of treated
with untreated individuals is performed on the basis of the estimated PS and, finally, the
treatment effect of interest is evaluated as the mean difference in the outcome y between
matched units. In particular, in the following we consider the average treatment effect
on the treated (ATET), which is often considered the most relevant quantity in empirical
applications and measures the effects on individuals for whom the treatment is intended.
Standard unconfoundedness and overlap conditions, needed for the identification of the
ATET, are assumed to hold hereafter.

Following the notation in Caliendo and Kopeinig (2008), the PSM estimator of the
ATET can be viewed as the estimator of

γj = EPr(xij)|Di=1{E [yi(1)|Di = 1,Pr(xij)]− E [yi(0)|Di = 0,Pr(xij)]}, (2)

where Pr(xij) = E [Di|xij ] is the PS and yi(1) and yi(0) are the so-called potential
outcomes. Since the ATET depends on the initial choice of the PS model Mj , the γ
parameter also bears the subscript j.

5



As discussed in Section 1, the choice of using one model Mj implies an assumption on
a true model specification, to which the parameter γj corresponds. If model uncertainty
is taken into account, the possibility to choose among the 2k specifications in M calls for
a model averaging procedure. By exploiting the sequential nature of PSM, it is possible
to link directly the uncertainty affecting the PS model to the subsequent treatment
effect estimation. In a frequentist setting, a model averaging estimator γ̂MA is given
by averaging model specific treatment effect estimates γ̂j across the model space M.
Formally, we have

γ̂MA =
2k∑
j=1

γ̂jωj , (3)

where ωj is the model’s weight.
Equation (3) is translated into the BMA framework by considering Mj and γj as

random variables: each model-specific weight is replaced by the posterior probability for
the PS model, which can be expressed as

P(Mj |D) =
p(D|Mj)P(Mj)

P(D)
,

where D is the data (treatment assignment, outcome variable, covariates), p(D|Mj) is
the marginal data density (also known as marginal likelihood) and P(Mj) is the prior
distribution for model Mj . Following Zigler and Dominici (2014), who define the model
averaging posterior distribution for the causal effect, the treatment evaluation problem
for the PSM ATET parameter γ can be expressed in terms of posterior expected values
of the model-specific γj as

E(γ|D) =

2k∑
j=1

E(γj |D,Mj)P(Mj |D).

By exploiting the “intermediate Bayesian” methodology in An (2010), further discussed
by Kaplan and Chen (2012), we can obtain the estimated counterpart of the above
equation as

γ̂BMA =

2k∑
j=1

γ̂jP̂(Mj |D), (4)

where γ̂j is a frequentist estimator of the ATET in (2) and P̂(Mj |D) is the estimated
posterior model probability.

In practice, Equation (4) is problematic to compute. First, it is analytically in-
tractable because in general there is no closed formula for model weights. Second, for
realistic values of k the cardinality of the model space is too large to make direct com-
putation feasible. Finally, posterior probabilities must be estimated not only for the PS
models P(Mj |D) but also for the parameters βj in (1) for which closed-form posterior
probabilities are generally not available either.
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The solutions put forward in the literature range from simple approximations (such
as using the BIC for the model posterior probabilities and the ML estimate as the mean
of parameters posteriors), to more sophisticated approaches such as the conjugate prior
method (Chen et al., 2008), the SSVS (George and McCulloch, 1993), and the RJMCMC
(Green, 1995), which is what we adopt here.

In standard BMA applications (Madigan et al., 1995; Hoeting et al., 1999) the model
and related parameters can only be retrieved via two-step procedures: model posteriors
are computed first, and in a second step the related parameters are obtained via an
additional MCMC from each sampled model. In the RJMCMC approach, instead, the
model and related parameters are sampled simultaneously at each MCMC iteration
and the model averaging posterior distribution of the parameter vector is immediately
available. Furthermore, approximations of the model posteriors are avoided and the
exploration of the full model space reduces to those models with a higher posterior
probability.

The RJMCMC approach overcomes many limitations of other approaches. Com-
pared to Kaplan and Chen (2014), we avoid BIC approximations of model posteriors as
well as two-step procedures. Furthermore, the standard sequential framework for PSM
estimation shields our procedure from feedback effects, that may hamper estimation of
the ATET in the Zigler and Dominici (2014) approach. Moreover, since parameter pos-
teriors are available, the sample of parameters from RJMCMC can be used to compute
a sample of PSs, whose distribution encompass the variability within each single model
and between different models. Finally, compared to the SSVS approach, RJMCMC does
not require strong parametric assumptions on the the priors and link function specifica-
tion. This makes SSVS computationally more convenient; in this application, however,
we mitigate the greater computational burden of RJMCMC by CPU parallelisation.

3.2 The RJMCMC technique

Formally, the RJMCMC technique can be seen as a variation of the standard Metropolis-
Hastings scheme (Hastings, 1970), in which the vector of parameters of interest β is
allowed to change its dimension across simulations. At each MCMC iteration h, a
model M (h) is proposed from the previous sampled M (h−1) by means of a proposal
distribution q(M (h)|M (h−1)). The corresponding parameter β(h) is derived by simply
transforming the ones of the previous model β(h−1) via a differential function f(·), so
that β(h) = f(β(h−1)). Since β(h) and β(h−1) may be vectors of different size, a matching
variable u is used. Suppose for example to have k = 3 covariates x1,x2,x3 with the
related set of parameters β1, β2, β3 and assume to start, at iteration h−1, from M (h−1) =
(x1,x2). If the proposal distribution draws a new specification by adding x3, then
M (h) = (x1,x2,x3). Since the dimension of the new model is larger, in order to compute

β(h) = (β
(h)
1 , β

(h)
2 , β

(h)
3 ) an additional term u is needed: β(h−1) = (β

(h−1)
1 , β

(h−1)
2 ) →

β(h) = f(β
(h−1)
1 , β

(h−1)
2 , u(h)).
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The probability of accepting a movement from (M (h−1),β(h−1)) to (M (h),βh) is

α = min

[
1,

P(M (h),β(h)|D)q(M (h−1)|M (h))

P(M (h−1),β(h−1)|D)q(M (h)|M (h−1))

∣∣∣∣∂f(β(h),M (h), u(h))

∂(β(h),M (h), u(h))

∣∣∣∣z(u(h))

]
where P(M (h),β(h)|D) is the target distribution, i.e. the joint posterior for the couple

(M (h),β(h)),

∣∣∣∣∂f(β(h),M(h),u(h))

∂(β(h),M(h),u(h))

∣∣∣∣ is the Jacobian term, and z(u(h)) is given by the ratio of

the density distributions of u referring respectively to M (h) and M (h−1). In this paper,
we use the implementation provided in the gretl package ParMA; we refer the reader to
Lucchetti and Pedini (2020) for an illustration of the package as well as further details
on RJMCMC and its application to generalised linear models.

For the PSM estimation procedure at hand, the issue of model uncertainty for the
PS model is handled by using the fact that RJMCMC delivers a sample of (β(h),M (h)),
h = 1, . . . ,H. Each parameter is used to compute a PS and the related treatment effect
γ̂(h). To obtain the counterpart of Equation (4), we simply compute the sample mean
as

γ̂BMA =

∑H
h=1 γ̂

(h)

H
. (5)

For the posterior variance V (γ|D), we can use

V̂ (γ|D) =

∑H
h=1 σ̂

2(h)

H
+

∑H
h=1(γ̂(h) − γ̂BMA)2

H − 1
, (6)

where the first element on the right hand-side is the sample mean of the variances σ̂2(h)

of the treatment effects, and the second one is the sample variance of the treatment
estimates. In this way, we account not only for the variability of γ̂ due to the model
uncertainty and the PS, but also for the inner variability of the parameter γ itself.

4 The data

For our empirical analysis, we use Bank of Italy’s SHIW dataset. The SHIW collects
micro-data on the economic and financial behaviour of Italian households with biannual
periodicity. It covers a sample of individuals belonging to about 8000 households across
300 municipalities, about half of which are panel households who were also interviewed
in earlier waves. Households are selected randomly in two stages: first, municipalities
are chosen from a stratified sample by region and population guaranteeing that panel
units are included, then households are drawn from each municipality. Two datasets
are available, that can be matched at the individual and household level. One dataset
is cross-sectional, which includes additional information specific to certain waves, such
as special modules for research purposes or inquiries about the effects of new reforms;
the other one is a historical dataset, that includes harmonised waves for a subset of
households since 1989.
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Table 1: Outcome variables description

Variable Description

c tot Total consumption (monthly)
c food Food consumption (monthly)
c notd Total consumption of non durable goods (monthly)
c car Total consumption of cars/means of transportation (monthly)
c otherd Total consumption of other durable goods (monthly)

Here, we use the 2014 wave and the historical panel data for the years 2012 and
2014. The cross-section dataset includes information about the 2014 tax credit: whether
the interviewed household received the bonus, how many components were benefited,
the amount received and spent. As pointed out by Neri et al. (2017), this particular
part of the survey mirrors the one in Shapiro and Slemrod (2003a), who introduced the
use of survey responses to analyse tax rebate impacts. The panel datasets allows us
instead to access information on both pre- and post-treatment information. For a group
of panel households (some of which eligible for the bonus) the consumption pattern can
be observed across the two years and the impact of the bonus can thus be inferred. By
joining the two data sources, we build a sample of 4, 459 households observed in 2012
and 2014, of which 864 were eligible for the bonus (19.4%). Individual observations refer
to households, so the assignment status indicates whether at least one person is eligible.

The outcome variables we consider are: total consumption, food consumption, non-
durables expenditure, car-related consumption, and other durables (furniture, appli-
ances). All variables are monthly. The definitions of the outcome variables are listed
in Table 1 and Table 2 reports the related summary statistics for the selected sample.
Total consumption decreased from 2012 to 2014 in both treated and control units. As for
specific categories, it is interesting to note that food consumption, car consumption and
other durables increased in 2014 for the treated group, whereas non durable consumption
decreased.

The covariates used to build the PS model are described in Table 3 and their summary
statistics are reported in Table 4. These variables are relative to the pre-treatment period
2012 and reflect individual socio-cultural and economic condition.

As it can be seen from Table 4, most tax credit recipients belong to the blue-collar and
office worker category. However, the high share of “not currently employed” individuals
(either unemployed, or retired, or otherwise outside the labour force) in the treated group
deserves some clarification. An explanation comes from the definition of QUALP10: the
variable refers only to the declared head of household, which may differ from the actual
recipient. From the 2014 wave, it is impossible to discern which component inside
the household is the true receiver since the binary treatment assignment refers to the
household as a whole.
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Table 2: Outcome variables: main summary statistics

2014 2012

Full sample treated control Full sample treated control

c tot

mean 1948.3 2129.0 1904.9 2149.2 2326.7 2106.5
std.dev. 1174.3 1031.3 1202.3 1276.3 1107.8 1310.2
median 1683.3 1875.0 1600.0 1858.3 2107.5 1791.7

min 133.33 300.00 133.33 -583.33 -416.67 -583.33
max 15617 10742 15617 15867 11937 15867

c food

mean 545.08 616.61 528.37 544.95 597.85 532.23
std.dev. 295.72 281.05 296.75 301.64 283.55 304.50
median 500.00 600.00 500.00 500.00 550.00 500.00

min 50.000 100.00 50.000 50.000 50.000 50.000
max 3500.0 2500.0 3500.0 3000.0 2700.0 3000.0

c notd

mean 1866.1 1989.8 1836.4 2065.8 2224.4 2027.7
std.dev. 1056.1 853.25 1097.3 1175.7 1021.1 1206.9
median 1600.0 1800.0 1600.0 1800.0 2045.0 1745.0

min 150.00 550.00 150.00 150.00 500.00 150.00
max 14200 6750.0 14200 15867 11012 15867

c car

mean 51.473 94.736 41.076 49.378 58.688 47.141
std.dev. 283.72 392.48 249.60 274.60 271.86 275.24
median 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

min -1000 -666.67 -1000 -2416.7 -2416.7 -1583.3
max 5166.7 5166.7 4166.7 4333.3 2083.3 4333.3

c otherd

mean 30.745 44.421 27.458 34.031 43.662 31.717
std.dev. 141.04 159.27 136.11 117.06 136.67 111.73
median 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

min 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
max 4166.7 2500.0 4166.7 2750.0 1666.7 2750.0

Note: Negative value in car consumption are due the definition of the variable,
which includes depreciation.
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Table 3: Covariates description

Variable Description

NEQU number of components in the household (normalised by age)
CLY2 categorical variable for income class (5 categories by quintiles)
AREA3 categorical variable for geographical area (3 categories)
ETA5 categorical variable for head of household age class (5 categories)
STUDIO categorical variable for head of household educational level (6 categories)
QUALP categorical variable for head of household employment activity (10 categories)
CONDGEN categorical variable for perceived economic hardship (6 categories)

Bonus receivers seem to hold mainly to middle school - high school level of educational
attainment, while the income class is rather heterogeneous. As for the geographical
area, about 50% of the units live in the North. The CONDGEN variable is particularly
important here: it contains an indicator of perceived economic hardship. Treated units
belong mostly to the middle category (moderate or little economic problems).

5 Estimation results

5.1 PS models

For the RJMCMC application presented here we use a Probit model for the PS, with
a uniform prior distribution for models, P(Mj), and a Zellner-g type (Zellner and Siow,
1980) for the PS model parameter vector βj .

These prior choices are standard in the BMA framework. A uniform prior distribution
for models takes each PS model as equally likely a priori and is considered a conservative
choice that does not favour any particular specification. The Zellner prior for βj (in
symbols βj ∼ N(0, n(X ′jXj)

−1) ), takes the correlation among covariates (except for the
constant, for which a diffuse prior is generally used) into account, differently from the
often-used ridge prior. The intercept, moreover, is included in every model specification
so, as a consequence, all other covariates are centred (Fernandez et al., 2001).

The model proposal distribution follows the one by Madigan et al. (1995), who
propose to update the model specification at each step by simply adding or deleting one
covariate. A more complex alternative which allows for more general movement patterns
between models is also possible, but explorations in this direction made no significant
difference. As for the differential function f(·) requested for the definition of new model
parameters βj , we refer to Lucchetti and Pedini (2020), where the automatic RJMCMC
sampler by Green (2003) and Lamnisos et al. (2009) is used. To sample models and
parameters, we use 500000 MCMC iterations with a preliminary burn-in stage of 50000.
Finally, the whole algorithm was performed using eight parallel Markov chains.

In Table 5 we report, for each variable, the posterior inclusion probability (PIP), the
frequency with which a covariate is included in the PS specification, giving an indication
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Table 4: Covariates main summary statistics (pre-treatment period)

Full sample treated control

NEQU

mean 1.700 1.973 1.635
std.dev. 0.570 0.548 0.555
median 1.500 2.000 1.500
min 1.000 1.000 1.000
max 4.400 3.800 4.400

CLY2

category 1 0.172 0.075 0.195
category 2 0.184 0.155 0.191
category 3 0.188 0.206 0.184
category 4 0.215 0.267 0.202
category 5 0.241 0.297 0.228

AREA3

North 0.416 0.471 0.403
Centre 0.196 0.206 0.194
South/Islands 0.388 0.323 0.403

ETA5

≤ 30 0.025 0.051 0.019
31− 40 0.095 0.198 0.070
41− 50 0.195 0.339 0.161
51− 65 0.323 0.337 0.320
> 65 0.362 0.075 0.430

STUDIO

None 0.038 0.009 0.045
Elementary school 0.216 0.077 0.249
Middle school 0.353 0.455 0.328
High school 0.270 0.344 0.253
Bachelor degree 0.111 0.108 0.112
Post-graduate 0.012 0.007 0.013

QUALP10

Blue-collar worker 0.149 0.359 0.099
Office worker 0.136 0.292 0.098
Junior manager 0.023 0.032 0.021
Manager 0.014 0.010 0.014
Member arts/professions 0.022 0.008 0.025
Sole proprietor 0.008 0.009 0.008
Freelance 0.041 0.027 0.044
Family business 0.008 0.003 0.009
Active shareholder 0.012 0.012 0.012
Not employed 0.589 0.248 0.670

CONDGEN

Great difficulty 0.189 0.176 0.191
Difficulty 0.159 0.174 0.156
Some difficulty 0.300 0.340 0.291
Fairly easy 0.265 0.257 0.267
Easy 0.064 0.046 0.068
Very easy 0.023 0.007 0.026
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of the variable’s relevance. For the corresponding β, we report the sample mean and
standard deviation, in two varieties: unconditional (labelled “Mean” and “St. Err.”)
and conditional on variable inclusion (labelled “C. Mean” and “C. St. Err”); the latter
are computed only on model specifications where the variable appears with a nonzero
coefficient.

According to the PIP indicator, the number of household components and all the
income classes seem to be extremely relevant, together with the South/Islands geograph-
ical dummy. As for the age categories, the PIP for all but the 31–40 interval are close
to 1. For the education variable STUDIO, only the middle school and post-graduate
categories report a PIP greater than 0.50. For the job type variable QUALP10, we
have instead that most dummies exhibit a large inclusion frequency (with different in-
tensity) except for office workers and sole proprietors. Among the economic deprivation
dummies, the category with no perceived difficulties seem to show a significant effect.

In order to give the reader an idea of the impact of model uncertainty in the PS
model specification, we report in Table 6 the estimation results for a probit model where
all the covariates are used (Full) and for the 10 top-ranked probit models, from M1 to
M10, that are the 10 models with the largest P̂(Mj |D) from the RJMCMC sampler. We
use ordinary frequentist estimation methods so as to adhere as closely as possible to the
common practice in Propensity Score modelling. Although BMA should not be regarded
as a model selection procedure, it is interesting to examine which models emerged with
the highest posterior probability using, for example, information criteria, such as the
BIC. Note that a complete scan of the model space for the lowest BIC would imply, in
our case, analysing 230 models, which is of course computationally infeasible.

Alternatively, a stepwise model selection procedure to identify the best models could
be employed. However, this procedure may not be optimal, as some specifications may be
skipped simply as a result of the sequential deletion/addition of variables. In this respect,
the model space exploration provided by the RJMCMC grants a more widespread and
computationally efficient analysis of the model set.

According to the posterior model probabilities, M1 appears to be slightly more prob-
able than the others, with P̂(Mj |D) ≈ 0.05, which, interestingly, is associated to model
M1 having the lowest BIC value among the top 10 selected.

5.2 ATET estimation

In this section, we compare the ATET estimates for our proposed BMA-based procedure
with those yielded by the set of 10 top-ranked models selected according to the sampling
frequency of the RJMCMC. Matching is performed using pairwise nearest neighbour
with replacement, using 0.01 as caliper.

Table 7 reports the balancing properties resulting from the matching in the RJMCMC
PS models. In order to assess the quality of the matching procedure, we perform paired
and unpaired t-tests on the variables mean difference between treated and control units.
As a summary measure of the test rejection rate, we use here the average p-value of
the above tests, conditional on variable inclusion, over the 500000 RJMCMC samples;

13



Table 5: PS model: RJMCMC sampling statistics for the parameter vector β

Mean St. Err. PIP C. Mean C. St. Err.

Intercept -1.114 0.029 1.000 -1.114 0.0291

NEQU 0.322 0.056 1.000 0.322 0.056

CLY2 (Ref: category 1)

Category 2 0.398 0.107 0.986 0.404 0.096
Category 3 0.521 0.109 0.992 0.525 0.100
Category 4 0.553 0.117 0.992 0.557 0.106
Category 5 0.585 0.135 0.991 0.590 0.124

AREA3 (Ref: North)

Center 0.000 0.0113 0.024 0.003 0.074
South/Islands -0.130 0.091 0.739 -0.175 0.0573

ETA5 (Ref: ≤30)

31− 40 -0.014 0.072 0.075 -0.185 0.196
41− 50 -0.299 0.111 0.964 -0.310 0.096
51− 65 -0.544 0.104 1.000 -0.544 0.104
> 65 -0.999 0.126 1.000 -0.999 0.126

STUDIO (Ref: None)

Elementary school 0.004 0.034 0.054 0.0796 0.123
Middle school 0.127 0.096 0.705 0.181 0.059
High school -0.032 0.078 0.192 -0.165 0.099
Bachelor degree -0.085 0.146 0.305 -0.279 0.126
Post-graduate -0.379 0.425 0.512 -0.740 0.292

QUALP10 (Ref: Blue collar)

Office worker -0.002 0.022 0.033 -0.049 0.108
Jounior manager -0.252 0.236 0.597 -0.423 0.146
Manager -0.573 0.343 0.811 -0.707 0.224
Member arts/professions -1.169 0.213 1.000 -1.169 0.213
Sole proprietor -0.051 0.168 0.110 -0.465 0.253
Freelance -0.889 0.129 1.000 -0.889 0.129
Family business -1.294 0.330 0.999 -1.295 0.328
Active shareholder -0.535 0.327 0.803 -0.667 0.214
Not employed -0.764 0.067 1.000 -0.764 0.067

CONDGEN (Ref: Great difficulty)

Difficulty 0.002 0.017 0.034 0.054 0.072
Some difficulty 0.007 0.030 0.085 0.088 0.061
Fairly easy -0.038 0.076 0.238 -0.158 0.072
Easy -0.090 0.150 0.313 -0.289 0.125
Very easy -0.789 0.267 0.975 -0.809 0.238
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Table 6: PS model: estimation results for the full and 10 top ranked Probit models (std.
errors in parenthesis)

Full M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Intercept -0.275 -0.963 -0.950 -0.981 -0.984 -0.883 -0.946 -0.895 -0.967 -0.751 -0.970
(0.254) (0.116) (0.116) (0.116) (0.115) (0.118) (0.116) (0.118) (0.116) (0.120) (0.115)

NEQU 0.291 0.345 0.341 0.347 0.301 0.307 0.336 0.306 0.343 0.326 0.298
(0.053) (0.049) (0.049) (0.049) (0.047) (0.051) (0.050) (0.051) (0.049) (0.050) (0.047)

CLY2 (Ref: Category 1)

Category 2 0.433 0.398 0.401 0.396 0.407 0.412 0.401 0.411 0.398 0.405 0.410
(0.099) (0.096) (0.096) (0.096) (0.095) (0.096) (0.096) (0.096) (0.096) (0.095) (0.095)

Category 3 0.606 0.507 0.512 0.499 0.531 0.549 0.513 0.544 0.505 0.540 0.535
(0.102) (0.094) (0.094) (0.094) (0.093) (0.095) (0.094) (0.095) (0.094) (0.094) (0.093)

Category 4 0.670 0.518 0.524 0.509 0.579 0.594 0.531 0.591 0.515 0.569 0.583
(0.108) (0.094) (0.094) (0.094) (0.091) (0.097) (0.094) (0.096) (0.094) (0.095) (0.091)

Category 5 0.790 0.532 0.547 0.503 0.613 0.675 0.568 0.659 0.520 0.617 0.627
(0.122) (0.099) (0.099) (0.099) (0.095) (0.108) (0.100) (0.107) (0.099) (0.102) (0.095)

AREA3 (Ref: North)

Center -0.021 - - - - - - - - - -
(0.067) - - - - - - - - - -

South/Islands -0.183 -0.171 -0.166 -0.172 - -0.193 -0.176 -0.195 -0.167 -0.163 -
(0.061) (0.056) (0.056) (0.055) - (0.056) (0.056) (0.056) (0.056) (0.056) -

ETA (Ref: ≤30)

31− 40 -0.232 - - - - - - - - - -
(0.144) - - - - - - - - - -

41− 50 -0.498 -0.280 -0.285 -0.294 -0.278 -0.288 -0.282 -0.301 -0.300 -0.306 -0.284
(0.139) (0.075) (0.075) (0.075) (0.075) (0.075) (0.075) (0.075) (0.075) (0.076) (0.075)

51− 65 -0.742 -0.513 -0.522 -0.521 -0.524 -0.517 -0.514 -0.525 -0.531 -0.562 -0.533
(0.138) (0.074) (0.074) (0.074) (0.073) (0.074) (0.074) (0.074) (0.074) (0.075) (0.074)

> 65 -1.222 -0.954 -0.965 -0.956 -0.962 -0.959 -0.958 -0.961 -0.967 -1.059 -0.973
(0.155) (0.097) (0.097) (0.097) (0.097) (0.097) (0.097) (0.097) (0.097) (0.099) (0.097)

STUDIO (Ref: None)

Elementary school -0.268 - - - - - - - - - -
(0.195) - - - - - - - - - -

Middle school -0.194 0.174 0.168 0.191 0.187 0.171 0.173 0.186 0.185 - 0.181
(0.195) (0.052) (0.052) (0.052) (0.052) (0.052) (0.052) (0.052) (0.052) - (0.052)

High school -0.362 - - - - - - - - -0.180 -
(0.199) - - - - - - - - (0.059) -

Bachelor’s degree -0.491 - - - - - - - - -0.320 -
(0.211) - - - - - - - - (0.090) -

Post-graduate -0.954 - -0.579 - - - - - -0.611 -0.807 -0.603
(0.327) - (0.258) - - - - - (0.259) (0.263) (0.258)

QUALP10 (Ref: Blue collar)

Office worker -0.058 - - - - - - - - - -
(0.082) - - - - - - - - - -

Junior manager -0.413 -0.435 -0.422 - -0.439 -0.393 -0.418 - - -0.403 -0.424
(0.152) (0.141) (0.141) - (0.141) (0.141) (0.141) - - (0.141) (0.141)

Manager -0.668 -0.748 -0.678 -0.697 -0.770 -0.733 -0.743 -0.686 -0.627 -0.619 -0.697
(0.228) (0.210) (0.215) (0.210) (0.210) (0.212) (0.211) (0.212) (0.215) (0.217) (0.215)

Member arts/prof. -1.141 -1.218 -1.181 -1.174 -1.218 -1.181 -1.192 -1.139 -1.137 -1.127 -1.181
(0.211) (0.201) (0.201) (0.200) (0.201) (0.202) (0.201) (0.201) (0.200) (0.202) (0.201)

Sole proprietor -0.461 - - - - - - - - - -
(0.249) - - - - - - - - - -

Freelance -0.937 -0.898 -0.902 -0.869 -0.900 -0.891 -0.897 -0.865 -0.874 -0.907 -0.903
(0.134) (0.127) (0.127) (0.127) (0.127) (0.127) (0.127) (0.127) (0.127) (0.128) (0.127)

Family business -1.346 -1.250 -1.261 -1.210 -1.257 -1.261 -1.257 -1.226 -1.223 -1.301 -1.269
(0.321) (0.313) (0.314) (0.313) (0.314) (0.317) (0.315) (0.317) (0.313) (0.315) (0.315)

Active shareholder -0.733 -0.672 -0.679 -0.633 -0.630 -0.680 -0.674 -0.645 -0.642 -0.679 -0.639
(0.216) (0.210) (0.210) (0.210) (0.210) (0.211) (0.211) (0.210) (0.210) (0.211) (0.210)

Not employed -0.822 -0.773 -0.775 -0.748 -0.781 -0.763 -0.766 -0.740 -0.751 -0.793 -0.782
(0.073) (0.063) (0.063) (0.063) (0.063) (0.063) (0.063) (0.063) (0.063) (0.064) (0.063)

CONDGEN (Ref: Great difficulty)

Difficulty -0.013 - - - - - - - - - -
(0.087) - - - - - - - - - -

Some difficulty -0.023 - - - - - - - - - -
(0.082) - - - - - - - - - -

Fairly easy -0.188 - - - - -0.180 - -0.192 - - -
(0.094) - - - - (0.065) - (0.065) - - -

Easy -0.328 - - - - -0.330 -0.232 -0.355 - - -
(0.136) - - - - (0.115) (0.109) (0.115) - - -

Very easy -0.859 -0.741 -0.753 -0.758 -0.739 -0.886 -0.776 -0.910 -0.770 -0.706 -0.751
(0.240) (0.221) (0.222) (0.222) (0.221) (0.225) (0.222) (0.226) (0.223) (0.224) (0.222)

BIC 3633.0 3563.4 3566.2 3564.8 3564.5 3567.7 3567.1 3567.3 3567.0 3568.6 3566.8

P̂(M |D) - 0.0487 0.0231 0.0188 0.0170 0.0165 0.0143 0.0138 0.0118 0.0105 0.01039
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in other words, we average the p-values over all models that include that particular
variable.

The PIP associated with each variable is reported in Table 5. As Table 7 shows, the
null hypotheses of no mean differences in the covariates between the treated and control
group, in both the paired and unpaired case, cannot be rejected.

The ATET estimator is computed in the same way as Neri et al. (2017): we take
the difference between the 2014 and 2012 consumption ATET values, using the same
matching group for both. This strategy produces an outcome equivalent to a difference-
in-difference, where the comparison groups are adjusted for PS (sometimes known as
propensity score diff-in-diff). Similar results could be obtained by taking as outcome
variable the consumption difference between 2014 and 2012: even if the final ATET
estimate will be the same, a different standard error will be produced. These results are
not presented, but available upon requests.

Figure 1 shows the distributions of the ATET estimates across the model space for
the five outcomes considered (see also Table 1 for a description). Each panel contains
a kernel estimate of ATET density across the whole set of sampled models. All plots
span a large range in ATET values. Null or negative impacts of the tax rebate can be
found on the left tail of the densities for total, non durables, food and other durables
consumption; the probability of such effects is even larger for car-related expenditure.

The final BMA estimates of the ATET are reported at the top of Table 8, where the
averages across samples are computed as in Equation (5) and the associated standard
error is evaluated as the square root of the variance in Equation (6). Notice that none
of the ATET estimates are statistically significant. For comparison, the rest of the
Table reports the ATET estimates based on the selected specification choices for the PS
model, that are Full and M1 to M10. Test results for the related balancing conditions
are available upon request.

Note that the results produced by models M1-M10 are quite heterogeneous. To be
more specific, models M1, M2 and M6 produce a significant effect for total, non durables
and food consumption, model M4 and M10 show significant ATET for food consumption
while models M8 and M9 exhibit significant effects for non durables/food and total/non
durables consumption, respectively.

The implication of Figure 1 and Table 8 is clear: blindly committing to model se-
lection methods may lead to ignoring the fact that very similar specification, nearly
equivalent in terms of fit and Information Criteria, may lead to dramatically different
estimates of the ATET.

In order to further investigate the potential role of liquidity constraints, we estimate
the effect of the tax rebate on a subset of households that are subject to financial
strain and/or economic deprivation. Following Neri et al. (2017), two subsamples are
selected. The first one is based on financial wealth, where a household is classified as
liquidity constrained if its net financial wealth (difference between financial activities
and liabilities) is smaller than half of its labour income (Broda and Parker, 2014). The
second one embeds those families who perceive great difficulties to make ends meet, i.e.
those belonging to the first category of the CONDGEN variable.
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Table 7: Balancing conditions in BMA-RJMCMC: Paired and Unpaired t-tests p-values

Unpaired p-value Paired p-value

NEQU 0.62100 0.42821

CLY2 (Ref: Category 1)

Category 2 0.53506 0.32832
Category 3 0.57794 0.38833
Category 4 0.53781 0.3228
Category 5 0.62168 0.41719

AREA3 (Ref: North)

Center 0.37074 0.24227
South/Islands 0.51887 0.32847

ETA5 (Ref: ≤30)

31 − 40 0.48597 0.32464
41 − 50 0.62956 0.43011
51 − 65 0.61098 0.36042
> 65 0.69072 0.35273

STUDIO (Ref: None)

Elementary school 0.66068 0.48884
Middle school 0.40851 0.21517
High school 0.45373 0.26462
Bachelor’s degree 0.51339 0.37247
Post-graduate 0.43066 0.41001

QUALP10 (Ref: Blue collar)

Office worker 0.61926 0.42765
Junior manager 0.60105 0.48635
Manager 0.49527 0.42713
Member arts/professions 0.60515 0.48871
Sole proprietor 0.39222 0.38406
Freelance 0.59269 0.45853
Family business 0.58023 0.49427
Active shareholder 0.40669 0.37210
Not employed 0.75256 0.50859

CONDGEN (Ref: Great difficulty)

Difficulty 0.22100 0.13715
Some difficulty 0.57952 0.41325
Fairly easy 0.62906 0.45421
Easy 0.55725 0.43848
Very easy 0.61658 0.50111
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Table 8: ATET estimates: BMA, Full and 10 top-ranked models

BIC ATET

c tot c food c notd c car c otherd

BMA 77.042 25.192 65.008 4.837 7.196
(77.394) (20.630) (66.969) (32.857) (11.159)

Full 3633.0 59.398 23.519 51.373 13.297 -5.272
(72.915) (20.004) (64.384) (22.978) (10.049)

M1 3563.4 102.826 * 33.083 ** 90.360 * 2.329 10.137
(61.661) (15.803) (54.292) (20.734) (8.594)

M2 3566.2 120.210 * 36.187 ** 114.348 ** 1.013 4.850
(64.365) (16.083) (56.676) (20.642) (8.745)

M3 3564.8 70.292 25.430 64.482 5.898 -0.089
(62.055) (15.949) (53.891) (21.300) (9.961)

M4 3564.5 80.933 29.035 * 87.173 -13.498 7.258
(61.708) (16.024) (53.681) (22.854) (8.835)

M5 3567.7 91.222 27.845 60.156 29.010 2.056
(63.273) (17.215) (54.031) (23.628) (8.955)

M6 3567.1 116.929 * 32.164 * 98.521 * 6.220 12.188
(62.398) (16.429) (53.931) (21.578) (9.461)

M7 3567.3 69.808 17.924 43.890 14.364 11.554
(64.815) (17.383) (57.261) (21.579) (9.147)

M8 3567.0 88.561 38.410 ** 98.652 * -11.562 1.472
(63.614) (16.510) (55.961) (21.027) (8.502)

M9 3568.6 118.153 ** 9.884 98.390 * 19.230 0.534
(57.891) (17.447) (51.281) (20.694) (8.724)

M10 3566.8 44.476 34.488 ** 72.549 -30.044 1.970
(61.937) (15.785) (53.624) (23.337) (8.976)

∗: p-value < 0.10, ∗∗: p-value < 0.05, ∗∗∗: p-value < 0.01. Standard errors in
parentheses.
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Figure 1: ATET distributions across the model space
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Table 9 reports the ATET estimates for the BMA-based PSM: the effect of the tax
rebate on food consumption is statistically significant if only households facing economic
deprivation are considered, which validates the liquidity constraint hypothesis. It is
worth emphasising that a model selection procedure would have led us to conclude that
the rebate was effective (see the ATET for food and non durables consumption using
M1 in Table 8) for the whole sample of households, which would have been somewhat at
odds with extant evidence in the related literature. Instead, model averaging coherently
points toward a role for liquidity constraints, as the tax rebate has a significant effect on
food expenditure only for those households struggling to make ends meet. This example
effectively shows that model selection matters and how BMA makes it possible to handle
model uncertainty, leading to a more complete portrait of the phenomenon and a more
genuine evaluation of the ATET.
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Table 9: BMA ATET estimates: liquidity constraints

c tot c food c notd c car c otherd

Financial wealth 9.422 23.397 3.217 6.193 0.012
(76.538) (23.129) (62.675) (34.451) (12.627)

Economic deprivation 9.649 79.327** 10.137 -5.340 4.912
(134.659) (37.961) (128.707) (24.708) (11.536)

∗: p-value < 0.10, ∗∗: p-value < 0.05, ∗∗∗: p-value < 0.01. Standard errors in paren-
theses. Financial wealth: 2, 781 households, 628 treated (23%) - RJMCMC with
100000 iterations after 10000 of burn-in. Economic deprivation: 841 households, 152
treated (18%). For the second subsample, the QUALP10 variable is expressed in
three categories (employee, self-employed, not employed) for identification purposes
as well as the post-graduate educational level class is embodied in the Bachelor’s
degree category. RJMCMC with 500000 iterations after 50000 of burn-in.

6 Discussion and conclusions

Model uncertainty is an impelling problem in any model building procedure, but little
attention to the topic is devoted in PSM literature. In this article, we propose a BMA
solution based on RJMCMC for the PSM estimation of treatment effects. Using the
SHIW dataset, we estimate the consumption effects of the Italian 2014 tax rebate.

Results show that the impact of the tax rebate on consumption is quite different
across the expenditure categories considered. In fact, the additional consumption is
mainly driven by an increase in the expenditure for non durable goods. This result is
in line with that of Neri et al. (2017), who report similar findings for the self-reported
spending of the tax rebate in the SHIW survey. However, such increase in expenditure
is statistically insignificant for all of the consumption categories considered here.

Perhaps more interestingly, the problem of model uncertainty is evident in our ap-
plication. By using a model selection procedure, we show that slightly different choices
for the PS specification can lead to markedly different estimates of the ATET. Consider,
for instance, the estimated ATET resulting from the PS model with the smallest BIC
(see Section 5.1). Judging from these, the effects on total, non durables and food con-
sumption turn out to be statistically significant. Such results may enable the conclusion
that tax credit is indeed an effective policy instrument in contrast to the consumption
smoothing theory. However, after taking model uncertainty into account, this positive
effect is called into question, as the BMA-based PSM estimates point toward statistically
insignificant treatment effects for every consumption category. If any, model averaging
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suggests that the tax rebate had an effect on food expenditure for liquidity constrained
households, in line with previous findings.
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