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Abstract

This paper addresses the question of the relevance of macroeconomic determinants

in forecasting the evolution of stock markets volatilities and co-volatilities. Our

approach combines the Cholesky decomposition of the covariance matrix with the

use of the Vector Logistic Smooth Transition Autoregressive Model. The model

includes predetermined variables and takes into account the asymmetries in volatility

process. Structural breaks and nonlinearity tests are also implemented to determine

the number of regimes and to identify the transition variables. The model is applied

to realized volatility of stock indices of several countries in order to evaluate the role

of economic variables in predicting the future evolution of conditional covariances.

Our results show that the forecast accuracy of our model is signi�cantly di�erent

from the accuracy of the forecasts obtained via other standard approaches.
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Does macroeconomics help in predicting stock
markets volatility comovements? A nonlinear
approach∗

Andrea Bucci Giulio Palomba Eduardo Rossi

1 Introduction

Understanding how �nancial volatility and co-volatilities react to changes in macroe-

conomic and �nancial conditions is critical for investors and �nancial institutions.

The study of volatility and co-volatility dynamics contributes to the knowledge of

the links through which the macroeconomic and �nancial shocks propagate across

markets and asset classes. It is worth noticing that the existing literature on volatil-

ity determinants focuses almost exclusively on univariate volatility and linear mod-

els. In a �rst attempt, Schwert (1989) analyses the relation between volatility and

the level of economic activity, reporting little e�ects of macroeconomic variables

on volatility dynamics. More recently, Mele (2007) suggests that determinants of

the time-varying risk premium are viable candidates for volatility forecasting. Paye

(2012) further shows that volatility is persistent and countercyclical, while the pre-

dictive ability of the exogenous variables seems to be poor in his �ndings. Chris-

tiansen, Schmeling, and Schrimpf (2012) extends this work, including a larger set

of predictors. Their linear framework underlines the utility of �nancial variables

as volatility determinants, while macroeconomic variables seem not able to produce

superior out of sample forecasts. In this paper, we contribute to this literature by

extending the analysing to the relationship between volatilities and co-volatilities

and macroeconomic and �nancial variables in a multivariate framework.

Our analysis investigates the potential of macroeconomic variables in predict-

∗We wish to thank all the participants of the Eighth Italian Congress of Econometrics and
Empirical Economics (ICEEE) held in Lecce from January 24 to 26, 2019.
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ing realized volatilities and covariances of major stock market indexes. We propose

a new nonlinear speci�cation of volatilities and co-volatilities that links macroeco-

nomic and �nancial factors to the multivariate volatility process. In this way, we

are able to investigate the spillover e�ects of macroeconomic and �nancial shocks

among markets. This is in line with the growing interest in the nature of volatility

spillovers between markets. Diebold and Yilmaz (2009), for example, provide evi-

dence of volatility spillovers during �nancial crisis, while Beirne, Caporale, Schulze-

Ghattas, and Spagnolo (2009) show that major markets volatility a�ects conditional

variances in many emerging markets and that this behaviour is time-varying. Xiong

and Han (2015), on the contrary, analyse the volatility spillover e�ect between stock

market and foreign exchange market, proving that the nature of the spillover e�ect

is bi-directional and asymmetric, since a change in foreign market has a larger e�ect

on stock market respect to the inverse relation.

Relying on the results of the literature on ex-post volatility measurement based

on high-frequency prices (see Ait-Sahalia and Jacod, 2014), we construct monthly re-

alized measures using low-frequency daily data, which are immune from microstruc-

ture noise. However, low frequency prices (e.g. monthly frequency) are characterized

by discretization error which is inevitably larger than the one generated with high

frequency sampling. Recently, Bollerslev, Patton, and Quaedvlieg (2017) have pro-

posed dynamic attenuation models to limit the impact of heteroskedastic measure-

ment errors on the parameter estimation. They introduce dynamic speci�cations

for the high-frequency realized covariances, in which the autoregressive parameters

of the models depend linearly on the measurement errors of covariance matrix es-

timates. Since we model the Cholesky factors of the monthly realized covariance

matrices in a nonlinear set up, this strategy cannot be implemented.

A few nonlinear models have been proposed in the realized volatility literature.

Martens, De Pooter, and Van Dijk (2004) �rstly introduce a long memory model

with asymmetries and structural breaks for realized volatility, while McAleer and

Medeiros (2008) extend this approach, testing for the presence of structural breaks

and de�ning nonlinearity tests. These authors rely on a smooth transition spec-

i�cation and consider the possibility to include external exogenous variables into

the model structure. Recently, Bucci (2019a,b) studies whether using a non-linear

tool, like neural networks, combined with the use of exogenous variables may help

to predict realized volatility in the univariate and multivariate framework.
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Building on the existing literature, we propose a new multivariate speci�cation

based on the Vector Smooth Transition Autoregressive model with lagged exogenous

variables both in linear and nonlinear components (hereafter VLSTAR). This class

of models explicitly assumes that the regime switch is determined by an observable

switch or transition variable. The use of this kind of models is coherent with the em-

pirical �nding that volatility is higher in presence of unexpected news and may lead

to a better understanding of the relationships between a set of exogenous variables

and the volatility. The forerunner model of this literature, introduced by Quandt

(1958), proposed a coe�cient changing model related to the values of an observable

stochastic variable. Later, several extensions, like the smooth transition model in-

troduced and developed by Chan and Howell (1986), the logistic STAR (LSTAR)

by May (1976) and Tong (1990) and the exponential STAR (ESTAR) by Haggan

and Ozaki (1981), have been considered. In this paper, we are interested in the

multivariate extension of the STAR model and, in particular, in a Vector Logistic

Smooth Transition Autoregressive model, �rstly appeared in Anderson and Vahid

(1998).

We consider a quite large set of �nancial and economic predictors: monthly in-

dustrial production indexes, monthly in�ation rates, unemployment rates, oil price,

dividend yield and earning price ratio of S&P 500 index, Fama and French factors,

and the Economic Policy Uncertainty (EPU) index of Baker, Bloom, and Davis

(2016). This latter is a weighted average of three measures of economic policy

uncertainty. The �rst, with the greatest weight, is the frequency of major news dis-

cussing economic policy-related uncertainty. Baker, Bloom, and Davis (2016) point

out that there exists signi�cant relationship between EPU index and real macroe-

conomic variables. Pástor and Veronesi (2012) �nds that introducing new policies

with an uncertain impact increases the volatility of the stochastic discount factor.

The increase in the volatility of the discount factor leads to increases in risk premia

which in turn result in high volatility in stock market.

Notably, there are many empirical papers that investigate the e�ects of EPU on

stock market return or volatility (see, e.g., Amengual and Xiu, 2018; Antonakakis,

Chatziantoniou, and Filis, 2013, Ajmi, Aye, Balcilar, Montasser, and Gupta, 2015,

Brogaard and Detzel, 2015, Sum and Fanta, 2012, Johnson and Lee, 2014, Kang

and Ratti, 2013, Lam, Zhang, and Zhang, 2019). In this study, we contribute

to the literature by examining the role of the EPU as predictor of stock market
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covolatilities, jointly with other variables, both in a linear and a non linear modelling

framework. To the best of our knowledge, this issue has not been addressed in the

existing studies..

To assess the validity of our approach, we implement an out of sample forecasting

analysis, using data from 1990 to 2018. In the analysis, we consider direct methods,

such as Root Mean Square Error (RMSE), Diebold and Mariano, (DM,1995) and

Giacomini and White, (GW, 2006) tests and non-direct methods, such as portfolio

optimization. Our �ndings show that the set of macroeconomic and �nancial vari-

ables improve the predictive accuracy of the low frequency realized covariance. As

in Paye (2012) and Christiansen, Schmeling, and Schrimpf (2012), purely macroeco-

nomic variables hardly show up as important predictors of �nancial volatility. The

results are robust to a number of direct and non-direct methods for evaluating out

of sample forecasts.

The paper is organized as follows. In section 2, we introduce the multivariate

volatility model, including the structural breaks and linearity tests performed. Sec-

tion 3 presents the data set, the model and the estimation results, while Section 4

discusses the evaluation of the out of sample forecasts. Section 5 concludes.

2 The Cholesky-VLSTAR

In this section we introduce the model used to forecast monthly variances and

covariances of n risky stocks. As it is well known, the estimate of the covari-

ance matrix must be at least positive de�nite. Generally, unconstrained meth-

ods, such as Cholesky decomposition or matrix logarithmic transformation, are pre-

ferred to guarantee parsimony, especially in high-dimensional problems. For ex-

ample, Halbleib-Chiriac and Voev (2011) implement a VARFIMA model on the

elements of the Cholesky decomposition of the covariance matrix, while Bauer and

Vorkink (2011) rely on the matrix exponential transformation of the covariance

matrix to ensure a positive semi-de�nite covariance matrix. In this paper, the fore-

cast matrix is guaranteed positive de�nite through a Cholesky decomposition. Let

rτ =
[
r1,τ r2,τ . . . rn,τ

]′
be the n-dimensional column vector of returns between

day τ and day τ − 1 calculated as rτ = 100 (lnPτ − lnPτ−1), where Pτ is the vector
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of stock prices in the τ -th trading day. Hence, the monthly return is

rt =
[
r1,t r2,t . . . rn,t

]′
=

Nt∑
τ=1

rτ ,

where Nt is the number of trading days in the t-th month. The object of interest is

the n×n conditional covariance matrix of the monthly returns, V ar(rt | It−1) = Σt,

where It−1 is the information available at time t − 1. We estimate the conditional

covariance matrix through the realized covariance measure, computed as

RCt =
Nt∑
τ=1

rτr
′
τ (1)

for t = 1, 2, . . . , T . Recently, Barndor�-Nielsen and Shephard (2002) and Andersen,

Bollerslev, Diebold, and Labys (2003) show that RCt converges in probability to Σt,

i.e. the quadratic variation of the price process, under very general assumptions.

Once obtained the realized covariance matrix, we compute the Cholesky decom-

position as

RCt = YtY
′
t , (2)

where Yt is a full rank n × n lower triangular matrix, and the vectorization of the

Cholesky factors is the column vector yt = vech(Yt), ñ = n(n + 1)/2 elements.

Clearly, the use of the Cholesky decomposition allows us to have a positive de�nite

matrix Σt without setting any parameter restriction on yt (see Halbleib-Chiriac and

Voev, 2011; Becker, Clements, and O'Neill, 2010).

In order to model the ñ elements of yt, we specify the relationship between future

market realized variances and covariances and economic predictors as a multivariate

smooth transition model, which is an extension of the smooth transition regression

model introduced by Bacon and Watts (1971) (see also Anderson and Vahid, 1998).

The general model is

yt = µ0 +

p∑
j=1

Φ0,j yt−j + A0xt +Gt(st; γ, c)

[
µ1 +

p∑
j=1

Φ1,j yt−j + A1xt

]
+ εt

= µ0 +Gt(st; γ, c)µ1 +

p∑
j=1

[Φ0,j +Gt(st; γ, c)Φ1,j] yt−j + [A0 +Gt(st; γ, c)A1]xt + εt,(3)
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where µ0 and µ1 are the ñ× 1 vectors of intercepts, Φ0,j and Φ1,j are square ñ× ñ
matrices of parameters for lags j = 1, 2, . . . , p, A0 and A1 are ñ × k matrices of

parameters, xt is the k × 1 vector of exogenous variables and εt is the innovation.

Finally, Gt(st; γ, c) is a ñ× ñ diagonal matrix of transition function at time t, such

that

Gt(st; γ, c) = diag {G1,t(s1,t; γ1, c1), G2,t(s2,t; γ2, c2), . . . , Gñ,t(sñ,t; γñ, cñ)} . (4)

Every scalar transition function Gi,t(si,t, γi, ci), with i = 1, 2, . . . , ñ, is a continuous

function of the transition variables si,t with scale parameter γi and threshold ci.

The model in equation (3) can be written as

yt = [µ0 +Gtµ1 Φ0,1 +GtΦ1,1 Φ0,2 +GtΦ1,2 . . . Φ0,p +GtΦ1,p A0 +GtA1] zt+εt,

where Gt ≡ Gt(st; γ, c) and zt = [1 y′t−1 y′t−2 . . . y′t−p x′t]
′ is a (1+pñ+k)×1

vector containing the constant, the exogenous explanatory variables and all the lags

of yt. Given that Gt is nonsingular, the model becomes

yt = GtB
′zt + εt, (5)

whereB′ =
[
G−1
t µ0 + µ1 G−1

t Φ0,1 + Φ1,1 G−1
t Φ0,2 + Φ1,2 . . . G−1

t Φ0,p + Φ1,p G−1
t A0 + A1

]
is ñ× (1 + pñ+ k).

The model can be extended to include m − 1 regime changes, in such case (3)

becomes

yt = µ0 +

p∑
j=1

Φ0,j yt−j + A0xt +Gt(st; γ, c)

[
µ1 +

p∑
j=1

Φ1,j yt−j + A1xt

]
+ . . .

+Gm−1
t (st; γ, c)

[
µm +

p∑
j=1

Φm,j yt−j + Amxt

]
+ εt. (6)

Let Bi = [µi Φi,1 . . . Φi,p Ai] be a (ñ× (1 + k+ ñ)) matrix with i = 1, . . . ,m,
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the linear equation (5) is accordingly modi�ed as follows:

yt =

{
m∑
r=1

Gr−1
t B′r

}
zt+εt =

[
Iñ G1

t . . . Gm−1
t

]

B1

B2

...

Bm

 zt+εt = G̃tB̃
′ zt+εt, (7)

where G̃t has dimension ñ × mñ, B̃′ is a mñ × (1 + k + pñ) matrix and G0
t = Iñ

(identity matrix) indicates that there is no transition before the �rst break.

Finally, we specify each diagonal element Gr
i,t as a logistic cumulative density

functions, i.e.

Gr
i,t(s

r
i,t; γ

r
i , c

r
i ) =

[
1 + exp

{
− γri (sri,t − cri )

}]−1
, (8)

for i = 1, 2, . . . , ñ and r = 0, 1, . . . ,m − 1, so that (7) is a Vector Logistic Smooth

Transition AutoRegressive (VLSTAR) model.

2.1 The nonlinear model speci�cation

The nonlinear model speci�cation can be thought of as made up of three steps, such

as: the choice of the relevant exogenous explanatory variables (xt), the determination

of the number of regimes (m), the selection of the transition variable(s) (st).

Firstly, the set of determinants of the dependent variables shall be de�ned. Possi-

ble candidates can be derived from the literature on the macroeconomic and �nancial

determinants of volatility. In a seminal paper, Schwert (1989) analysed the volatil-

ity dynamics related to the business cycle. His study involved the use of several

macroeconomic variables as determinants. Despite the lack of signi�cance, Schwert

(1989) found counter-cyclical movements of volatility compared to the level of the

economy. These �ndings stimulated an interest in analysing the e�ects of economic

and �nancial activities on volatility. Mele (2007, 2008), among others, suggested

the use of stock returns predictors as volatility determinants in a study on risk pre-

mium. More recently, Christiansen, Schmeling, and Schrimpf (2012), Paye (2012),

Conrad and Loch (2014) and Bucci (2019a,b) analysed the role of macroeconomic

and �nancial variables in predicting the realized volatility.

Once a set of exogenous explicative variables is chosen, the next step is to test the
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presence of structural breaks in the time series of the Cholesky factors, in order to

determine the number of regimes in the model. For this purpose, we employ the Bai

and Perron (1998, 2003) procedure. Let supFt(l) be the test statistic for the null

hypothesis of no structural breaks versus an alternative hypothesis containing an

arbitrary number of breaks, with a maximum ofM . We employ an equally weighted

version of such test de�ned as

UDmax = max
1≤m≤M

Ft(λ̂1, . . . , λ̂m),

and a not-equally weighted version

WDmax = max
1≤m≤M

wmFt(λ̂1, . . . , λ̂m),

where λ̂r = Tr/T , Tr is the sample size in regime r, with r = 1, . . . ,m and wm is

a weight which depends on m. For both tests, the null hypothesis is the absence

of structural breaks against the alternative hypothesis of an unknown number of

breaks. Once the presence of breaks has been detected via the UDmax and WDmax

tests, the optimal number of breaks is determined using the Ft(l + 1 | l) test in

which the null hypothesis is l breaks in the time series against the alternative of

l + 1 breaks (see Bai and Perron, 2003, for details).

The choice of the transition variables st may be based on economic theory or may

be data driven. Whether the economic theory does not allow us to de�ne a unique

transition variable, a common choice is to test the linearity of the model for each

candidate transition variable and to select the one that exhibits the lowest p-value.

In the multivariate framework, linearity can be tested jointly assuming a common

transition variable; alternatively, a di�erent threshold variable can be chosen for each

equation, see also Camacho (2004), Luukkonen, Saikkonen, and Teräsvirta (1988)

and Teräsvirta and Yang (2014).

Testing linearity is essential before �tting a nonlinear model to time series data.

Speci�cally, it must be checked if a linear model is nested in the nonlinear framework

or may be an adequate representation of the data-generating process, thus simplify-

ing the estimation process. Moreover, nonlinear models, like the smooth transition

regression and the switching regression model, are not identi�ed if the nested linear

model is the data-generating process.
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As discussed in Luukkonen, Saikkonen, and Teräsvirta (1988), Teräsvirta (1994)

and Teräsvirta, Tjøstheim, and Granger (2010), linearity in smooth transition mod-

els may be tested through a Lagrange Multiplier (LM) test, assuming that the non-

linear model of the alternative hypothesis is a 2-state dynamic smooth transition

regression. The transition function Gr(srt ; γ
r, crij) is approximated by a third-order

Taylor expansion around the null hypothesis of linearity H0 : γ = 0. After merging

and reparameterizing, this yields the linear regression model

yt = Xtβ0 +Xtstβ1 +Xts
2
tβ2 +Xts

3
tβ3 + εt, (9)

where st is the transition variable and βi, for i = 0, 1, 2, 3, are coe�cients vectors

functions of the original parameters. Testing for linearity is equivalent to testing

the null hypothesis H0: : βi = 0 for each i > 1 in the previous regression. In a mul-

tivariate framework, if more than one equation share the same transition variable,

it is possible to apply a joint linearity test.

2.2 Estimation and forecasting

Assuming εt ∼ i.i.d.N(0,Ω), the model (7) can be represented by the following

multivariate conditional density function

f(yt|It; θ) = (2π)−
ñ
2 |Ω|−

1
2 exp

{
−1

2
(yt − G̃tB

′ zt)
′Ω−1(yt − G̃tB

′ zt)

}
, (10)

where It is the information set at time t which contains all the exogenous variables

xt and all the lags of yt. As a consequence, the overall conditional loglikelihood

function is

`(yt|It; θ) = −T ñ
2

ln(2π)− T

2
ln |Ω| − 1

2

T∑
t=1

(yt − G̃tB zt)
′Ω−1(yt − G̃tB zt), (11)
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where T is the sample size and the vector θ contains all the unknown parameters in

matrices B̃, Ω and G̃t which, in general, depends on scale parameters and thresholds

Γ =


γ1

1 γ2
1 . . . γm1

γ1
2 γ2

2 . . . γm2
...

...
. . .

...

γ1
ñ γ2

ñ . . . γmñ

 and C =


c1

1 c2
1 . . . cm1

c1
2 c2

2 . . . cm2
...

...
. . .

...

c1
ñ c2

ñ . . . cmñ

 .

The total amount of unknown parameters in equation (11) is ñ [1 + 0.5(ñ+ 1) + pñ+ k + 2m].

Model (7) can be estimated through nonlinear least squares (NLS) or maximum like-

lihood (ML). In this paper, we opted for the NLS.

The NLS estimator is de�ned as the solution of the following optimisation prob-

lem

θ̂NLS = arg min
θ

T∑
t=1

(yt − G̃tB̃
′zt)
′(yt − G̃tB̃

′zt). (12)

The algorithm of optimization may converge to a local minimum instead of the

global, therefore the choice of the starting values for θ is crucial. For this reason,

(see Teräsvirta and Yang, 2014, for details), it is necessary to implement the following

algorithm for obtaining the starting values for Γ and C:

1. construct a discrete grid of Γ and C values;

2. estimate BNLS conditionally to the values of the grid, calculating the corre-

sponding residuals sum of squares, QT ;

3. �nd the smallest QT , and choose the related pair of Γ and C as starting values,

Γ0 and C0.

The values of the grid for Γ ranged from 0 to 100, while the values of C ranged from

minimum to maximum of each dependent variable. For example, using a sequence

of 50 values of Γ and C, we had 2500 couples of values for each dependent variable.

The NLS estimates of vec(B) for step 3, given the values of Γ and C, are equal

to:

vec(B̂)NLS =

[
T−1

T∑
t=1

(G̃tG̃
′
t)⊗ (ztz

′
t)

]−1[
T−1

T∑
t=1

vec(zty
′
tG̃
′
t)

]
. (13)
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The estimated errors covariance matrix is given by

Ω̂NLS = T−1Ê ′Ê, (14)

where Ê = (ε̂1, . . . , εt)
′ is a T × ñ matrix, and εt = yt− G̃tB̂

′
NLSzt is a column vector

of residuals.

Once obtained the initial values of Γ and C from the previous algorithm, a

new algorithm is implemented to obtain an estimate of θNLS and ΩNLS, without

increasing the computational complexity of the estimation process:

1. estimate B through Equation (13), relying on Γ0 and C0;

2. use B̂, estimated in step 1, to obtain an estimate of Γ and C by Equation (12);

3. estimate the new B through Equation (13).

4. repeat step 2 and 3 until convergence.

The forecasts of the nonlinear model, for more than one step ahead, can be

generalised via numerical techniques. Given a nonlinear model

yt = g(zt, θ) + εt, (15)

where θ is a vector of parameters to be estimated, zt is a combination of lagged

values of yt and of exogenous variables xt and εt is a white noise with zero mean and

constant variance σ2. Let IT be the information set at time T and εt be independent

of IT−1, the forecast of yT+h made at time T is equal to the conditional mean

ŷT+h = E {yT+h|It} = E {g(zT+h−1)|It} . (16)

When h = 1 the forecast ŷT+1 = g(zt) is obtained from equation (16); otherwise, if

h ≥ 2, the prediction can only be calculated recursively using numerical techniques.

See Hubrich and Teräsvirta (2013), Kock and Teräsvirta (2011) and Teräsvirta,

Tjøstheim, and Granger (2010) for a detailed analysis of forecasting methods.

In this paper, we forecast the lower triangular, Ŷt+h, by means of the Cholesky-

VLSTAR model presented above, then we get the forecast covariance matrix as

R̂Ct+h = Ŷt+hŶ
′
t+h which is by construction a symmetric and positive de�nite matrix.
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3 Data

Our analysis relies on a sample of n = 4 time series of stock market index returns,

namely S&P 500 for USA, Nikkei for Japan, FTSE 100 for UK and DAX for Germany

(this is the ordering of series in rt). The sample period ranges from Wednesday 1st

August 1990 to friday 29th June 2018 and includes 7283 daily observations for

each series. Thomson DataStream is the data provider. Monthly realized volatility

matrices are de�ned as in equation (1), for a total amount of T = 335 monthly

observations. In this context, following the procedure described in section 2, the

monthly realized covariance matrices are transformed using Cholesky decomposition

according equation (2), thus obtaining ñ = 10 Cholesky factors yt. The covariance

stationarity of the series included in yt is con�rmed by Augmented Dickey-Fuller

(ADF), ADF-GLS, Phillips-Perron and Kwiatkowsky- Phillips-Schmidt-Shin tests

for unit roots.1

The set of macroeconomic and �nancial variables used as predetermined variables

in the estimation process of the VLSTAR model are selected according to the results

of the literature on risk premia predictability, e.g. Mele (2007). Speci�cally, they are

all sampled at monthly frequency. The level of macroeconomic activity is measured

through the same variables used by Schwert (1989), such as the in�ation rate (πt−1),

the industrial production growth rate (gt−1) of the United States, Japan and EU,

the unemployment growth rate (ut−1). The set contains two variables such as the

dividend price ratio (DPt−1) and the earning price ratio (EPt−1) of the S&P 500 used

to predict the excess returns, see also Welch and Goyal (2008). We also include the

Fama and French's factors (see Fama and French, 1993) of each country as a measure

of market risk (MKT , SMB, HML) and to capture the leverage e�ect. We also

consider the Economic Policy Uncertainty Index (EPUt−1) for the U.S., Japan and

EU as computed by Baker, Bloom, and Davis (2015). In fact, it has been showed

(see Liu and Zang, 2015) that stock market volatility tends to increase in presence of

higher levels of economic policy uncertainty. Finally, we include the oil price growth

rate even though we do not disentangle between oil price shocks originated from the

demand and supply side, as in Bastianin and Manera (2018). Table 1 provides a

description of the k = 26 available exogenous variables (xt).

1The results are available upon request from the authors.
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Table 1: Exogenous explanatory variables

Symbol Variable description Source

∆πUSt−1 First di�erence of US monthly in�ation rate Datastream

∆πUKt−1 First di�erence of UK monthly in�ation rate Datastream

∆πGEt−1 First di�erence of German monthly in�ation rate Datastream

∆πJPt−1 First di�erence of Japanese monthly in�ation rate Datastream

gUSt−1 US monthly Industrial Production growth OECD Database

gEUt−1 EU monthly Industrial Production growth OECD Database

gJPt−1 Japan monthly Industrial Production growth OECD Database

DPt−1 Dividend Yield Ratio S&P 500 growth rate over the past year relative to
current market prices; S&P500 index

Robert Shiller's website

EPt−1 Earning Price Ratio S&P 500 growth rate over the past year relative to
current market prices; S&P500 index

Robert Shiller's website

MKTUSt−1 Fama-French's market factor for U.S. Kenneth French's website

SMBUSt−1 Fama-French's SMB for U.S. Kenneth French's website

HMLUSt−1 Fama-French's HML for U.S. Kenneth French's website

MKTJPt−1 Fama-French's market factor for Japan Kenneth French's website

SMBJPt−1 Fama-French's SMB for Japan Kenneth French's website

HMLJPt−1 Fama-French's HML for Japan Kenneth French's website

MKTEUt−1 Fama-French's market factor for the European Union Kenneth French's website

SMBEUt−1 Fama-French's SMB for the European Union Kenneth French's website

HMLEUt−1 Fama-French's HML for the European Union Kenneth French's website

uUSt−1 Unemployment rate growth in U.S. Datastream

uUKt−1 Unemployment rate growth in the United Kingdom Datastream

uJPt−1 Unemployment rate growth in Japan Datastream

uGEt−1 Unemployment rate growth in Germany Datastream

EPUUSt−1 Economic Policy Uncertainty in U.S. Economic Policy Uncer-
tainty's website

EPUJPt−1 Economic Policy Uncertainty in Japan Economic Policy Uncer-
tainty's website

EPUEUt−1 Economic Policy Uncertainty in European Union Economic Policy Uncer-
tainty's website

Oil Growth rate of the oil price Datastream

4 Estimation Results

We �rst estimate the �Cholesky-VAR� model with exogenous explanatory variables

(CholVARX). This can be considered a baseline model since it is a linear stationary

VAR(1) where the number of lags has been set using the Akaike and the Bayesian

information criteria. The equation is

Φ(L)yt = µ0 + Axt−1 + δWTCt + εt, (17)
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where yt is the ñ × 1 vector of Cholesky factors, Φ(L) = Iñ − Φ1L, xt−1 is the set

of exogenous predictors at time t− 1 and WTCt is a dummy variable for the World

Trade Center attack of September 11, 2001.

Table 2: CholVARX model estimates

y1,t y2,t y3,t y4,t y5,t y6,t y7,t y8,t y9,t y10,t

∆πUS
t−1 −0.1414

(0.2474)
0.0509
(0.259)

−0.1863
(0.2124)

0.0507
(0.3068)

−0.3073
(0.3695)

−0.0613
(0.1734)

0.2687
(0.2378)

−0.0088
(0.1841)

0.0768
(0.2417)

0.2704
(0.196)

∆πUK
t−1 −0.1159

(0.1728)
−0.0595
(0.1809)

−0.0765
(0.1484)

−0.0969
(0.2143)

−0.5304
(0.2581)

∗∗ 0.0978
(0.1211)

0.1976
(0.1662)

−0.2363
(0.1286)

∗ −0.2642
(0.1689)

−0.3119
(0.1369)

∗∗

∆πGE
t−1 −0.1583

(0.1365)
−0.1124
(0.1429)

0.0021
(0.1172)

0.0401
(0.1693)

−0.0468
(0.2039)

0.0247
(0.0957)

−0.1005
(0.1313)

−0.1426
(0.1016)

−0.1535
(0.1334)

0.0109
(0.1082)

∆πJP
t−1 0.1207

(0.2439)
−0.1072
(0.2554)

0.1498
(0.2095)

−0.2709
(0.3025)

0.3735
(0.3643)

−0.1628
(0.171)

−0.0798
(0.2345)

0.0597
(0.1815)

0.1948
(0.2384)

−0.0087
(0.1933)

gUS
t−1 −0.2148

(0.1408)
0.3768
(0.1474)

∗∗ −0.2593
(0.1209)

∗∗ −0.0828
(0.1746)

−0.1209
(0.2103)

−0.094
(0.0987)

−0.0344
(0.1354)

−0.0171
(0.1048)

0.1896
(0.1376)

0.0463
(0.1116)

gEU
t−1 −0.1749

(0.1085)
−0.0878
(0.1136)

−0.0372
(0.0932)

−0.1038
(0.1345)

−0.047
(0.162)

0.0326
(0.076)

−0.009
(0.1043)

−0.1435
(0.0807)

∗ −0.1497
(0.106)

−0.0079
(0.086)

gJP
t−1 0.0755

(0.0462)
0.0418
(0.0484)

0.0082
(0.0397)

0.0388
(0.0573)

−0.1242
(0.069)

∗ 0.0473
(0.0324)

−0.0667
(0.0444)

0.0867
(0.0344)

∗∗ 9e− 04
(0.0452)

0.0568
(0.0366)

DPt−1 32.6939
(2.837)

∗∗∗ 0.1244
(2.9703)

14.3548
(2.4361)

∗∗∗ 21.0419
(3.5182)

∗∗∗ 26.8544
(4.2374)

∗∗∗ 17.7602
(1.9883)

∗∗∗ 12.4174
(2.7278)

∗∗∗ 21.0629
(2.1113)

∗∗∗ 18.0052
(2.7723)

∗∗∗ 12.5173
(2.2482)

∗∗∗

MKTUS
t−1 0.0755

(0.0284)

∗∗∗ −0.0458
(0.0297)

0.0877
(0.0244)

∗∗∗ 0.118
(0.0352)

∗∗∗ 0.1208
(0.0424)

∗∗∗ 0.0512
(0.0199)

∗∗ −0.001
(0.0273)

0.0416
(0.0211)

∗∗ 0.0553
(0.0277)

∗∗ 0.067
(0.0225)

∗∗∗

SMBUS
t−1 0.0082

(0.0278)
−0.0207
(0.0291)

−0.0035
(0.0239)

−0.0167
(0.0345)

−0.1124
(0.0415)

∗∗∗ 0.0061
(0.0195)

0.0363
(0.0267)

−0.0389
(0.0207)

∗ −0.0906
(0.0272)

∗∗∗ −0.0043
(0.022)

HMLUS
t−1 0.014

(0.0363)
−0.0405
(0.038)

0.0347
(0.0312)

0.1127
(0.045)

∗∗ 0.0786
(0.0542)

0.0028
(0.0254)

3e− 04
(0.0349)

−0.0395
(0.027)

−0.0398
(0.0355)

0.0084
(0.0288)

MKTJP
t−1 0.0052

(0.0153)
−0.0145
(0.0161)

−0.0031
(0.0132)

−0.0088
(0.019)

−0.0484
(0.0229)

∗∗ −0.007
(0.0107)

−0.0138
(0.0147)

0.0064
(0.0114)

0.0094
(0.015)

−0.0257
(0.0122)

∗∗

SMBJP
t−1 −0.048

(0.0266)

∗ 0.0282
(0.0279)

0.0066
(0.0228)

0.0138
(0.033)

−0.0227
(0.0397)

−0.0099
(0.0186)

−0.0355
(0.0256)

−0.0301
(0.0198)

−0.046
(0.026)

∗ −0.0597
(0.0211)

∗∗∗

HMLJP
t−1 −0.0112

(0.0312)
0.0048
(0.0327)

−0.0192
(0.0268)

−0.0281
(0.0387)

−0.0848
(0.0466)

∗ 0.0124
(0.0219)

−0.0445
(0.03)

0.0097
(0.0232)

−0.0242
(0.0305)

−0.0445
(0.0247)

∗

MKTEU
t−1 0.0054

(0.045)
−0.0252
(0.0471)

0.0175
(0.0387)

0.0546
(0.0558)

0.0576
(0.0672)

−0.0268
(0.0315)

−0.0378
(0.0433)

0.0092
(0.0335)

0.0518
(0.044)

0.0718
(0.0357)

∗∗

SMBEU
t−1 0.0353

(0.0441)
−0.0075
(0.0462)

−0.0307
(0.0379)

−0.0287
(0.0547)

0.0998
(0.0658)

−0.0111
(0.0309)

−0.0103
(0.0424)

8e− 04
(0.0328)

−0.0059
(0.0431)

0.0097
(0.0349)

HMLEU
t−1 1.5254

(2.2721)
−4.2057
(2.3789)

∗ 0.1403
(1.9511)

1.7325
(2.8177)

0.1828
(3.3937)

−0.215
(1.5924)

0.1334
(2.1847)

−2.0034
(1.6909)

−1.4034
(2.2204)

0.8765
(1.8006)

uUS
t−1 10.7092

(3.2195)

∗∗∗ −1.2646
(3.3708)

2.6318
(2.7646)

3.5421
(3.9925)

9.1597
(4.8087)

∗ 0.6815
(2.2563)

0.4975
(3.0956)

5.436
(2.396)

∗∗ 6.9104
(3.1461)

∗∗ 2.1659
(2.5513)

uUK
t−1 −0.5775

(5.0407)
5.3293
(5.2775)

7.5388
(4.3284)

∗ 10.213
(6.2509)

1.2401
(7.5289)

0.4927
(3.5327)

0.958
(4.8467)

0.9731
(3.7513)

−0.6446
(4.9258)

−4.9604
(3.9945)

uJP
t−1 6.3511

(2.6276)

∗∗ 1.4371
(2.7511)

1.4132
(2.2563)

2.6218
(3.2585)

5.747
(3.9247)

1.6466
(1.8415)

1.0262
(2.5265)

3.0986
(1.9555)

−0.535
(2.5677)

1.4807
(2.0823)

uGE
t−1 −0.8931

(7.0486)
3.2662
(7.3798)

−7.1361
(6.0527)

8.5025
(8.741)

11.6306
(10.528)

−1.4417
(4.9399)

−1.2796
(6.7774)

2.2589
(5.2457)

−6.3236
(6.888)

17.6095
(5.5858)

∗∗∗

EPUUS
t−1 5e− 04

(0.0027)
0.0018
(0.0029)

0.0026
(0.0023)

0.0092
(0.0034)

∗∗∗ 0.0085
(0.0041)

∗∗ 0.0032
(0.0019)

∗ 0.0025
(0.0026)

0.0016
(0.002)

−0.0024
(0.0027)

0.0051
(0.0022)

∗∗

EPUJP
t−1 −3e− 04

(0.0037)
0.0079
(0.0039)

∗∗ 0.0089
(0.0032)

∗∗∗ 0.0101
(0.0046)

∗∗ 0.0055
(0.0055)

−0.0033
(0.0026)

−7e− 04
(0.0035)

−0.0049
(0.0027)

∗ −0.0053
(0.0036)

−2e− 04
(0.0029)

EPUEU
t−1 −2e− 04

(0.0025)
−0.0042
(0.0026)

−0.0028
(0.0021)

−0.0069
(0.0031)

∗∗ −0.0061
(0.0037)

∗ −0.0016
(0.0017)

−6e− 04
(0.0024)

0.0025
(0.0018)

0.0062
(0.0024)

∗∗ 1e− 04
(0.002)

Oil −0.0143
(0.0186)

0.0052
(0.0195)

0.0129
(0.016)

0.0172
(0.0231)

0.0072
(0.0278)

−0.0239
(0.013)

∗ −0.0114
(0.0179)

0.0123
(0.0138)

0.0039
(0.0182)

1e− 04
(0.0147)

WTCt −0.5663
(1.4641)

2.8774
(1.5328)

∗ 2.1108
(1.2572)

∗ 1.5451
(1.8156)

1.3807
(2.1867)

−6.3925
(1.0261)

∗∗∗ −7.5734
(1.4077)

∗∗∗ 2.8404
(1.0896)

∗∗∗ 7.8248
(1.4307)

∗∗∗ 1.1807
(1.1602)

SSR 544.209 596.551 401.280 836.900 1214.080 267.295 503.132 301.408 519.682 341.758

S.E. 1.356 1.420 1.164 1.681 2.025 0.950 1.304 1.009 1.325 1.075

R2 0.762 0.160 0.549 0.626 0.536 0.487 0.305 0.684 0.603 0.527

LL -555.454 -570.789 -504.573 -627.326 -689.456 -436.720 -542.347 -456.779 -547.752 -477.760

AIC 1188.907 1219.579 1087.146 1332.651 1456.912 951.4395 1162.694 991.5574 1173.504 1033.521

BIC 1337.542 1368.213 1235.781 1481.286 1605.546 1100.074 1311.329 1140.192 1322.139 1182.155

DW 2.222 1.942 2.218 2.272 2.113 1.896 1.946 2.137 2.141 2.347

LB(5) 17.378∗∗ 2.891 11.877∗∗ 13.957∗∗ 4.359 5.756 7.302 5.054 6.799 33.453∗∗∗

ARCH(5) 16.118∗∗∗ 2.471 7.510 8.464 4.157 39.438∗∗∗ 2.041 4.534 22.059∗∗∗ 14.210∗∗

∗∗∗ indicates p− value < 1%, ∗∗ indicates p− value < 5% and ∗ indicates p− value < 10%; SSR is the sum of squared

residuals, SE is the standard error of the regresssion, R2 is the R-squared index, LL is the loglikelihood, AIC and

BIC are the Akaike and Bayesian information criteria; DW is the Durbin-Watson statistic, LB(5) is the Ljung-Box test

ststistic with 5 lags and ARCH(5) is the test for conditional heteroskedasticity with 5 lags.
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Table 2 reports the results of the Cholesky-VAR estimation on the full sam-

ple (only the estimated coe�cients of the exogenous variables are reported to save

space). All the eigenvalues of the companion form matrix are smaller than one in

modulus (the maximum eigenvalue is λmax ≈ 0.76), hence the estimated VAR(1)

is likely to be stationary. Moreover, the diagnostic tests highlight that the model

residuals are not autocorrelated, but they show some conditional heteroskedasticity.

As a consequence, despite the CholVARX could be misspeci�ed in variance, surely it

represents a good speci�cation for the conditional mean of yt and may be used as

an initial reference model for the speci�cation of an alternative nonlinear one.

The Cholesky decomposition guarantees that the conditional covariance matrix

is at least semide�nite positive for each t. Since the aim of this paper is to pro-

vide a suitable statistical model for the conditional covariance matrix RCt, through

the modelling of the dynamic of the conditional mean of the Cholesky factors, the

estimated coe�cients of equation (17) do not have a straightforward economic in-

terpretation. Yet, some exogenous variables in xt−1 seem to be good predictors for

the Cholesky factors. The variables a�ecting the dependent variables in the linear

framework are used as potential predictors in the VLSTAR model, in order to keep

the model as parsimonious as possible. Plainly, the choice of the set of determinants

could be di�erent in the nonlinear framework, nevertheless no clear methods are

available for such tasks.

In order to estimate the VLSTAR model for the Cholesky factors, the latter

should be tested for the presence of structural breaks and nonlinearity. As we

mentioned in section 2.1, we employ the UDmax, the WDmax and the supFt(l+1 | l)
tests to determine the number of regimes m. As shown in table 3, the most part

of the tests are signi�cant, for l = 1, 2, . . . , 8, for each time series, con�rming that

at least one break is present in the factor series. Moreover, in most of the cases

the sequential supFt(l + 1 | l) test highlights that the number of regimes m is

smaller than 4. Further, since for the most of the Cholesky factors the sequential

supFT (l + 1 | l) test rejects the null hypothesis when l = 0, we conclude that a

single break is an acceptable approximation, hence m = 2 regimes. We further have

performed the test of common breaks among dependent variables provided by Bai,

Lumsdaine, and Stock (1998) and Aue, Hörmann, Horváth, and Reimherr (2009)

which exhibits the presence of at least one common break.
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Table 3: Multiple structural changes tests

y1,t y2,t y3,t y4,t y5,t y6,t y7,t y8,t y9,t y10,t

supFT (1) 19.55 1.70 17.29 50.05 5.85 5.96 5.92 11.01 38.86 44.93

supFT (2) 10.00 3.59 23.87 32.93 2.95 3.45 4.26 14.61 21.77 35.75

supFT (3) 15.51 4.10 42.71 33.51 5.76 4.18 4.67 18.22 10.89 43.99

supFT (4) 36.59 6.88 42.92 28.98 6.34 4.37 4.01 19.62 9.09 32.93

supFT (5) 34.16 7.59 32.39 28.13 4.52 3.45 3.27 18.58 7.09 22.67

supFT (2 | 1) 19.93 4.37 26.45 11.33 1.93 3.95 3.70 13.73 10.19 14.42

supFT (3 | 2) 19.77 2.58 23.20 6.23 12.05 3.24 5.69 9.23 1.68 14.42

supFT (4 | 3) 55.28 6.37 16.02 15.04 3.05 0.19 3.07 12.53 6.89 0.36
supFT (5 | 4) 0.00 0.60 0.00 0.00 0.00 0.00 0.92 0.00 0.00 0.00
Trimming set to 0.15 and M = 5, the rejections at 5% signi�cance level are in bold

The speci�cation of the nonlinear model in (7), based on Akaike and Bayesian

Information criteria, has one lag (p = 1). Therefore, in line with Camacho (2004),

the 2-state CholVLSTARX model is

yt =
(
B1 +G1

tB2

)
zt + εt, (18)

where zt = [1 y′t−1 η′t−1 d′t]
′ has dimension 3 + ñ + b, where b is the number

of exogenous variables a�ecting the dependent variable in the VAR(1) model and

ηt−1 =[ DPt−1, ∆πUKt−1 , g
US
t−1, g

JP
t−1, MKTUSt−1, SMBUSt−1, SMBJPt−1, HMLJPt−1, u

US
t−1, u

GE
t−1,

EPUUS
t−1, EPU

JP
t−1, EPU

EU
t−1 ]′. Once the number of regimes is determined, the non-

linear speci�cation procedure foresees the selection of the transition variable and

testing for linearity of the model. Since the economic theory does not provide any

speci�c insight for choosing the transition variable, we repeat the test for each pre-

dicting variable, equation by equation. We choose the transition variable according

to the minimum p-value associated with the univariate linearity test. When two

or more equations share the same transition variable as a candidate, we perform

a joint linearity test, described in Appendix 6, assuming that nonlinear dynamics

are driven by one single transition variable. Given a 2-regimes VLSTAR model,

as in (18), the null of nonlinearity equals to H0 : γj = 0, j = 1, 2, . . . , ñ, while the

alternative is that at least one shape parameter, γj, is greater than 0. The test, as

the univariate version in Luukkonen, Saikkonen, and Teräsvirta (1988), is based on

third-order Taylor expansion of the transition variable and it is further analysed in

appendix 6. The test statistics of the linearity tests for each equation and for each

candidate transition variable are reported in Table 4. In some cases, the highest test

statistics is associated with the �rst lag of gUS. For other equations, the linearity
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test is mainly signi�cant for the �rst lag of y1,t.

Table 4: Linearity Test

st y1,t y2,t y3,t y4,t y5,t y6,t y7,t y8,t y9,t y10,t

y1,t−1 0.081 0.542 3.892 3.445 1.49 0.832 7.234 3.493 15.297 0.024
y2,t−1 0.985 0.11 2.545 0.349 0.546 0.074 0.041 0.011 0.055 7.15
y3,t−1 0.097 1.14 6.232 2.694 0.339 0.482 5.383 0.719 9.741 0.369
y4,t−1 0.054 1.295 4.002 16.041 1.411 0.504 2.053 0.961 7.002 4.609
y5,t−1 0.174 0.436 0.081 0.345 1.294 0.284 1.307 0.003 3.428 1.058
y6,t−1 0.081 0.282 0.682 0.361 0.342 3.267 6.191 1.368 13.486 1.058
y7,t−1 0.408 1.36 1.269 1.858 0.061 4.399 4.214 0.654 6.014 7.598
y8,t−1 0.176 0.956 4.072 7.121 1.116 1.252 1.512 0.686 10.612 0.19
y9,t−1 0.011 3.972 3.464 5.624 0.482 0.636 0.96 0.194 9.259 3.051
y10,t−1 0.177 0.1 0.461 0.957 1.715 0.162 0.005 0.094 1.954 24.003
DPt−1 0.078 3.918 3.224 0.877 1.073 0.14 4.241 2.411 15.739 4.827

∆πUK
t−1 5.231 5.354 4.391 4.397 1.353 2.608 0.005 1.708 4.921 4.757

gUS
t−1 2.763 2.767 11.03 11.005 24.141 2.137 0.293 11.113 1.972 2.893

gJP
t−1 0.755 1.579 0.066 0.08 1.671 0.77 0.463 2.072 1.537 0.294

MKTUS
t−1 1.861 3.193 1.389 0.339 1.664 0.002 1.772 0.002 11.095 0.351

SMBUS
t−1 3.276 1.473 0.947 0.332 0.611 5.123 0.018 1.772 0.641 0.404

SMBJP
t−1 0.073 1.276 0.281 0.937 0.313 4.076 0.773 0.005 3.698 3.157

HMLJP
t−1 0.344 0.48 2.005 0.906 0.423 0.793 1.014 0.833 0.825 0.900

uUS
t−1 11.609 0.597 5.478 2.487 16.543 27.556 3.79 5.456 2.436 0.51

uGER
t−1 6.794 0.019 4.933 0.089 0.721 25.083 5.407 0.949 0.146 3.624

EPUUS
t−1 0.107 1.664 0.899 0.432 0.444 0.177 1.029 0.601 8.996 2.241

EPUJP
t−1 0.982 0.41 4.414 3.662 0.036 4.812 2.941 0.024 6.899 2.857

EPUEU
t−1 0.066 6.444 0.456 0.053 0.289 0.052 1.511 2.242 0.776 0.316

* and ** indicate highest test statistics

Since it turns out that several equations share more than one candidate transition

variables, there is no clear cut conclusion that can be drawn upon the linearity tests.

To circumvent this issue we run a joint linearity test on the whole model, assuming

a unique transition variable for all the equations. Table 5 shows the results of the

LM test, introduced by Yang and Teräsvirta (2013). Even from the results of the

joint linearity test do not emerge a preferred transition variable. Now, since we put

the monthly return on S&P 500 as �rst series in the vector rt, it follows that in the

Cholesky decomposition the �rst factor corresponds to the realized volatility (square

root of the realized variance) of the US stock market. This choice is motivated by

the the relevance of the US stock market in the global scenario. Thus selecting

as transition variable y1,t−1 for all the equations corresponds to assuming that the

switch between the two regimes is governed by the evolution of the volatility on the

US market.
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Table 5: LM Test

Transition variable LM p-value Transition variable LM p-value

y1,t−1 813.850 0.008 ∆πUK
t−1 794.543 0.028

y2,t−1 739.462 0.299 gUS
t−1 784.120 0.049

y3,t−1 755.646 0.173 gJP
t−1 783.133 0.051

y4,t−1 819.626 0.006 DPt−1 1021.201 <0.001

y5,t−1 746.603 0.239 MKTUS
t−1 899.868 <0.001

y6,t−1 833.207 0.002 SMBUS
t−1 744.741 0.254

y7,t−1 928.817 <0.001 SMBJPN
t−1 744.498 0.256

y8,t−1 742.627 0.272 HMLJPN
t−1 740.156 0.293

y9,t−1 785.386 0.045 uUS
t−1 735.820 0.333

y10,t−1 782.313 0.053 uGER
t−1 790.199 0.035

EPUUS
t−1 772.733 0.085 EPUJPN

t−1 762.252 0.134

EPUEU
t−1 682.255 0.840

Table 6 reports the estimated parameters of the nonlinear CholVLSTARX model,

where the transition variable, y1,t−1, is common to all the equations. The informa-

tion criteria and the value of the log-likelihood computed for the nonlinear model

are similar to those found in the case of the linear speci�cation. Based on Akaike

and Bayesian information criteria, the model includes a single lag of the depen-

dent variable yt and the set of statistically signi�cant leading variables in the linear

CholVARX model. The estimated e�ects signi�cantly vary among the equations and

regressors. Table 7 reports the 5% signi�cant-level leading variables in each equa-

tion in both regimes. In general, we can say that the leading variables are more

signi�cant in the second than in the �rst regime, like the macroeconomic variables,

namely ∆πUKt−1 , g
US
t−1, g

JP
t−1. Further, across the equations the variables which are sig-

ni�cant in the �rst regime tend to be less signi�cant in the second regime and vice

versa, like for instanceMKT . In �rst regime, the EPU 's variables are signi�cant in

the �rst 5 equations whereas in the second regime they are mainly signi�cant in the

last �ve equations. A notable exception is DP that is signi�cant in both regimes.

The evidence for the Fama and French factors is rather mixed.

Table 6: CholVLSTARX model estimates

r = 1

µ0, A0, Φ0 y1,t y2,t y3,t y4,t y5,t y6,t y7,t y8,t y9,t y10,t

const 1.8658
(0.2029)

∗∗∗ 0.8422
(0.2315)

∗∗∗ 0.8099
(0.1878)

∗∗∗ 1.1014
(0.2643)

∗∗∗ 2.6177
(0.3203)

∗∗∗ −0.0374
(0.1496)

0.3247
(0.1986)

1.3884
(0.1572)

∗∗∗ 0.511
(0.2054)

∗∗ 1.1206
(0.1657)

∗∗∗

y1,t−1 0.5685
(0.0544)

∗∗∗ −0.101
(0.0621)

0.0597
(0.0504)

0.1948
(0.0709)

∗∗∗ 0.0613
(0.0859)

0.2282
(0.0401)

∗∗∗ 0.1302
(0.0533)

∗∗ 0.0858
(0.0422)

∗∗ 0.0826
(0.0551)

0.0914
(0.0444)

∗∗

y2,t−1 −0.1037
(0.0446)

∗∗ 0.0582
(0.0509)

−0.0628
(0.0413)

−0.1324
(0.0581)

∗∗ 0.1772
(0.0705)

∗∗ −0.0645
(0.0329)

∗ −0.049
(0.0437)

−0.125
(0.0346)

∗∗∗ −0.1443
(0.0452)

∗∗∗ −0.0761
(0.0364)

∗∗

y3,t−1 −0.1702
(0.0816)

∗∗ 0.0314
(0.0931)

0.2429
(0.0755)

∗∗∗ −0.0172
(0.1063)

−0.1181
(0.1288)

0.1571
(0.0602)

∗∗∗ −0.129
(0.0799)

0.0464
(0.0632)

−0.0218
(0.0826)

−0.1158
(0.0666)

∗

y4,t−1 0.0328
(0.0483)

0.0816
(0.0551)

0.0368
(0.0447)

0.3513
(0.0629)

∗∗∗ −0.1187
(0.0762)

−0.1043
(0.0356)

∗∗∗ 0.0972
(0.0473)

∗∗ 0.0262
(0.0374)

0.183
(0.0489)

∗∗∗ 0.0321
(0.0394)

y5,t−1 −0.0269
(0.0323)

9e− 04
(0.0369)

−0.0276
(0.0299)

−0.0504
(0.0421)

0.4708
(0.051)

∗∗∗ −0.0209
(0.0238)

−0.0629
(0.0316)

∗∗ −3e− 04
(0.025)

−0.0203
(0.0327)

−0.017
(0.0264)

Continued on next page
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Table 6 � continued from previous page
y6,t−1 −0.1638

(0.0945)

∗ 0.2684
(0.1079)

∗∗ −0.0685
(0.0875)

0.0571
(0.1231)

−0.473
(0.1492)

∗∗∗ 0.0297
(0.0697)

−0.2801
(0.0925)

∗∗∗ 0.0339
(0.0732)

0.1584
(0.0957)

∗ −0.2042
(0.0772)

∗∗∗

y7,t−1 −0.03
(0.0682)

−0.1581
(0.0778)

∗∗ 0.0395
(0.0631)

−0.0948
(0.0889)

0.1021
(0.1077)

0.0436
(0.0503)

0.1857
(0.0668)

∗∗∗ −0.0806
(0.0528)

−0.089
(0.0691)

0.0185
(0.0557)

y8,t−1 0.2195
(0.0831)

∗∗∗ 0.1468
(0.0948)

0.2269
(0.0769)

∗∗∗ 0.2456
(0.1083)

∗∗ 0.3684
(0.1312)

∗∗∗ 0.1557
(0.0613)

∗∗ 0.2709
(0.0814)

∗∗∗ 0.3703
(0.0644)

∗∗∗ 0.1995
(0.0842)

∗∗ 0.1077
(0.0679)

y9,t−1 −0.0247
(0.0519)

−0.1329
(0.0592)

∗∗ 0.0557
(0.048)

0.0046
(0.0676)

0.0896
(0.0819)

−0.0773
(0.0382)

∗∗ −0.1373
(0.0508)

∗∗∗ −0.0109
(0.0402)

0.0949
(0.0525)

∗ −0.048
(0.0423)

y10,t−1 −0.1677
(0.0569)

∗∗∗ −0.0791
(0.065)

−0.1594
(0.0527)

∗∗∗ −0.283
(0.0742)

∗∗∗ −0.1933
(0.0899)

∗∗ −0.0282
(0.042)

0.0952
(0.0557)

∗ 0.0514
(0.0441)

0.2015
(0.0576)

∗∗∗ 0.5766
(0.0465)

∗∗∗

∆πUK
t−1 0.1805

(0.1123)
−0.1271
(0.1281)

−0.0202
(0.1039)

0.0189
(0.1462)

0.0732
(0.1772)

0.0823
(0.0828)

0.1798
(0.1099)

0.0159
(0.0869)

−0.041
(0.1137)

−0.1348
(0.0917)

gUS
t−1 −0.0439

(0.1085)
0.2612
(0.1239)

∗∗ −0.0348
(0.1005)

−0.2372
(0.1414)

∗ −0.0213
(0.1714)

−0.2347
(0.08)

∗∗∗ 0.0658
(0.1063)

0.0315
(0.0841)

0.1212
(0.1099)

0.0134
(0.0886)

gJP
t−1 −0.013

(0.0354)
−0.0307
(0.0403)

−0.0468
(0.0327)

−0.054
(0.0461)

−0.3564
(0.0558)

∗∗∗ 0.0453
(0.0261)

∗ −0.0725
(0.0346)

∗∗ 0.0572
(0.0274)

∗∗ 0.0197
(0.0358)

0.0037
(0.0289)

DPt−1 29.7139
(2.2178)

∗∗∗ −8.4746
(2.5308)

∗∗∗ 14.7237
(2.0525)

∗∗∗ 15.5528
(2.8891)

∗∗∗ 16.5135
(3.501)

∗∗∗ 18.8107
(1.6354)

∗∗∗ 8.3942
(2.171)

∗∗∗ 17.713
(1.7178)

∗∗∗ 21.42
(2.2455)

∗∗∗ 5.5552
(1.8109)

∗∗∗

MKTUS
t−1 0.1385

(0.0206)

∗∗∗ −0.0955
(0.0235)

∗∗∗ 0.09
(0.0191)

∗∗∗ 0.1353
(0.0269)

∗∗∗ −0.0019
(0.0326)

0.0634
(0.0152)

∗∗∗ −0.0161
(0.0202)

0.021
(0.016)

0.0915
(0.0209)

∗∗∗ 0.0241
(0.0169)

SMBUS
t−1 −0.0807

(0.0205)

∗∗∗ −0.023
(0.0234)

−0.0106
(0.019)

−0.0205
(0.0267)

−0.098
(0.0324)

∗∗∗ 0.0064
(0.0151)

1e− 04
(0.0201)

−0.025
(0.0159)

−0.0697
(0.0208)

∗∗∗ 0.004
(0.0168)

SMBJP
t−1 −0.0421

(0.0203)

∗∗ 0.0498
(0.0231)

∗∗ 0.0078
(0.0188)

0.0127
(0.0264)

−0.0919
(0.032)

∗∗∗ −0.0238
(0.0149)

−0.0414
(0.0198)

∗∗ −0.0449
(0.0157)

∗∗∗ −0.0261
(0.0205)

−0.0593
(0.0165)

∗∗∗

HMLJP
t−1 −0.0384

(0.0226)

∗ 0.0264
(0.0258)

−0.0032
(0.0209)

0.0145
(0.0294)

−0.1361
(0.0356)

∗∗∗ 0.0048
(0.0167)

−0.0597
(0.0221)

∗∗∗ −0.0609
(0.0175)

∗∗∗ −0.0445
(0.0229)

∗ −0.0423
(0.0184)

∗∗

uUS
t−1 2.8199

(2.597)
−5.9024
(2.9635)

∗∗ −0.406
(2.4034)

−4.2547
(3.383)

−1.0448
(4.0996)

2.0902
(1.915)

0.8249
(2.5422)

4.0813
(2.0115)

∗∗ 4.514
(2.6294)

∗ −2.7284
(2.1205)

uGE
t−1 4.1211

(5.5943)
6.7323
(6.3837)

−7.4938
(5.1773)

5.45
(7.2875)

12.4442
(8.831)

2.6719
(4.1252)

0.3309
(5.4762)

5.5726
(4.333)

−6.6639
(5.6641)

15.2056
(4.5679)

∗∗∗

EPUUS
t−1 0.0065

(0.0022)

∗∗∗ −0.0032
(0.0025)

0.003
(0.0021)

0.0061
(0.0029)

∗∗ −5e− 04
(0.0035)

0.005
(0.0016)

∗∗∗ 0.004
(0.0022)

∗ 0.0018
(0.0017)

−0.0027
(0.0023)

0.0013
(0.0018)

EPUJP
t−1 −0.0065

(0.003)

∗∗ 0.017
(0.0034)

∗∗∗ 0.008
(0.0027)

∗∗∗ 0.0118
(0.0039)

∗∗∗ 0.0125
(0.0047)

∗∗∗ −0.0012
(0.0022)

0.0032
(0.0029)

−0.0038
(0.0023)

∗ −0.0037
(0.003)

0.0062
(0.0024)

∗∗

EPUEU
t−1 −0.0029

(0.002)
−0.0046
(0.0023)

∗∗ −0.0038
(0.0018)

∗∗ −0.0082
(0.0026)

∗∗∗ −0.0074
(0.0031)

∗∗ −0.0024
(0.0015)

∗ −0.0037
(0.0019)

∗ 3e− 04
(0.0015)

0.0048
(0.002)

∗∗ −0.0026
(0.0016)

WTCt −0.7149
(1.1936)

0.3900
(1.3621)

1.0112
(1.1047)

−0.2301
(1.5549)

0.034
(1.8842)

−6.648
(0.8802)

∗∗∗ −6.7121
(1.1684)

∗∗∗ 4.1781
(0.9245)

∗∗∗ 8.2415
(1.2085)

∗∗∗ 2.5601
(0.9746)

∗∗∗

r = 2

µ1, A1, Φ1 y1,t y2,t y3,t y4,t y5,t y6,t y7,t y8,t y9,t y10,t

y1,t−1 0.4557
(0.0544)

∗∗∗ −0.0837
(0.0621)

0.0619
(0.0504)

−0.0755
(0.0709)

0.1979
(0.0859)

∗∗ −0.0819
(0.0401)

∗∗ −0.0492
(0.0533)

0.0107
(0.0422)

−0.0582
(0.0551)

−0.1029
(0.0444)

∗∗

y2,t−1 −0.1398
(0.0446)

∗∗∗ −0.1248
(0.0509)

∗∗ −0.0545
(0.0413)

−0.2548
(0.0581)

∗∗∗ −0.023
(0.0705)

0.1629
(0.0329)

∗∗∗ −0.0961
(0.0437)

∗∗ −0.1152
(0.0346)

∗∗∗ −0.138
(0.0452)

∗∗∗ −0.0746
(0.0364)

∗∗

y3,t−1 0.7333
(0.0816)

∗∗∗ 0.2694
(0.0931)

∗∗∗ 0.1857
(0.0755)

∗∗ 0.1522
(0.1063)

0.6179
(0.1288)

∗∗∗ 0.3298
(0.0602)

∗∗∗ 0.6434
(0.0799)

∗∗∗ 0.2733
(0.0632)

∗∗∗ 1.1329
(0.0826)

∗∗∗ 0.1067
(0.0666)

y4,t−1 −0.2949
(0.0483)

∗∗∗ −0.0893
(0.0551)

0.1934
(0.0447)

∗∗∗ 0.5681
(0.0629)

∗∗∗ −0.499
(0.0762)

∗∗∗ −0.2965
(0.0356)

∗∗∗ −0.5503
(0.0473)

∗∗∗ −0.1019
(0.0374)

∗∗∗ −0.3842
(0.0489)

∗∗∗ −0.1123
(0.0394)

∗∗∗

y5,t−1 −0.1834
(0.0323)

∗∗∗ 0.129
(0.0369)

∗∗∗ −0.1005
(0.0299)

∗∗∗ −0.1374
(0.0421)

∗∗∗ 0.1014
(0.051)

∗∗ 0.0871
(0.0238)

∗∗∗ 0.1298
(0.0316)

∗∗∗ −0.0586
(0.025)

∗∗ −0.6034
(0.0327)

∗∗∗ −0.1382
(0.0264)

∗∗∗

y6,t−1 0.0961
(0.0945)

0.3176
(0.1079)

∗∗∗ 0.1334
(0.0875)

−0.0131
(0.1231)

0.4857
(0.1492)

∗∗∗ −0.122
(0.0697)

∗ 0.28
(0.0925)

∗∗∗ 0.0835
(0.0732)

0.1845
(0.0957)

∗ 0.0557
(0.0772)

y7,t−1 0.1415
(0.0682)

∗∗ −0.0985
(0.0778)

0.0726
(0.0631)

0.1839
(0.0889)

∗∗ 0.0165
(0.1077)

0.0617
(0.0503)

−0.1416
(0.0668)

∗∗ 0.123
(0.0528)

∗∗ 0.028
(0.0691)

0.1774
(0.0557)

∗∗∗

y8,t−1 0.0515
(0.0831)

−0.4265
(0.0948)

∗∗∗ 0.2107
(0.0769)

∗∗∗ −0.0826
(0.1083)

−0.1665
(0.1312)

0.1603
(0.0613)

∗∗∗ 0.0327
(0.0814)

0.3224
(0.0644)

∗∗∗ 0.971
(0.0842)

∗∗∗ 0.0415
(0.0679)

y9,t−1 0.056
(0.0519)

0.2413
(0.0592)

∗∗∗ 0.0817
(0.048)

∗ 0.4562
(0.0676)

∗∗∗ 0.1312
(0.0819)

0.1876
(0.0382)

∗∗∗ 0.1981
(0.0508)

∗∗∗ 0.0411
(0.0402)

−0.2693
(0.0525)

∗∗∗ 0.2093
(0.0423)

∗∗∗

y10,t−1 0.3199
(0.0569)

∗∗∗ 0.1849
(0.065)

∗∗∗ −0.228
(0.0527)

∗∗∗ 0.1053
(0.0742)

0.3251
(0.0899)

∗∗∗ 0.0715
(0.042)

∗ 0.0532
(0.0557)

0.3385
(0.0441)

∗∗∗ 0.8003
(0.0576)

∗∗∗ 0.513
(0.0465)

∗∗∗

∆πUK
t−1 −0.4899

(0.1123)

∗∗∗ 0.0088
(0.1281)

0.3338
(0.1039)

∗∗∗ −0.1628
(0.1462)

−0.7289
(0.1772)

∗∗∗ −0.2307
(0.0828)

∗∗∗ −0.4519
(0.1099)

∗∗∗ −1.3017
(0.0869)

∗∗∗ −3.6859
(0.1137)

∗∗∗ −0.8985
(0.0917)

∗∗∗

gUS
t−1 −0.2765

(0.1085)

∗∗ 0.5392
(0.1239)

∗∗∗ −0.5646
(0.1005)

∗∗∗ −0.0322
(0.1414)

−0.1518
(0.1714)

0.3817
(0.08)

∗∗∗ 0.4488
(0.1063)

∗∗∗ −0.0511
(0.0841)

0.7865
(0.1099)

∗∗∗ 0.1804
(0.0886)

∗∗

gJP
t−1 0.1694

(0.0354)

∗∗∗ 0.0987
(0.0403)

∗∗ 0.2818
(0.0327)

∗∗∗ 0.255
(0.0461)

∗∗∗ 0.1762
(0.0558)

∗∗∗ −0.0217
(0.0261)

−0.0728
(0.0346)

∗∗ 0.102
(0.0274)

∗∗∗ −0.6207
(0.0358)

∗∗∗ 0.0918
(0.0289)

∗∗∗

DPt−1 37.5419
(2.2178)

∗∗∗ 5.929
(2.5308)

∗∗ 18.2143
(2.0525)

∗∗∗ 31.9434
(2.8891)

∗∗∗ 35.0621
(3.501)

∗∗∗ 14.6097
(1.6354)

∗∗∗ 15.1424
(2.171)

∗∗∗ 26.5778
(1.7178)

∗∗∗ −16.7307
(2.2455)

∗∗∗ 18.9172
(1.8109)

∗∗∗

MKTUS
t−1 −0.0131

(0.0206)
−0.0346
(0.0235)

0.0453
(0.0191)

∗∗ 0.0416
(0.0269)

0.0993
(0.0326)

∗∗∗ 0.0091
(0.0152)

−0.0127
(0.0202)

0.0392
(0.016)

∗∗ −0.2333
(0.0209)

∗∗∗ 0.0397
(0.0169)

∗∗

SMBUS
t−1 0.0728

(0.0205)

∗∗∗ 0.004
(0.0234)

−0.0093
(0.019)

−0.0257
(0.0267)

−0.1438
(0.0324)

∗∗∗ 0.0099
(0.0151)

0.1267
(0.0201)

∗∗∗ 0.0016
(0.0159)

0.1052
(0.0208)

∗∗∗ −0.019
(0.0168)

SMBJP
t−1 −0.0556

(0.0203)

∗∗∗ −0.0201
(0.0231)

0.0304
(0.0188)

0.0325
(0.0264)

0.0765
(0.032)

∗∗ 0.0113
(0.0149)

−0.163
(0.0198)

∗∗∗ −0.0138
(0.0157)

−0.4187
(0.0205)

∗∗∗ −0.0052
(0.0165)

HMLJP
t−1 −0.0034

(0.0226)
−0.019
(0.0258)

−0.0692
(0.0209)

∗∗∗ −0.0437
(0.0294)

0.0129
(0.0356)

−9e− 04
(0.0167)

0.0494
(0.0221)

∗∗ 0.0233
(0.0175)

−0.2414
(0.0229)

∗∗∗ −0.0466
(0.0184)

∗∗

uUS
t−1 12.4653

(2.597)

∗∗∗ 13.462
(2.9635)

∗∗∗ 4.5257
(2.4034)

∗ 12.4692
(3.383)

∗∗∗ 19.5058
(4.0996)

∗∗∗ 3.7171
(1.915)

∗ 10.8071
(2.5422)

∗∗∗ 5.7265
(2.0115)

∗∗∗ 14.2514
(2.6294)

∗∗∗ 12.2716
(2.1205)

∗∗∗

uGE
t−1 7.0139

(5.5943)
10.0588
(6.3837)

−8.4888
(5.1773)

8.6778
(7.2875)

18.9269
(8.831)

∗∗ 2.9962
(4.1252)

1.9312
(5.4762)

6.9806
(4.333)

−5.7167
(5.6641)

20.1928
(4.5679)

∗∗∗

Continued on next page
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Table 6 � continued from previous page
EPUUS

t−1 −0.0013
(0.0022)

0.0078
(0.0025)

∗∗∗ 0.0028
(0.0021)

0.0138
(0.0029)

∗∗∗ 0.0152
(0.0035)

∗∗∗ −0.0087
(0.0016)

∗∗∗ −0.0079
(0.0022)

∗∗∗ 0.0051
(0.0017)

∗∗∗ 0.0197
(0.0023)

∗∗∗ 0.0097
(0.0018)

∗∗∗

EPUJP
t−1 0.0043

(0.003)
−0.0017
(0.0034)

0.0131
(0.0027)

∗∗∗ 0.0087
(0.0039)

∗∗ 0.0056
(0.0047)

−0.0051
(0.0022)

∗∗ −0.008
(0.0029)

∗∗∗ −0.0069
(0.0023)

∗∗∗ −0.0068
(0.003)

∗∗ −0.0036
(0.0024)

EPUEU
t−1 −0.0029

(0.002)
−0.0114
(0.0023)

∗∗∗ 9e− 04
(0.0018)

−0.0065
(0.0026)

∗∗ −0.0059
(0.0031)

∗ 0.0058
(0.0015)

∗∗∗ 0.0052
(0.0019)

∗∗∗ 0.0021
(0.0015)

0.0214
(0.002)

∗∗∗ 0.0017
(0.0016)

γ 1.9398 15.7955 100.0477 4.1681 2.4756 100.0005 42.1346 61.4113 22.0723 17.9613

c 4.4546 4.7538 5.2712 4.6020 4.4083 6.8594 5.8317 5.4265 7.3171 5.6202

σ 1.1237 1.2823 1.0400 1.4638 1.7739 0.8286 1.1000 0.8704 1.1377 0.9175

SSR 421.752 549.184 361.226 715.703 1050.981 229.334 404.138 253.014 432.350 281.189

LL -513.918 -558.141 -487.970 -602.500 -666.856 -411.871 -506.772 -428.330 -518.075 -446.015

AIC 1127.836 1216.282 1075.940 1305.001 1433.712 923.742 1113.545 956.660 1136.151 992.030

BIC 1318.543 1406.988 1266.647 1495.707 1624.419 1114.448 1304.251 1147.367 1326.857 1182.737

∗∗∗ indicates p − value < 1%, ∗∗ indicates p − value < 5% and ∗ indicates p − value < 10%; SSR is the sum of
squared residuals, SE is the standard error of the regresssion, R2 is the R-squared index, LL is the loglikelihood,
AIC and BIC are the Akaike and Bayesian information criteria; DW is the Durbin-Watson statistic, LB(5) is the
Ljung-Box test ststistic with 5 lags and ARCH(5) is the test for conditional heteroskedasticity with 5 lags.

Table 7: Signi�cance of leading variables

y1,t y2,t y3,t y4,t y5,t y6,t y7,t y8,t y9,t y10,t

∆πUK
t−1

gUS
t−1 * *

gJP
t−1 * * *

DPt−1 * * * * * * * * * *

MKTUS
t−1 * * * * * *

SMBUS
t−1 * * *

SMBJP
t−1 * * * * * *

HMLJP
t−1 * * * *

uUS
t−1 * *

uGE
t−1 *

EPUUS
t−1 * * *

EPUJP
t−1 * * * * * *

EPUEU
t−1 * * * * *

y1,t y2,t y3,t y4,t y5,t y6,t y7,t y8,t y9,t y10,t

∆πUK
t−1 * * * * * * * *

gUS
t−1 * * * * * * *

gJP
t−1 * * * * * * * * *

DPt−1 * * * * * * * * * *

MKTUS
t−1 * * * * *

SMBUS
t−1 * * * *

SMBJP
t−1 * * * *

HMLJP
t−1 * * * *

uUS
t−1 * * * * * * * *

uGE
t−1 * *

EPUUS
t−1 * * * * * * *

EPUJP
t−1 * * * * * *

EPUEU
t−1 * * * * *

Columns refer to equations in the CholVLSTARX model. The asterisk indicates
that the variable is signi�cant at least at 5% level.
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5 Forecasting

In this section we present the results on the forecast accuracy of the proposed

Cholesky-VLSTAR model for the realized covariance matrix. We consider one-step

ahead forecasts from a rolling window estimation, with a rolling window of 223 ob-

servations. The whole sample is split into an in-sample subset from August 1990 to

February 2009 (223 monthly observations) and an out-of-sample subset from March

2009 to June 2018 (112 monthly observations). At each step, the parameters of the

model are re-estimated.

In order to evaluate the forecast accuracy of our nonlinear model with exoge-

nous variables (CholVLSTARX), we compare the out-of-sample forecasts with those

obtained from the following competing models:

- CholVLSTAR: the nonlinear model without macroeconomic and �nancial exoge-

nous regressors,

- CholVARX and CholVAR: linear models on the Cholesky factors with and with-

out macroeconomic and �nancial exogenous regressors,

- VARX and VAR: VAR(1) model on the realized covariances with and without

macroeconomic and �nancial exogenous regressors,

- logVARX and logVAR: based on the log-volatilities introduced by Bauer and

Vorkink (2011), with and without macroeconomic and �nancial exogenous

regressors,

- BEKK and DCC: the most commonly used multivariate GARCH (see Engle and

Kroner, 1995; Engle, 2002).

5.1 Forecasting evaluation: statistical measures

Direct and indirect methods are implemented to evaluate the forecast accuracy of

the CholVLSTARX model. Statistical evaluation of the forecasts, such as the test

for equal predictive accuracy, can be considered direct methods, while the indirect

evaluation of the predictions is based on economic of �nancial loss functions, like

the optimal portfolio allocation. In this section, we focus on direct methods.
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Due to the latent nature of the object of interest (i.e. co-volatility is unobserv-

able) direct methods shall rely on a proxy. We assume that the realized covariance

is an unbiased co-volatility proxy, this allows us to apply direct methods, such as

Diebold and Mariano (1995) test, Giacomini and White (2006) test and Mincer and

Zarnowitz (1969) regression.

Moreover, direct evaluation of the forecasts involves the use of a loss function. As

pointed out in Patton and Sheppard (2009), the use of �non-robust� loss functions

may lead to a misleading ranking of forecasts (see Patton, 2011). Patton (2011)

veri�es that many commonly-used loss functions lead to severe biases when used

with a noisy proxy. Thus, the statistical evaluation of the forecasts presented in

this paper is based on �robust� functions, such as the univariate Mean Square Error

(hereafter MSE) loss function, L(σ̂t, ht) = (σ̂t − ht)2, where σ̂t is the realized out-

of-sample volatitlity and ht is the forecast volatility. Similarly, the Frobenius norm

between forecast covariance matrices, is de�ned as

LF (Σ̂t, Ht) =
n∑
i=1

n∑
j=1

L(σ̂ij,t, hij,t),

where i and j indicate the rows and the columns, therefore the above MSE loss

function is calculated as all the element of the realized volatility matrix Σ̂t and the

forecast conditional volatility matrix Ht. Finally, the Euclidean distance between

vectors ñ = n(n+ 1)/2 elements of the covariance matrices is de�ned as

LE(σ̂t, ht) =
ñ∑
i=1

(σ̂i,t − hi,t)2.

Volatility forecasts are pairwise compared via Diebold-Mariano (DM) test and Giacomini-

White (GW) test. The DM test is based on the di�erence, dt, between the loss

functions of two models f1t and f2t based on the forecast errors. However, since

the estimated models are in large part nested, the standard Diebold and Mariano

(1995) inference on the equal predictive accuracy is not valid, as shown by Clark

and McCracken (2001) and Clark and West (2007), this because the statistics based

on average comparisons of prediction errors have a degenerate limiting variance

under the null hypothesis and they are not asymptotically normally distributed.

To allow for a uni�ed treatment of nested and non-nested models, Giacomini and
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White (2006) (GW) suggest to approach the problem of the forecast evaluation as

a problem of inference about conditional (rather than unconditional) expectations

of forecast errors. The GW is a test of �nite-sample predictive ability. The GW

approach holds with a rolling window scheme and, in general, with a wider class of

models respect to the DM test, including nonlinear, semi-parametric, parametric,

nested and non-nested models.

Table 8: Out of sample forecast accuracy tests

Diebold and Mariano (1995) Giacomini and White (2006)

Model (f2t) Frobenius Eucidean Frobenius Eucidean

CholVLSTAR −1.318
(0.190)

−2.342∗∗
(0.021)

−2.366∗∗
(0.018)

−3.631∗∗∗
(<0.001)

CholVAR −1.526
(0.130)

−2.815∗∗∗
(0.006)

−2.777∗∗∗
(0.005)

−4.552∗∗∗
(<0.001)

CholVARX −2.103∗∗
(0.038)

−2.631∗∗∗
(0.009)

−2.912∗∗∗
(0.004)

−3.967∗∗∗
(<0.001)

VAR −2.218∗∗
(0.029)

−3.789∗∗∗
(<0.001)

−3.849∗∗∗
(<0.001)

−6.143∗∗∗
(<0.001)

VARX −1.974∗
(0.051)

−3.321∗∗∗
(0.001)

−3.461∗∗∗
(<0.001)

−6.604∗∗∗
(<0.001)

logVAR −1.587
(0.115)

−2.227∗∗
(0.028)

−2.195∗∗
(0.031)

−2.995∗∗∗
(0.006)

logVARX −1.781∗
(0.078)

−2.570∗∗
(0.011)

−2.721∗∗∗
(0.007)

−2.995∗∗∗
(0.003)

BEKK −2.184∗∗
(0.031)

−4.369∗∗∗
(<0.001)

−4.189∗∗∗
(<0.001)

−8.735∗∗∗
(<0.001)

DCC −2.181∗∗
(0.032)

−4.367∗∗∗
(<0.001)

−4.187∗∗∗
(<0.001)

−8.728∗∗∗
(<0.001)

p-values in parentheses, ∗ statistically signi�cant at 10%, ∗∗ statistically signi�cant
at 5%, ∗∗∗ statistically signi�cant at 1%

Table 8 provides the results of the tests for predicting accuracy with multivari-

ate loss functions. The reference model is the Cholesky-VLSTAR with exogenous

explanatory variables (CholVLSTARX) estimated in section 4. A negative and sta-

tistically signi�cant test statistics means that the nonlinear model with exogenous

variables performs better than the competing models. The results of the DM test

with Euclidean loss function say that the CholVLSTARX model outperforms all mod-

els compared. Quite the same results are obtained with the Frobenius norm.

The GW test rejects the null of equal predictive accuracy in several cases. As for

the DM test, the sign of the test statistics indicates that the CholVLSTARX model

performs better than the competing models. When the loss function is the Euclidean
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distance, our proposed model strongly overperforms the competing models. Inter-

estingly, the highest test statistics are shown in the comparison with the BEKK and

DCC models.

Alternatively, forecasts may be compared for more than two models. For this

purpose, Hansen, Lunde, and Nason (2011) introduced the model con�dence set

(MCS) to compare all forecasts against each other. For a given con�dence level,

the MCS de�nes the set of models containing the best out of sample forecasts.

The MCS approach consists in a sequential test that allows us to test the equal

predictive ability of the compared models, to discard any inferior model and to de�ne

the set of superior models (SSM). Given a set of H forecasts, the MCS procedure

test whether all models in H have equal forecasting ability. The performance is

measured pairwise via the loss functions di�erence, dj1,j2,t = L(ŷj1,t;σt)−L(ŷj2,t;σt),

for all j1, j2 = 1, 2, . . . , H and j1 6= j2. Assuming that dj1,j2,t is stationary, the null

hypothesis takes the following form:

H0 : E(dj1,j2,t) = 0 (19)

for each j1 6= j2. A model is discarded if the null is rejected at a given con�dence

level α. The test is sequentially repeated until H0 is not rejected. The remaining

models de�ne the set of statistically equivalent models with respect to a given loss

function. Since MCS procedure strongly relies on the ordering imposed by the loss

function, we implement the Frobenius and the Euclidean distances in a multivariate

framework.

The ranking of the models through MCS are reported in Table 9 for the multi-

variate Frobenius and Euclidean loss functions. The Cholesky-VLSTAR model, with

or without exogenous variables, stands in the top ranked models amongst the equal

predictive models because they exhibit the highest probability of being included in

the SSM. In practice, their inclusion occurs 10000 times on 10000 attempts. On

the other hand, the linear models (VAR and VARX) and the multivariate GARCH

models (BEKK and DCC) show the lowest probabilities. This leads us to conclude that

combining the Cholesky decomposition with nonlinearity and proper exogenous vari-

ables improves the predictive accuracy. Thus, the nonlinear model introduced in this

work (CholVLSTARX) appears to perform better than any other competing models,

contrary to what the literature on nonlinear models emphasizes. Moreover, the use
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of a transformation of the realized covariance to ensure semi-positiveness seems to

improve the predictive ability of the models, while the use of exogenous variables

seems to slightly improve the forecast accuracy.

Table 9: MCS with α = 0.1 and 10 000 bootstraps

Frobenius Euclidean

Rank Model Loss PMCS Model Loss PMCS

1 CholVLSTARX 2678 1.000∗∗ CholVLSTARX 32.61 1.000∗∗

2 CholVLSTAR 4492 0.964∗∗ logVARX 39.44 0.015

3 CholVARX 4458 0.899∗∗ logVAR 40.13 0.009

4 logVARX 4657 0.196∗ CholVLSTAR 40.36 0.001

5 logVAR 5173 0.164∗ CholVARX 41.21 <0.001

6 CholVAR 5338 0.006 CholVAR 43.79 <0.001

7 VAR 7442 0.004 VAR 54.09 <0.001

8 VARX 6829 0.003 VARX 55.14 <0.001

9 BEKK 12823 0.001 BEKK 73.35 <0.001

10 DCC 12782 <0.001 DCC 73.27 <0.001

Note: The table displays the average loss over the testing sample as well as the
Model Con�dence Set p-values and the ranking in the SSM. * and ** indicate a
probability of being in the SSM higher than 10% and 30% respectively.

5.2 Forecasting evaluation: �nancial measures

While direct methods are useful to rank volatility forecasts, indirect evaluation al-

lows to measure the performance of the models in economic applications. In this

section we focus on portfolio optimization in absolute risk-total return space (see

Markowitz, 1952) that relies on the �rst two conditional moments of asset returns.

In this context, using an accurate measure of forecast volatility is crucial for portfo-

lio management or risk hedging. Hence, we use a Global Minimum Variance (GMV)

approach. According to Merton (1980) GMV does not require modelling the condi-

tional expected returns and several papers show that GMV portfolio performs better

than mean-variance portfolio, see also Chan, Karceski, and Lakonishok (1999), Ja-

gannathan and Ma (2003) and Kyj, Ostdiek, and Ensor (2009), when the covariance

matrix is predicted. Assuming a risk adverse investor, the GMV portfolio weights
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at time t are the solution of the optimization problemmin
w

w′tΣ̂t+1wt

sub w′tι = 1
(20)

where ι is a vector of ones, Σ̂t+1 is the forecast covariance matrix and wt is the n×1

vector of portfolio weights in the t-th month.

In order to assess the economic value of the forecasts produced by the model,

we create a portfolio for each model considered in the direct methods. Table 10

reports the GMV portfolio performance. In addition to the models considered in the

statistical evaluation, we consider also a naïve portfolio with 1/n weights, in line with

the contribution of DeMiguel, Garlappi, and Uppal (2009). The portfolio weights

are monthly rebalanced using the forecasts from the rolling window estimation.

Table 10: GMV Portfolio Performance

Portfolio µp(%) σp(%) SR Treynor alpha VaR(95%) CVaR(95%) Ledoit-Wolf
t-stat p-value

CholVLSTARX 1.032 3.505 0.303 0.153 2.373 6.265* 7.496** - -

CholVLSTAR 0.974 3.362** 0.300 0.149 2.015 6.401 7.617 0.300 0.764

CholVARX 1.053 3.533 0.308** 0.154 2.511 6.423 7.644 -0.214 0.831
CholVAR 0.963 3.400 0.294 0.145 1.715 6.368 7.574 0.625 0.532
logVARX 1.011 3.495 0.298 0.149 2.025 6.593 7.756 0.327 0.743
logVAR 0.994 3.400 0.302 0.150 2.150 6.421 7.651 0.131 0.896

VARX 1.099* 3.771 0.302 0.157* 2.828* 7.254 8.066 0.141 0.888
VAR 0.982 3.419 0.298 0.149 1.991 6.361 7.637 0.399 0.690

BEKK 1.020 3.336* 0.315* 0.156** 2.578** 6.314** 7.535 -0.381 0.703

DCC 0.884 3.364 0.275 0.137 1.027 6.361 7.272* 0.843 0.399

Naïve 1.065** 3.693 0.300 0.152 2.474 6.377 8.216 0.199 0.842

Note: * and ** indicates the best performing portfolios for each measure

We use the Sharpe Ratio (SR), the Treynor Ratio and the Jensen's alpha, in

order to evaluate the portfolio performance. We include also pure risk measures,

such as the portfolio standard deviation (σP ), the Value at Risk (VaR) and the

Conditional Value at Risk (CVaR). The CholVLSTARX model exhibits the lowest

Value at Risk (95%). Similarly, the Conditional Value at Risk (95%) is lower for

DCC and CholVLSTARX. Only the portfolio obtained from a BEKK model seems

to outperform the competing ones in terms of SR, Treynor and Jensen's alpha.

However, the Ledoit and Wolf (2008) test for the equality of the Sharpe ratios of

two investment strategies does not highlight any relevant di�erence between our
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proposed model and all the other competing approaches. From the results in Table

10, it may be concluded that a matrix parametrization may help in reducing the

overall risk of a portfolio, nevertheless the risk-return performance of the compared

portfolios remains quite similar.

6 Concluding remarks

In this paper, we introduce the Vector Logistic Smooth Transition (VLSTAR), a

new statistical approach for the speci�cation of multivariate conditional covariance

matrices. Our proposed methodology bene�ts of the Cholesky decomposition in

order to obtain positive de�nite estimated covariance matrices, and the possibility

to add macroeconomic and �nancial variables as exogenous explanatory variables.

Moreover, we apply a nonlinear version with changes in regime in order to account

for asymmetric dynamics of volatility.

We provide evidence that our proposed model is able to signi�cantly improve

the out-of-sample volatility forecasts, compared to the standard techniques as, for

example, the multivariate GARCH models, the linear VAR models or the logVAR

models. A portfolio optimization exercise is also carried out in order to assess

the accuracy of the forecasts in economic applications. The results con�rm that,

in terms of risk-return performance, the portfolio obtained by using the Cholesky-

VLSTAR approach is comparable and sometimes seems to perform better than those

obtained via the competing models. Variables capturing time-varying risk show up

as robust predictors for Cholesky factors. Conversely, macroeconomic variables are

less informative about future volatility. Economic Policy Uncertainty, instead, plays

a crucial role in the de�nition of the movements of volatility.

Our work leaves space for future work and further studies. A possible extension

of this work should check its feasibility in a higher dimensional framework. Future

research in this �eld could be conducted on the use of machine learning algorithms

to identify nonlinear dynamics in a more parsimonious way than smooth transition

model.
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Appendix: Joint linearity test

Given a VLSTAR model with a unique transition variable, s1t = s2t = · · · = sñt =

st, a generalization of the linearity test presented in Luukkonen, Saikkonen, and

Teräsvirta (1988) may be implemented.

Assuming a 2-state VLSTAR model, such that

yt = B1zt +GtB2zt + εt. (21)

Where the null H0 : γj = 0, j = 1, . . . , ñ, is such that Gt ≡ (1/2)/ñ and the (21) are

linear. When the null cannot be rejected, an identi�cation problem of the parameter

cj in the transition function emerges, that can be solved through a �rst-order Taylor

expansion around γj = 0.

The approximation of the logistic function with a �rst-order Taylor expansion is

given by

G(st; γj, cj) = (1/2) + (1/4)γj(st − cj) + rjt

= ajst + bj + rjt
(22)

where aj = γj/4, bj = 1/2 − ajcj and rj is the error of the approximation. If Gt is

speci�ed as follows

Gt = diag {a1st + b1 + r1t, . . . , añst + bñ + rñt}
= Ast +B +Rt

(23)

where A = diag {a1, . . . , añ}, B = diag {b1, . . . , bñ} and Rt = diag {r1t, . . . , rñt}, yt
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can be written as

yt = B1zt + (Ast +B +Rt)B2zt + εt

= (B1 +BB2)zt + AB2ztst +RtB2zt + εt

= Θ0zt + Θ1ztst + ε∗t

(24)

where Θ0 = B1 +B′2B, Θ1 = B′2A and ε∗t = RtB2 + εt. Under the null, Θ0 = B1 and

Θ1 = 0, while the (24) model is linear, with ε∗t = εt. It follows that the Lagrange

multiplier test, under the null, is derived from the score

∂ logL(θ̃)

∂Θ1

=
T∑
t=1

ztst(yt − B̃1zt)
′Ω̃−1 = S(Y − ZB̃1)Ω̃−1, (25)

where

Y =

y
′
1
...

y′t

 , Z =

z
′
1
...

z′t

 , S =

z
′
1s1

...

z′tst


and where B̃1 and Ω̃ are estimated from the model in H0. If PZ = Z(Z ′Z)−1Z ′ is

the projection matrix of Z, the LM test is speci�ed as follows

LM = tr
{

Ω̃−1(Y − ZB̃1)′S
[
S ′(It − PZ)S

]−1
S ′(Y − ZB̃1)

}
. (26)

Under the null, the test statistics is distributed as a χ2 with ñ(p · ñ+ k) degrees of

freedom.
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