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Phillips’ averaging procedure as a ‘crude’ version of the 

Haar wavelet filter 

Marco Gallegati* and James B. Ramsey§ 

Abstract 

The aim of this study is to investigate the exact nature of Phillips’ (1958) findings. We 

show that the application of the simplest type of wavelet basis function developed by Haar in 
1910 allows to replicate the output of Phillips’ data transformation procedure, i.e. the six 

mean coordinates. Specifically, the resemblance between the coarsest scale level coefficients 

from the Haar wavelet filter and the six crosses suggests the long-term nature of Phillips’ 

(wage-unemployment) relationship. The application of the Haar wavelet filter allows us to 

examine the effects of two main features of Phillips’ ‘unorthodox’ averaging procedure: the 

arbitrarily choice of variable-width intervals and the choice of sorting observations in 

ascending order of unemployment rate values. Our results show that the arbitrary selection of 

intervals affects only the smoothness (regularity) of the nonlinear pattern of the wage-

unemployment relationship, but not its shape which is determined by sorting and grouping 

unemployment rate values in ascending order. Indeed, when observations are ordered 

according to a chronological sequence a simple linear relationship is evident. These findings 

are robust to different samples, 1861-1913 and 1861-1958. 

JEL: B22, C63, E24 
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Introduction 

Phillips' (1958) averaging method yields six mean coordinates from non-overlapping 
variable window-widths moving averages of unweighted observations.1 As evidenced by the 
filtering literature, since moving average is one of the varieties of discrete low-pass filter with 

filtering effects depending on the window size (length), averaging corresponds to applying a 
low-pass filter to the signal. In particular, since the window size affects the resolution level of 
the analyzed signal, using different averaging lengths is equivalent to viewing data at 
different resolution levels, as in multiresolution decomposition analysis.  

As noted by Gallegati et al.’s (2011), Phillips’ averaging procedure may be considered 
a “crude” version of the simplest type of wavelet (filter) basis function developed by Haar in 
1910, the orthogonal Haar wavelet filter.2 The aim of the present study is to investigate the 

exact nature of Phillips’ (1958) findings by using the Haar discrete wavelet transform 

(DWT).3 The application of the Haar DWT to Phillips' original UK data for the 1861-1957 
period yields a multiresolution decomposition analysis of the rate of change of money wages 
and unemployment rate into different components, each associated to a specific frequency 

resolution level.  

We find several interesting results. First, we show that the approximation or scaling 
coefficients at the coarsest scale level, associated to fluctuations greater than 16 years, bear 
a striking resemblance to Phillips’ six mean coordinates.  We interpret this finding as 

evidence on the long-term nature of Phillips’ wage-unemployment relationship. In addition to 

provide new insights into the low frequency interpretation of Phillips’ results, the application 

of the Haar wavelet filter allows us to investigate whether and how Phillips’ choices of 

intervals and his method of sorting observations matter. Our results show that the arbitrary 

selection of intervals is responsible for the regularity of the pattern formed by the averages, 

but not for the eye-catching hyperbolic shape of the wage-unemployment relationship. Indeed, 

when observations are time-ordered a “simple” linear negative relation is evident, thus 

implying that the non-linear pattern is strictly dependent on sorting observations of the 

unemployment rate in ascending order.  These findings are robust to different sub-samples, 

1861-1913 and 1861-1958.  

The structure of the paper is as follows. In section 2 we show the similarities between 

                                      
1 Phillips’ (1958) ‘unorthodox’ data tranformation procedure consists in reducing 53 

observations to 6 average values by first grouping observations sorted in ascending order by 

the values of the uunemployment rate into several variable-width arbitrarily selected 

intervals, and then computing for each interval the mean values of money wage inflation 

and the unemployment rate. 

2 As stated in Wulwick (1996) Phillips was familiar with the ability of data averaging as a 

tool to filter out stochastic disturbances (Phillips and Quenouille, 1960). 

3 The same goal, that is repeating Phillips (1958) study, is performed by Wulwick and 

Mack (1990) using kernel regresion analysis. 



 

Phillips' averaging procedure and the Haar wavelet filter formulation. In Section 3 we apply 
the Haar wavelet transform to Phillips' original UK data over the 1861-1957 period. Section 4 
concludes. 

2. Phillips' averaging procedure: a “crude” version of the Haar wavelet 
filter  

The average values computed using Phillips’ 'unorthodox' data transformation 
procedure can be interpreted as the result of the application of a simple unweighted moving 
average with non-overlapping variable-width windows.  Since moving average is one of the 

varieties of discrete low-pass filter, Phillips' averaging procedure is equivalent to applying a 
low-pass filter. With the filtering effects depending on the window size (length), different 

averaging lengths allow to viewing the data at different resolution levels, as in multiresolution 
decomposition analysis.  

Wavelet analysis allows us to analyze a signal in multiple resolutions, each reflecting a 

different specific frequency range that corresponds to fine, medium and coarse time scales. In 
order to extract information from a signal at different scales and distinct times, wavelet 
analysis uses a collection of local basis functions, called wavelets, that are compactly 
supported, i.e. they have finite length, and are localized both in the time and the frequency 
domain. Since the wavelet transform can be rewritten as a convolution product, the 
transform can be interpreted as a linear filtering operation. 

Figure 1 shows Mallat's (1989) pyramid algorithm for a 3-level wavelet 
decomposiiton. Wavelet-based algorithms break a signal down into different time scale 

components by recursively applying a sequence of filtering and downsampling steps. For the 
wavelet algorithm to decompose a signal into its different time scale components a dual pair 
of low-pass and high-pass filters is necessary at each scale level. The first is a non-
overlapping moving average of the signal, the latter a non-overlapping moving difference. 
The first step uses a window width of two. Thus, the wavelet technique takes averages and 

differences on a pair of values of a signal, with the averages giving a coarse signal and the 

differences the fine details. Then the algorithm shifts over by two values and calculates 

another average and difference on the next pair. At each successive scale level the window 

width is dilated (doubled) and, since wavelet algorithms are recursive, the smoothed data of 

the previous scale level, i.e. the averages, become the input for getting new (smoothed) 
approximations and detail components at coarser resolution levels. At each downsampling 
step, the wavelet algorithm decomposes a signal into two subsignals each with a length 
which is half the size of the input dataset. In the end, the application of the Discrete Wavelet 
Transform (DWT) to a dyadic length vector of observations (N=2J for some positive integer J) 
yields N wavelet coefficients, that is N = N/2 + N/4, + ... + N/2J-1 + N/2J + N/2J, where the 
number of coefficients at each scale level J is (inversely) related to the width of the wavelet 
function. 

Figure 1 - Mallat filter scheme for a 3-level wavelet decomposiiton 



 

  

The Haar wavelet, proposed in 1910 by Alfred Haar, is a piecewise constant function 
on the real line that can take only three values: 1, -1 and 0. Therefore, Haar wavelets are the 
simplest orthonormal wavelet basis function with compact support (see Figure 2).4 The Haar 
scaling and wavelet filters are given, respectively, by 

H = (h0, h1) = 1/√2, 

and  

G = (g0, g1) = (1/√2, -1/√2). 

Three basic orthonormal properties characterize the Haar scaling and wavelet filters.  

∑l hl = 0    and     ∑l gl = √2 

∑l h2
l = 1    and     ∑l g2

l = 1 

∑l hl hl+2n = 0    and     ∑l gl gl+2n = 0                 for all integers n ≠ 0 

The first property guarantees that g is associated with a difference operator and thus 
identifies changes in the data and that h may be viewed as a local averaging operator. The 
second property, unit energy, ensures that the coefficients from the wavelet transform 
preserves energy and, therefore, will have the same overall variance as the data.5 The third 
property guarantees orthogonality to even shifts.  

                                      
4 The scaling and wavelet filters in Figure 2 assume unity values. 

5 The normalization factor √2 ensure that that the dilated and translated Haar function 

satisfies the second property in the wavelet definition. 



 

The Haar functions provide the two most elementary high-pass and low-pass filters. 

The wavelet filter G, with filter coefficients g=[1/√2,−1/√2], by computing the difference 

between any two adjacent samples simply accomplishes differences. The scaling filter H, with 
filter coefficients h=[1/√2,1/√2], represents a moving average filter because it essentially 

computes the average of successive pairs of non-overlapping values. Thus, for the Haar 
scaling filter the filtered signal is a weighted average of observations with the filter 
coefficients (h0, h1) used as weights. Hence, as noted by Gallegati et al. (2011), Phillips' 
averaging procedure, using unity weights (as in the left panel of Figure 2), can be considered 
a ‘crude’ version of the Haar scaling filter.6  

Figure 2 – Haar scaling (left) and wavelet (right) filters 

 

3. Haar discrete wavelet transform of Phillips’ original data 

Since both the estimated regression and the smooth hyperbolic curve are based on 
those six average values, the ‘crude’ statistical method used by Phillips can be considered 
crucial in getting his original results (Wulwick, 1987). The analysis of the effects Phillips’ 
averaging procedure based on the analogy with the Haar scaling filter is carried out by 
applying the Haar wavelet transform to Phillips’ original dataset for the full sample period 
1861-1957.  

The application of the DWT using the Haar (1910) wavelet filter for a 3-level 

decomposition, i.e. J=3, produces three vectors of wavelet detail coefficients, D1, D2 and D3, 

and three vectors of scaling coefficients, A1, A2 and A3. Table 1 presents the frequency domain 

interpretation of each detail and approximation level component using annual data. The detail 

levels D1, D2 and D3 represent non-overlapping changes in the rate of change of money wages 

and in the unemployment rate at different frequency ranges, i.e. 2-4, 4-8 and 8-16 years, 

respectively. The approximation levels A1 represents non-overlapping averages of the rate of 

change of money wages and unemployment rate greater than 4 years. Moreover, by adding D2 

and D3 to the lower “smooth” component A1 and A2 we get, respectively, the additional levels 

of approximation A2 and A3 capturing fluctuations greater than 8 and 16 years.  

Table 1: Frequency domain interpretation of multiresolution decomposition analysis 

                                      
6  In this sense we can say that Phillips was, involuntarily, the first economist to use 

wavelets as a tool of analysis. 

http://en.wikipedia.org/wiki/Moving_average


 

with annual data for J=3 

Detail  

level, 
Dj 
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ears 

Approxim
ation  
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Years 

Windo
w 

width 

D1 
2

-4 
A1 

from 4 
to ∞ 

2 

D2 
4

-8 
A2 

from 8 
to ∞ 

4 

D3 
8

-16 
A3 

from 
16 to ∞ 

8 

 

The last column in Table 1 denotes the number of values used in calculating the 

scaling coefficients at that scale level. In reducing the number of observations from 52 to 6 
Phillips averaged into each interval a number of raw points varying from 6 to 12 (i.e. 6, 10, 
12, 5, 11, 9). Since the averaging length (window width) determines the frequency resolution 

of the decomposition, the approximation component at the scale level J=3, yielding 7 scaling 
coefficients each stemming from a window-width with length 8, can provide a useful 
benchmark for evaluating Phillips' averaging procedure. Indeed, the number of values of 

money wage rates and the unemployment rate used, on average, by Phillips for computing the 

mean coordinates, the six crosses, roughly corresponds to the number of wavelet scaling 

coefficients at the approximation level A3.  Thus, beyond the reasons for using moving 

averages,7 the effect of Phillips’ averaging procedure is to identify a “locus of long-run 

equilibrium points” (Desai, 1975, p.2) whose frequency resolution level corresponds to 

fluctuations greater than 16 years.8  

Table 2 – Mean coordinates using Phillips’ intervals and Haar A3 scaling coefficients 
with observations sorted by ascending unemployment rate values (1861-1913) 

P
hillips’ 
coeffs 

u
r 

d
w 

1.
516  

5.
058 

2.
351  

1.
547 

3.
483  

0.
848 

4.
49  

0.
346 

5.
954   

-
0.182 

8.
372  

-
0.350 

H
aar A3  

c
oeffs 

u

r 

d

w 

1.

650 

4.

610 

2.
426 

1.
117 

3.
337 

0.
755 

4.
069 

0.
852 

5.
600 

0.
431 

6.
862 

-
0.991 

                                      
7 Averaging within groups has the property that the rate of change of the unemployment 

rate in Phillips equation is set to zero (Wulwick, 1989). 

8 This is also consistent with Phillips’ statement that “each cross (or mean coordinate) gives an 

approximation to the rate of change of wages which would be associated with the indicated level of 

unemployment if unemployment were held constant at that level (Phillips, 1958, p. 290). 



 

Note: The values in the row “Phillips’ averages” are calculated by averaging observations sorted by 

ascending values of the unemployment rate for Phillips’ (1958) intervals (0-2, 2-3, 3-4, 4-5, 5-7, 7-11). The 7th 
Haar A3 scaling coefficient, not included here, is reported in Figure 3. 

Table 2 presents the values of the scaling coefficients at level A3 and the mean 
coordinates of the unemployment rate and money wage rates when observations are sorted 
by ascending values of the unemployment rate for the period 1861-1913 and Phillips’ 
intervals are used, i.e. 0-2, 2-3, 3-4, 4-5, 5-7, 7-11. The coefficient values shown in Table 2 
are also visually displayed in the left panel of Figure 3 with filled blue circles corresponding 
to A3 level approximation coefficients, while Philips’ averages are marked with a cross as in 
his original paper. The position of the filled blue circles and the crosses is quite well aligned 

in the left panel of Figure 3, except for values of the unemployment rate higher than 5-6%. 

Similar findings9 are provided in the right panel of Figure 3 where the same analysis is 
replicated for the period 1861-1957.10  All in all, these findings are consistent with Desai’s 
(1975) interpretation on the long-term nature of the Phillips’ relationship between wage 
inflation and unemployment. 

The previous findings allow using the approximation level component A3 as a 
benchmark for the evaluation of the effects of Phillips’ averaging procedure on his results. In 
particular, we can examine separately the effects of i) using variable window-widths, and ii) 

sorting observations according to increasing values of the unemployment rate. In Figure 3 the 

comparison of Phillips’ crosses with the filled blue circles representing the Haar A3 level 

approximation coefficients, based on fixed regular window-widths, allows us to analyze the 

effect of Phillips‘ choice of intervals. Interestingly, the blue filled circles detect an irregular 

graph of averages with several ranges of unemployment characterized by a positive 

relationship positive. Similar findings are provided by Wulwick (1989) that, after 

experimenting alternative intervals similar to Phillips’ intervals, her conclusion was that “only 

Phillips’ intervals resulted in the smooth hyperbolic graph of averages” (Wulwick, 1989, figs. 

4 and 5, p.181-2). Therefore, while the shape of the wage-unemployment relationship does 

not seem to be affected by using fixed or variable window widhts, the regularity of the pattern 

formed by the averages is strictly related to the arbitrary selection of intervals made by 

Phillips.11 

Figure 3 – The low frequency resolution nature of Phillips’ relationship  

                                      
9 The main difference being that A3 coefficients are slightly shifted upward. 

10 In the right panel outliers have been excluded by limiting the range of x-axis and y-axis. 

Outliers have been defined as those values greater than 10% for the unemployment rate and 

greater than 15% for the money wage rate.  Such values are all included in the 1918-1923 

period. 

11 Although it may be appear a secondary feature it is not if we think that the failure in his 

1955’s book to draw or fit an eye-catching downward sloping convex curve on a scatter 

diagrams similar to Phillips’ probably prevented from the attribution of the wage-

unemployment relationship the label Brown- or Brown-Phillips curve (Corry, 2001, Button, 

2018). 



 

 
Note: Philips’ averages (x) and A3 scaling coefficients (•) with observations sorted by ascending 

unemployment rate values: 1861-1913 (left) and 1861-1957 (right). In the right panel values higher than 15% 
for money wage rates and the unemployment rate are excluded because they can be considered as outliers 
(they refer to years between 1918 and 1923). 

Figure 4 – The long-term relationship net of the effect of sorting observations in 

ascending order of unemployment rate values 

 

 

Note: Philips’ averages (x) and A3 Haar scaling coefficients (•) with observations sorted by time: 1861-
1913 (left) and 1861-1957 (right). In the right panel values higher than 15% for money wage rates and the 
unemployment rate are excluded because they can be considered as outliers (they refer to years between 1918 
and 1923). 

The Haar wavelet transform may also be useful in order to detect the effect of sorting 
observations according to ascending values of the unemployment rate. To this aim we apply 
the Haar wavelet transform to time ordered observations. Figure 4 shows the Haar A3 level 



 

approximation coefficients (filled blue squares) and Philips’ averages (crosses) for the 
periods 1861-1913 (left panel) and 1861-1957 (right panel). Interestingly, the pattern 

diplayed by the filled blue squares in both panels of Figure 4 contrasts strikingly with that 

delineated by Phillips’ crosses. In particular, differently from the evidence presented in Figure 

3 the filled blue squares identify a simple linear pattern for the wage-unemployment 

relationship. This finding suggests that the nonlinear pattern (shape) of the wage-

unemployment relationship may depend on grouping obervations into ascending values of the 

unemploment rate. What emerges from our analysis is that the ordering choice is highly 

influential for Phillips’ results. Indeed, such ordering is responsible for obscuring the “true” 

linear relationship that is otherwise evident at the coarsest scale when observations are sorted 

througha time sequence. 

In sum, our results suggest that, beyond Phillips’ reasons for averaging, understanding 

the effects of Phillips’ unorthodox data transformation procedure is crucial for assessing the 

precise nature of Phillips’ findings in terms of frequency resolution, first of all the low 

frequency nature of the wage-unemployment relationship. Interestingly, in terms of the 

controversy between Desai (1975) and Gilbert (1976) our findings can reconcile both 

Gilbert’s and Desai’s views. Although the crude curve-fitting procedure exploited by Phillips 

is adopted with the only purpose to get a practical estimation result, and in this sense Gilbert’s 

view is right, the choice of averaging observations, which is equivalent to viewing long-term 

information, supports Desai’s view that the Phillips’ procedure identifies a long-run 

relationship. 

4. Conclusions 

In this paper we provide new insights into the low frequency resolution nature of 
Phillips’ wage-unemployment relationship. Given the similarities between Philips’ averaging 
procedure and the simplest wavelet basis function, i.e. the Haar (1910) wavelet filter, we 
show that Phillips’ averages (mean coordinates) resemble the long-term components of 

wages and unemployment corresponding to fluctuations greater than 16 years. Most 

importantly, we find that the choice of sorting observations by ascending values of the 

unemployment rate is crucial for reaching the goal of estimating the eye-catching nonlinear 

hyperbolic shape of the wage-unemployment relationship. 

Since the statistical and economic interpretation, as well as the policy implications, of 
the Phillips curve are crucially related to its short- or long-run nature, we find that our 
results, although limited to Phillips’ original dataset, may provide interesting insights into the 
endless debate over the form of the wage-unemployment relationship.  
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