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Abstract

The paper presents an agent based model reproducing a stylized credit network that

evolves endogenously through the individual choices of firms and banks. We intro-

duce in this framework a financial stability authority in order to test the effects of

different prudential policy measures designed to improve the resilience of the eco-

nomic system. Simulations show that a combination of micro and macro prudential

policies reduces systemic risk, but at the cost of increasing banks’ capital volatility.

Moreover, agent based methodology allows us to implement an alternative meso reg-

ulatory framework that takes into consideration the connections between firms and

banks. This policy targets only the more connected banks, increasing their capital

requirement in order to reduce the diffusion of local shocks. Our results support the

idea that the meso prudential policy is able to reduce systemic risk without affecting

the stability of banks’ capital structure.
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Macro and Micro Prudential Policies: Sweet
and Lowdown in a Credit Network Agent
Based Model∗

Ermanno Catullo Federico Giri

Mauro Gallegati

1 Introduction

The aim of this paper is to provide some insights into the interrelation between micro

and macroprudential policies, the potential conflicts among them and to propose an

alternative regulatory framework based on the credit network topology, that we de-

fine as the meso prudential policy. For this purpose, we build an agent-based model

including a credit network where banks and firms can have multiple lending relations.

We use this model to answer two questions: First, are there any drawbacks when

the financial stability authority uses a combination of micro and macroprudential

policies to achieve its target? Second, does the meso prudential policy, which takes

into account the credit network relationships, works better in terms of output and

credit stabilization than the one based on the traditional micro/macro framework?

In this study, we address these research questions by building an agent-based

model that includes a credit network among firms and banks, which evolves endoge-

nously according to the individual supply and demand of loans. In the standard

DSGE literature, many recent contributions try to shed light on the relation be-

∗The authors would like to thank all the participants to the conference Finance and Economic
Growth in the Aftermath of the Crisis held in Milan, 11-13 September 2017, to the First Behavioral
Macroeconomics Workshop: New Approaches to Macro-Financial Instability and Inequality held
in Bamberg, 15-16 June 2018, to the 16th Payment and Settlement System Simulation Seminar
held at the Bank of Finland, Helsinki, 29-30 August 2018. In particular we would like to thank
Ville Voutilanen , Oliver Richters and Micha Rubaszek for their useful discussions and suggestions.
Finally, we would like to thank two anonymous referees for their comments. All errors remain ours.
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tween macroprudential and monetary policy (see Angelini et al., 2014, Mendicino

and Punzi, 2014, and Cesa-Bianchi and Rebucci, 2017). However, given the diffi-

culties of DSGE models in taking into account both micro and macro levels, very

few attention is devoted to understand the connections between macro and micro-

prudential policies. On the contrary, agent-based models (henceforth ABM, see

Delli Gatti et al., 2005a and Tesfatsion and Judd, 2006, for a detailed description)

are particularly well suited for this purpose as they allow to describe in a unified

framework individual agent behavior and macroeconomic patterns.1

After the 2007/2008 financial crisis, the design and enforcement of effective pru-

dential policies aiming at preventing or reducing the effects of financial and credit

crises became central in the economic and political debate. According to Hanson

et al. (2011) and Galati and Moessner (2013), the micro and macro approaches

to financial regulation differ in a fundamental way: micro policies aim at reducing

the riskiness of a single financial institution, whereas macroprudential policies are

focused on mitigating the systemic effects of individual imbalances. While micro-

prudential policy has a long tradition and has been extensively analyzed for the

last decades (see Gorton and Winton, 2003, for a review), it was only in the after-

math of the financial crisis that macroprudential policy captured the attention of

economists. It could be mentioned, as concluded by Galati and Moessner (2017),

that at the current point there is no general consensus about the effectiveness of

macroprudential policy as an instrument to reduce systemic risk.

A relative unexplored topic in the blooming literature on the macroprudential

policy is related to its interaction with the microprudential measures. This topic is

especially important, given that different circumstances, micro and macroprudential

policy objectives may diverge (Angelini et al., 2012, Alessandri and Panetta, 2015,

and Osinski et al., 2013). For instance, during downturns, macroprudential policies

may be oriented at softening banks’ capital requirement in order to avoid a credit

crunch. On the contrary, microprudential policy may aim at consolidating the fi-

nancial position of banks by tightening the capital requirements. We address this

1For a detailed description about the differences between macro policy analysis in DSGE and
ABM framework see Fagiolo and Roventini (2017).
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conflictive dichotomy in our research setting up a policy experiment in which micro

and macro policies interact inside an ABM framework.

Our work is related to several recent studies that apply the ABM methodology

to investigate financial stability. Cincotti et al. (2012) uses an ABM model to show

that the dynamic adjustment of capital requirements helps in output stabilization.

Likewise, Baptista et al. (2016) explores the effects of a loan-to-income policy and

finds that this policy is successful in smoothing house price fluctuation. Assenza

et al. (2017) compare different macroprudential policies to show that the adjust-

ment of capital requirements is more effective than constraining liquidity ratios in

reducing the probability of a crisis. Popoyan et al. (2017) also build an ABM model

with heterogeneous banks and firms in order to test the effectiveness of different

macroprudential policies. Their main finding is that imposing a minimum capital

requirement and introducing counter-cyclical capital buffer is the policy that best

resembles the Basel III regulatory framework in a much more simplified way. In a

similar framework, Krug et al. (2014) find that the macroprudential policy overlays

impact with microprudential measures has a very limited impact on financial sta-

bility. Moreover, Riccetti et al. (2017) find that a tight regulation can generate a

contraction of the credit supply whereas loose financial regulation can generate finan-

cial instability.2 Secondly, our work is also related to the literature that investigates

the role of financial network, systemic risk and the implementation of prudential

policy that may reduce financial instability (see Gai et al., 2011, Battiston et al.,

2012 and Aldasoro et al., 2017).

Our contribution is twofold: First, there exists a combination of micro and

macroprudential policy that reduces macroeconomic volatility and the probability

of an economic crisis in comparison to the scenario with the microprudential policy

only. The side effect of this policy is that it leads to higher volatility of banks’

equity. Second, we show that meso prudential policy is an effective tool in reducing

systemic risk through tightening the capital requirements of more connected banks

only. Exploiting network topology, we show that it is possible to better coordinate

2However, in an ABM framework, Mazzocchetti et al. (2017) show that banks can avoid macro-
prudential regulation through the securitization process.
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micro and macroprudential policy in order to increase the resilience of the economic

system without impacting on the performance of the banking system.

The paper is organized as follow: Section 2 presents the model; Section 3 de-

scribes the micro/macro prudential policy experiments; Section 4 introduces the

meso prudential policy experiment. Finally, Section 5 concludes.

2 The Model

Our model reproduces a simplified credit network with M banks and N heteroge-

neous firms that evolves endogenously. Credit agreement stands for one period and

they are repaid at the end of it. In line with Riccetti et al. (2013), Catullo et al.

(2015), Catullo et al. (2017), the dynamics of the credit network emerges from a pref-

erential attachment mechanism that allows banks, that offer better credit conditions

in terms of interest rate, to increase the amount of loans granted to firms.

However, in our model, the preferential attachment mechanism also depends on

the supply of credit that each bank is able to provide. Moreover, firms maximize

profits under bounded rational conditions, since they solve a static optimization

problem that determines their desired level of capital at time t. Thus, firms choose

loan demand and, consequently, their leverage derives from firms desired level of

capital. Banks are profit seeker under bounded rationality, too, following heuristic

rules to determine the amount of loans offered and the interest rates. They modify

their credit supply according to firms demand and to the capital requirement fixed

by the regulatory authority. Banks set interest rate in two steps. First, banks fix an

internal component of the interest rate as a function of their own leverage. Every

time the capital/asset ratio is below the threshold set by the prudential authority,

the bank has to increase the interest rate on credit. Second, banks compute a firm-

specific component of the interest rate charged on credit that depends on firms’

leverage.
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2.1 Banks

In each period t, each bank b determines its credit supply and the interest rate

on loans. It does it by gradually adjusting credit supply with respect to the loan

demand received in the previous period (LDb,t−1), taking into account the capital

requirement set by the financial stability authority (νt). The associated maximum

loan supply is:

Lνbt = Ebt/νt (1)

where Ebt is bank b net-worth.

Therefore, bank’s desired loan supply (LObt) is equal to the minimum between

loan previously demanded (LDb,t−1) and the maximum loan supply authorized by the

financial stability authority (Lνbt):

LObt = min(LDb,t−1, L
ν
bt). (2)

We assume that banks adapt gradually their credit supply (LSbt) to the desired

offer (LObt):

LSbt =


LSb,t−1(1− δ) if LOb,t < LSb,t−1(1− δ)

LObt if LSb,t−1(1− δ) ≤ LOb,t ≤ LSb,t−1(1 + δ)

LSb,t−1(1 + δ) if LOb,t > LSb,t−1(1 + δ).

(3)

Equation 3 introduces stickiness in the credit creation process.3 Banks can ex-

pand (reduce) their credit supply up to a maximum (minimum) given by a fraction

δ of the previous period credit supply (maximum upper bound LSb,t−1(1 + δ) , min-

imum lower bound LSb,t−1(1 − δ)). If the desired offer is in between the upper and

lower bounds, credit supply is equal to the desired one.4

Moreover, banks may provide a maximum amount of their supply to a single

3The myopic behavior of both firms and banks assumed in the model leads to stickiness in credit
supply and demand. This mechanism allow us to capture in a very simple way the persistence of
the credit cycle which is in line with recent empirical evidence (see Aikman et al., 2015 and Gelain
et al., 2017.

4In the simulation exercise, the value of the parameter δ is common among firms and banks.
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firm i (LSMibt ):

LSMibt = ζLSbt, (4)

where ζ is the maximum share of credit allocated to each firms.

Deposits are computed residually as difference between loan supply and bank

net-worth:

Dbt = LSbt − Ebt, (5)

The interest rate is computed in two steps. Firstly, following Gerali et al. (2010),

banks maximize expected profits which leads to a non linear dependence between

interest rate and bank leverage.

Rbt =

ηr
d
t − k

(
Ebt/L

S
bt − νt

) (
Ebt/L

S
bt

)2
if Ebt/L

S
bt < νt

ηrdt if Ebt/L
S
bt ≥ νt,

(6)

where η and k are the bank margin on the discount rate respectively and capital

requirement adjustment cost. According to Equation 6, a capital to asset ratio

below the capital requirement (Ebt/L
S
bt < νt) is costly for the banks. Such cost

(k
(
Ebt/L

S
bt − νt

) (
Ebt/L

S
bt

)2
) is charged directly on credit interest rates (Rbt). Fur-

thermore, similar in spirit to the financial accelerator mechanism of Bernanke et al.

(1999), banks fix a firm specific interest rate premium that depends on firm’s leverage

(KD
it /Eit), where KD

it and Eit are the capital demanded by firms and their net-worth,

respectively.

ribt = r̄

(
KD
it

Eit

)β
+Rbt. (7)

In Equation 7, β is the coefficient that determines the risk premium while r̄ is the

risk free rate.

Banks compute profits (πbt) as:

πbt =
I∑
i

ribtLibt −
ID∑
i

BDibt − rdDbt − F. (8)

Banks calculate revenues as the sum of debt service on loans allocated to firms
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J . Costs are given by the sum of bad debt (BDbt), fixed cost (F ) and interest on

deposits (rdDbt). Bad debt is defined as the sum of credit that defaulting firms (ID)

are not able to pay back to bank b. F is a small fixed cost that can be interpreted

as an operating cost. 5

Only a fraction of profits is accumulated by the banks, increasing their net worth

(Eb,t+1), indeed in line with the gradual adjusting processes that characterized the

model we assume that the larger is profit the higher are dividends, thus the net

profit πNbt is equal to min(πbt, |πbt|γ) with 0 < γ < 16.

Eb,t+1 = Ebt + πNbt . (9)

2.2 Firms

Firms use capital (Kit) to produce output using a linear production function:

Yit = φKit, (10)

where φ is firms’ productivity. The firm’s balance sheet is:

Kit = Lit + Eit. (11)

Capital is given by the sum of the net-worth (Eit) and loans obtained at time t

(Lit). Firms can borrow from more than one bank, thus the total amount of credit

received by a single firm is given by the sum of loans obtained by the set of lending

banks (B):

Lit =
∑
b∈B

Libt. (12)

Profits derive from revenues (pitYit) minus a variable cost on production (cKit,

see Delli Gatti et al., 2005b) interests on loans (ritLit) and a fixed cost (F ) where c is

positive coefficient determining the user cost of physical capital. pit is extracted from

5In the simulation exercise, the value of F is common among firms and banks. For sake of
simplicity, the two operating costs have the notation in our model.

6The min is required in order to keep distributed profits below the total amount. Indeed if (πbt)
is positive but lower than one πγbt is greater than πbt. While if profit is negative the distributed
dividends are equal to zero
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a uniform distribution (pit ∼ U [0, 2]) and it can be interpreted as an idiosyncratic

stochastic demand shock (see Greenwald and Stiglitz, 1993 and Delli Gatti et al.,

2005b ):

πit = pitYit − ritLit − cKit − F. (13)

Firms choose the desired level of production assuming that they would ask for

loans only if they do not have sufficient internal resources. Loan demanded (Ldit) is

equal to desired level of capital (Kit) minus firm’s net-worth Ldit = Kit −Eit. Thus,

if Kit > Eit:

E(πit) = E(p)φKit −

[
r̄

(
Kit

Eit

)β
+ E(Rbt)

]
(Kit − Eit)− cKit − F, (14)

assuming that E(Rbt) = Rb,t−1, thus maximizing expected profit for Kit, the first

order condition is:

E(p)φ− r̄(β + 1)
Kβ
it

Eβ
it

+ r̄ −Rb,t−1 − c = 0. (15)

If Kit > Eit and E(p)φ − c − Rb,t−1 + r̄ > 0 the optimum capital level (KO
it ) is

equal to:

KO
it =


1

(1+β)r̄
(E(p)φ− c−Rb,t−1 + r̄)

1
β Eit if Kit > Eit

Eit if Kit ≤ Eit.

(16)

Similarly to the banking system, firms may adapt only gradually to their op-

timum quantity (KO
it ), thus the productive amount of capital (KD

it ) is computed

as:

KD
it =

max[KO
it , K

D
i,t−1(1− δ)] if KD

i,t−1 > KO
it

min[KO
it , K

D
i,t−1(1 + δ)] if KD

i,t−1 ≤ KO
it .

(17)

Therefore, if the capital desired (KD
it ) and the optimum level of capital (KO

it ) are

greater than the firm net-worth (Eit), loan demand is equal to:

LDit = min(KD
it − Eit, KO

it − Eit). (18)
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In general, firms accept credit if the charged interest rate is lower than the expected

incremental gains from loan (ribt < φ− c).

The quantity of capital effectively used in production depends on the quantity

of loan effectively received Lit and thus is equal to:

KE
it = Lit + Eit. (19)

Similarly to the banking sector, only a fraction of the profits is accumulated by

firms. Thus the net profit πNit is equal to min(πit, |πit| γ) with 0 < γ < 1.

Ei,t+1 = Eit + πNit (20)

2.3 Credit Matching

In each period, firms receive credit from different banks. The matching process

between credit demand and supply follows three stages. Firstly, firms, in a random

order, apply for a loan to banks that provided credit to them in the previous period

until their demand is fulfilled.

Secondly, if firms do not receive enough credit, they ask for loans to banks that

did not allocate all their supply in the previous stage. Moreover, firms that did not

receive credit in the previous period ask for loans to banks that still offer credit.

In the third stage, each firm that was linked with a bank in the previous period

may switch a credit line in favor of another bank that offers better credit conditions.

Following Delli Gatti et al. (2010) and Riccetti et al. (2014), each firm can change a

randomly chosen linked bank with a new randomly chosen bank that has an excess

of credit supply. Firms choose to remain linked with the previous bank or to shift to

the new bank with a probability (Ps), which depends on the interest rate charged

by the old and the new bank (respectively rnew and rold) and the quantity of credit

supplied to the firm (respectively Lsnew and Lsold).
7

Ps = max[Ps(r), Ps(L)], (21)

7In general the firm-bank links are quite sticky over time (Bernardo et al., 2017)
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where Ps(r) and Ps(L) are respectively:

Ps(r) =

1− e(rnew−rold)/rnew if rnew < rold

0 othewise ,

(22)

Ps(L) =

1− e(Lsold−L
s
new)/Lsnew if Lsnew > Lsold

0 otherwise .

(23)

Thus, if the new bank offers lower interest rate and a larger amount of credit the

probability that the firm will substitute the old bank with the new one increases.

2.4 Exit and entry

Firms and banks with net-worth lower than zero exit from the economy and they are

replaced by an equal number of agents. When a firm default, the previous period

credit obtained from banks is not repaid and it becomes bad debt (BDibt) for the

the counterpart bank. The net-worth of the new entering firm (Eit) is equal to

Eit = max[Emed
Ft , E

0
F ], (24)

where Emed
Ft is the median firm net-worth and E0

F a given minimum firm net-

worth level.

Similarly, the net-worth of the new enter bank (Ebt) is equal to

Ebt = max[Emed
Bt , E

0
B], (25)

where Emed
Bt is the median bank net-worth and E0

B a given minimum bank net-

worth level.

2.5 Simulation Time-Schedule

The simulation model follows a discrete agents’ decision process divided in steps:

1. Banks offer credit
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2. Firms determine loan demand

3. Credit matching among firms and banks

4. Firms and banks compute profit and net-worth

5. Failing firms and banks exit the market and new agents enter

when all this steps are implemented a new cycle of the computation starts again.

3 Micro and Macro Prudential Policies

The simulated economy is populated by 1000 firms and 100 banks, simulations last

for 1000 periods, discarding the first 500 as transient. We calibrate the model so

that it reproduces output standard deviation and the aggregate credit over output

value. A detailed explanation of the calibration process is provided in Appendix A.

In order to have some insights on the behavior of the baseline model, Figure

1 presents the cross-correlation between four variables, credit, firms, and banks’

leverage and connectivity, with respect to total output. The upper left panel of

Figure 1 shows that credit is positively correlated with output. Also, firms and

banks leverage are positively correlated with output but they anticipate it with a

negative sign suggesting the existence of a Minskyan credit cycle (Minsky, 1986).

In fact, when leverage increases it also causes a contemporaneous rise of output,

however, growing leverage leads to a contraction of output in the following periods

because of the surge of financial instability. Finally, connectivity, intended as the

number of credit linkages between firms and banks, is positively correlated with

the business cycle. Since credit plays a crucial role in determining business cycle

fluctuations, any regulatory intervention that affects the behavior of credit can be

potentially effective in order to achieve financial stability.

In this framework we implement our prudential policy experiment acting on the

variable νt. According to Equations 2 and 6, each bank has to adjust its leverage

in order to satisfy the capital requirement (νt). Equation 2 governs the leverage dy-

namics, whereas Equation 6 drives the spread between the interest rates on deposits
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Figure 1: Cross-correlations of the baseline scenario. Pink bars are not statistically significant
cross correlations at 5 % confidence interval. Connectivity is defined as the avergae numbers of
banks’ links.
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Figure 2: In black the baseline micro prudential scenario, in red the macro prudential scenario
with χ = 0.8 (The value that minimizes output and credit volatility, see Figure 3). In all figures,
time is on the x axis. In the top left figure, the capital requirement variation that are fixed in
the baseline scenario while it fluctuate with the macro prudential policy. In the top right figure,
the output time series. In the bottom left figure, aggregate credit over output variations. In the
bottom right, the average number of firms at which each bank lend credit. The series are obtained
using the same seed for both these experiments.

and wholesale credit. In the baseline scenario, we only implement a microprudential

framework fixing ν̄ = 9%. We compare the baseline micro prudential simulations

with a scenario where, in addition, a macro prudential policy is implemented as a

time-varying capital requirement mechanism, similar in spirit to the one proposed

by Angelini et al. (2014):

νt = (1− ρ)ν̄ + χ(1− ρ)∆Lt/Lt−1 + ρνt−1. (26)

The parameter χ represents the strength of the macro prudential policy inter-

vention. Assuming χ > 0, the macro prudential authority behaves countercyclically,

increasing νt when the aggregate amount of credit allocated in the economy (Lt)

grows, and vice-versa when credit decreases. When χ is negative the macro pru-

dential policy is procyclical. The parameter ρ captures the persistence of capital

requirement adjustment over time.

We introduce the macro prudential policy to the system after period 500. The

left upper panel of Figure 2 shows that after this moment νt starts to fluctuate.

This leads to changes in the dynamics of output (upper left panel), credit (lower

right panel) and the average number of links between banks and firms in the credit

network (lower right panel).
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Since the impact of macroprudential policy crucially depends on χ, we explore

the responses of the system to different values of this parameter running 100 Monte

Carlo simulations in the interval [−0.5, 2] (see Angelini et al., 2014). Across different

simulations, we focused on the standard deviation of both credit and output, which

give us a measure of the volatility of the system, and the probability of credit

and output crises as synthetic indicators of the vulnerability of the economy. The

probability of crises is measured as the percentage of credit and output contractions

lower than −2%.

Figure 3 shows that varying parameter χ, we might significantly change economic

outcome. In fact, the relationship between χ and volatility and vulnerability take

a U-shaped form. When χ is equal to zero the macro prudential policy is inactive

reproducing ‘de facto’ the micro prudential policy. Starting from χ = 0 , and

increasing it until 0.8, this leads to a contraction of both output and credit volatility

and vulnerability. On the contrary, when the level of χ is too greater than 0.8 the

augmenting fluctuation of the capital requirement produces a destabilizing effect.

Similarly, when the macroprudential policy behaves pro-cyclically (−0.5 ≤ χ ≤ 0 ),

we have the same increase of financial instability.

However, the macro prudential policy seems to have a hidden side effect. Lower

left panel of Figure 3 shows that with higher values of χ, the standard deviation of

the bank net-worth increases, while the volatility of firm net worth does not change.

Thus, the macro policy seems to shift part of the systemic risk to the banking

sector. This is due to the fact that a fluctuating capital requirement is consistently

reflected in bank leverage and thus in bank profit volatility. Figure 4 reports three

bank specific variables: leverage, profits rate and its standard deviation. Since the

value of νt fluctuates when macroprudential policy is active, we separate periods in

which the capital requirement is below its average (νt < ν̄, left column of Figure

4) from periods in which it is above (νt > ν̄, right column of Figure 4). When

macroprudential policy is counter-cyclical (χ > 0), the left upper panel of Figure

4 shows that when the capital requirement νt is below its average, bank leverage

increases, because banks may offer a larger amount of credit (see Equation 2) at a

lower interest rates (see Equation 6), while the opposite occurs when νt < ν̄ (right

14
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Figure 3: On the x-axis the values of the χ parameter, the solid line reports the average of
one-hundred simulations and in dashed line the confidence interval of 95%. The dotted red line in
correspondence with χ = 0 where ‘de facto’ is applied the micro policy only. In the top left figure,
the standard deviation of output growth rate. In the top right, the standard deviation of credit
growth rate. In the center left panel, the output crisis probability. In the center right, the credit
crisis probability. In the bottom left panel, the standard deviation of bank net-worth, measured
as the aggregate standard deviation of equity divided by the average value. In the bottom right
panel, the standard deviation of firm net-worth, measured as the aggregate standard deviation of
equity divided by the average value.
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Figure 4: On the x-axis the values of the χ parameter, the solid line reports the average of
one-hundred simulations and in dashed line the confidence interval of 95% The dotted red line in
correspondence with χ = 0 where ‘de facto’ is applied the micro policy only. In the top left panel,
the bank sector leverage, measured as aggregate credit divided by bank net-worth computed when
the capital requirement is under the average (νt < ν). In the top right, the bank sector leverage
computed when the capital requirement is over the average (νt > ν). In the center left, the profit
rate when the capital requirement is under the average (νt < ν). In the center right, the profit
rate when the capital requirement is over the average (νt > ν). In the bottom left, the standard
deviation of the profit rate when the capital requirement is under the average (νt < ν). In the
bottom right, the standard deviation of the profit rate when the capital requirement is over the
average (νt > ν).

upper panel of Figure 4). In particular when νt < ν̄ , profits increase but at the

cost of higher profit volatility (central left panel of Figure 4 ), due to the increased

risk associated with higher leverage (lower left panel of Figure 4 ). On the contrary,

when νt is above its average, both the profit rate and its standard deviation decrease

(central and lower left panel of Figure 4, respectively). To sum up, when νt > ν̄, a

more restrictive macroprudential policy reduce profit rate standard deviation. On

the contrary, when νt > ν̄, a more restrictive macroprudential policy leads to an

increase of profit rate standard deviation. According to Albertazzi and Gambacorta

(2009) and De Haan and Poghosyan (2012), this excess of earnings volatility tends

to lead to an unstable capital structure, leading to financial instability. Therefore,

a well calibrated macro prudential policy reduces the vulnerability of the economic

systemic risk but at the potential cost of a more fragile banking system.
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4 Meso Prudential Policy

In this section we provide an alternative prudential scheme in which, in addition to

the micro policy, the regulatory authority takes into account the number of banks-

firms connections. We call this framework the meso prudential policy set-up because

the evolving configuration of the connections on the credit market triggers the re-

sponse of the financial stability authority. Our meso prudential measure is in line

with new directives proposed by the Basel III agreement (see BIS, 2011) regarding

the importance of controlling interconnectedness among global systemically impor-

tant banks as an instrument to tame financial instability. While BIS’s directives

focuses on the money market, we propose a measure of connection that take into ac-

count the number of firms-banks linkages. In fact, Lux (2016) suggests that default

contagion through loans to firms is much stronger than the effect that boils down

from the interbank market.

Results show that a basic prudential policy that targets just the more connected

banks is able to reduce the vulnerability of the system without affecting negatively

the banking sector as a whole. Indeed, increasing the capital requirement of the

more connected bank reduces the possibility of diffusing local shocks, improving the

resilience of the system.

In order to carry on our policy experiment, we define a simple measure of bank

connectivity that allow us to isolate an efficient prudential policy. The number of

connections of bank b (NCbt) is given by the sum of the number of banks connected

with the firms that received loans from bank b. Thus, if NFbt is the number of firms

i connected with bank b at time t and NBit is the number of banks that provide

credit to a firm i at time t:

NCbt =

NFbt∑
i

NBit. (27)

This measure tries to take into account both the direct links of a bank and the

indirect connections between banks. Indeed, if bank b provides credit to NFbt firms

and, in turn, these firms have not any other lender, NBit is equal to one for each

firm and thus NCbt = NFbt. In this case, NCbt is equal to the number of direct links
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only. On the contrary, if these firms receive credit from other banks, NBit becomes

greater than one for each firm and NCbt increases (NCbt > NFbt).

In this experiment, the meso prudential policy targets only banks that overcome

a certain threshold level of connectivity (TC) increasing the capital requirement of

a fraction (δv) only for the more connected ones (νbt = ν(1 + δν)), thus:

νb =

ν(1 + δν) if NCbt > TC

ν if NCbt ≤ TC.

(28)
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Figure 5: On the x-axis the values of the threshold level of connectivity. In the top left panel, the
average number of bank targeted. In the top right, the output crisis probability. The bottom left,
the output growth standard deviation. In the bottom right, the credit growth standard deviation.

The top left panel of Figure 5 shows that increasing the link threshold (TC)

reduces the number of banks targeted by the meso policy. The number of banks

subject to the meso prudential regulation approaches to zero when the number of

connections (NCbt) is above 50. On the contrary, when the number of connections is

too low, the sample of banks that should be monitored becomes high. For instance,

when TC is equal to ten, the financial stability authority should monitor more

than the eighty per cent of banks. The remaining panels of Figure 5 show that

there is an intermediate interval of meso prudential intervention thresholds (TC)

that stabilizes the economy in terms of probability of output crisis, output and

credit growth volatility. For instance, if the threshold is 40, even if the number of

targeted banks is below 20% we observe a significant reduction of the instability

of the system with respect to the baseline scenario when only the micro prudential
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policy is applied.

The effectiveness of the meso prudential policy is related to the emerging topol-

ogy of the credit network: the left panel of Figure 6 shows that bank connectivity

presents a fat tail log-normal distribution. As a consequence, just few banks can

have a huge impact on the dynamics of the system and this justifies the implemen-

tation of a meso prudential policy that target only the more connected ones, that

potentially can diffuse local shocks across the entire network. However, also bank

size presents a fat tail distribution (see the right panel of Figure 6).
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Figure 6: In the top left panel, the distribution of the connectivity measure used for the meso
prudential policy. In the top right panel, the distribution of bank size, measured as the bank
net-worth.In green log normal distribution, in red Pareto distribution estimates.In the bottom
panel,the percentage of banks belonging to the 20% of the larger ones that are targeted by the
meso policy.

In fact, one of the possible critique to our experiment is that bigger banks in

terms of size could be also the most connected ones.8 Nevertheless, according to

our connectivity measure (see Equation 27), the bottom panel of Figure 6 shows

that more connected banks do not coincide with bigger ones. For instance, taking

40 as the meso policy threshold (NC = 40) and the second decile of the bank size

distribution (thus bigger banks), only about the 20% of the banks belonging to this

second decile are also the more connected ones.

Moreover, applying the same policy but using a threshold size instead of a mea-

8The relationship between bank size and systemic risk is widely studied in the literature. See
for instance Laeven et al. (2016, 2014).
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Figure 7: On the x-axis the values of the threshold level of size reported in standard deviations
from the average. In the top left panel, the average number of bank targeted. In the top right, the
output crisis probability. In the bottom left, the output growth standard deviation. In the bottom
right, the credit growth standard deviation.

sure of connectivity (increasing the capital requirement of the larger banks according

to a given size threshold), we do not observe a significant impact on crisis probability

even if volatility decreases in terms of output and credit standard deviations (Figure

7).

We also tested the effect of a combination of the meso prudential policy with the

macro policy, thus letting change the capital requirement according to the credit

cycle (see Equation 26) and at the same time targeting the more connected bank. 9

νbt becomes:

νbt =

νt(1 + δν) if NCbt > TC

νt if NCbt ≤ TC.

(29)

As shown in Figure 8, with respect to the baseline micro scenario, the combina-

tion of macro and meso policies has the better performance in reducing the volatility.

However, as for the macro policy scenario, it leads to an increase of bank capital

volatility. The meso policy stabilizes the economy, achieving comparable results in

terms of output and credit volatility with respect to the macro policy. However, on

the other hand, the meso prudential policy does not have a negative impact on bank

capital volatility. In terms of policy recommendations, the meso prudential policy

9Macroprudential policy parameters χ is fixed at 0.8, the specification in which the macropru-
dential policy is more effective.
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seems to be a good compromise between the soundness of the banking system and

a stable real economy.
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5 Conclusions

The 2007/2008 crisis highlighted the importance of regulation as a tool that may

contribute to improve the resilience of the economy. Our contribution has tried to

feed the literature that focus on the interrelation between micro and macro pru-

dential policy and the possible conflicts that may arise among them. We have also

explored alternative regulatory frameworks.

In order to do that, we have built an agent based credit network model. The

ABM set-up has allowed us to design policy measures that may target specific agents

according to the interaction structure of the economy, taking into account in an

unified framework both individual behaviors and macroeconomic patters.

Simulation results have shown that combining micro and countercyclical macro

prudential policy reduces the volatility of the economy. However, the dark side of

this policy mix is an increasing instability of the banking sector capital structure.

Moreover, we have proposed a meso prudential policy rule based on the topol-

ogy of the credit network, in which the financial stability authority monitors the

evolution of the connections among firms and banks. Thus, we have implemented

a combined micro and meso prudential policy that leads to higher capital require-

ments only for more connected banks, reducing the diffusion of local shocks to the

whole economy without affecting the banking system. Our results have shown that

a combination of micro and meso prudential policy achieves the best compromise

between banking sector and real economy stability, according to the idea that fi-

nancial institutions might not only be ”too big to fail”, but they can also be ”too

interconnected or too systemic to fail” (see Markose et al., 2012, Kelly et al., 2016,

Bongini et al., 2015, and Hser, 2015).
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Appendix A: Calibration

Table 1: Calibrated parameters
parameters Description Value

M Number of banks 100
N Number of firms 1000
E0
B Initial Bank net-worth 1

E0
F Initial Firm net-worth 1
φ Firm productivity 0.5
c Firm variable cost 0.45
F Firm fixed cost 0.01
rd Discount Rate 0.001
ζ Bank maximum credit share 0.1
γ Firms and banks dividend policy 0.5
ν̄ Capital requirement 0.09
ρ Persistence of capital requirement adjustment 0.9
δν Meso policy capital requirement variation 0.15
δ Capital and credit adjustment 0.1
κ Capital requirement adjustment cost 10
β Risk premium coefficient 1.25
r̄ Risk free rate 0.005
η Bank margin on the discount rate 10

We calibrated the model in order to reproduce realistic level of output volatility and

aggregate leverage, which are the crucial variables of our analysis. Considering the

results of one-hundred simulation of the baseline specification the output standard

deviation is in line with data provide by Uribe and Schmitt-Grohé (2017): data

show that 1.12% is the word quarterly standard deviation of output growth rates,

while in simulation this value is close to 1.01%. Moreover, the credit over output

ratio is equal to 1.15, in line with the Euro area average between 2006 and 2015 that

is 1.05. As expected credit volatility is higher than output volatility.

The number of agents depends on the necessity of a numerous population for

producing robust results during the simulation, the ratio between banks and firms

follow Catullo et al. (2015) and Catullo et al. (2017). The initial level of net-worth of

firms and bank (E0
b and E0

f ) are fixed equal to one for simplicity. The productivity of

capital (φ) and the variable cost of capital (c) are fixed in order to have a difference
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between productivity, thus expected revenues given E(p) = 1, and variable costs

that allow firms to borrow money until the quarterly interest rate is lower of 5%. F

is intended as little fixed cost that eliminates agents that are too small to impact on

the credit network, allowing new agent to enter. rd is fixed to 0.001 for simplicity.

ζ is 0.1 to avoid excessive exposure of banks and, thus, an excessive failure rate of

banks. γ is fixed to 0.5 for simplicity, value of γ that are near to zero do not allow

accumulation of firms and banks, on the other side value of γ near to 1.0 lead to

high levels of capital accumulation of firms, which generates an excessive reduction

of their leverage.

In the baseline scenario we keep the capital requirement fixed (ν = 0.09 in

line with Basel’s Agreements, see Gerali et al., 2010 ), thus in this specification a

basic micro prudential policy is implemented: banks have to align to the capital

requirement in order to reduce their riskiness. Indeed, bank leverage is slightly

above the maximum leverage possible for the banks given ν = 0.09 (Table 2) and

the number of firms that receive loans is 13.51 a value larger than the ratio between

the number of firms and banks. In this simple credit model the dynamic of credit

and, thus, the probability of crisis occurrence depends on negative shocks affecting

the economy through bad debts: debts that are not payed back by failing firms. The

percentage of bad debt on credit is 1.9% with a low standard deviation, meaning that

on average bad debt is quite stable through different simulations. Similarly v̄ = 0.15

allow an effective Meso policy. The remaining parameters are fixed in order to

permit a good calibration of the model with respect to output standard deviation

and aggregate leverage. In Appendix B, we report sensitivity experiments on the

adjustment parameters δ and the parameters that are associated with the financial

accelerator mechanism of banks (κ, β,r̄,η) running one-hundred simulation for each

specification. The sensitivity experiments are also implemented in the macro and

meso scenarios.

Table 2 shows the emergent aggregate variable results in the micro baseline

simulation.
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Micro (Baseline)
Sd Output Growth Rate 1.01% Prob Output Crisis 2.68%

(0.003%) (0.0692%)
Sd Credit Growth Rate 1.19% Prob Credit Crisis 4.95%

(0.004%) (0.0840%)
rsd Bank Net-Worth 6.23% rsd Firm Net-Worth 4.48%

(0.0813%) (0.0446%)
Credit/Output 1.15 Bank Leverage 11.41

(0.0005) (0.0017)
Average Bank Links 13.51 Bad-Debt/Credit 1.9%

(0.0043) (0.0001%)

Table 2: Macro Variable Simulated Results. Bank Leverage is measured as aggregate credit over
aggregate bank net-worth. Average Bank Links are the average number of firms that receive loans
from a bank. Bad-Debt/Credit is the value of the debts that are not payed back by failing firms
divided by the total amount of credit in the economy.
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Appendix B: Sensitivity Analysis

As expected reducing the adjustment parameter δ decreases the volatility of the

system, while the opposite happens when δ is increased. We check the behavior of

the model for different values of the adjustment parametrs δB and δF for banks and

firms, respectively. As expected, results shows that varying δB for banks have a more

significant impact on system volatilities with respect to δF . Also the parameters

that impact on the financial accelerator mechanism has been calibrated to produce

realistic levels of systemic volatility (κ, β,r̄,η): values that are too distant from the

baseline tend to increase volatility. Indeed, for instance decreasing or increasing

too much the parameter β impacts in significant way on the system. When β is

higher than the benchmark level interest rate may easily surge when firm leverage

augments, this may increase rapidly firms’s bad debt and, at the same time, may

reduce the credit in the economy. On the other hand, lower levels of β may increase

too much firm capacity of borrowing money and, thus leverage in the economy.

Varying the other financial accelerator parameters produces similar effects Moreover,

the adjustment parameter (δ) and the parameters of the financial accelerator seem

to impact on the simulated system following the same patterns in both the Macro

prudential policy and the meso prudential policy specifications.
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Table 3: Micro Configuration Sensitivity Analysis, percentage values.
variable sd(Output) sd(Credit) prob(Crisis

Output)
prob(Crisis

Credit)
rsd(Bank

net-worth)
Micro

1.015 1.199 2.682 4.95 6.236
(0.032) (0.0405) (0.6829) (0.8333) (0.8113)

δ
0 0.897 0.316 1.14 0.042 15.186

(0.0265) (0.1143) (0.3913) (0.0955) (6.2339)
0.05 0.776 0.603 0.54 0.06 5.185

(0.0241) (0.0251) (0.3222) (0.1119) (0.6075)
0.15 1.374 1.888 7.568 14.58 8.061

(0.0516) (0.0789) (0.9393) (1.4286) (1.1505)
0.2 1.747 2.635 12.742 21.94 9.539

(0.062) (0.094) (1.233) (1.3477) (1.3007)

δB

0 0.795 0.323 0.462 0 7.924
(0.0302) (0.1691) (0.2936) (0) (3.0074)

0.05 0.809 0.622 0.728 0.11 5.256
(0.025) (0.0257) (0.3851) (0.1403) (0.5992)

0.15 1.227 1.724 5.312 12.376 7.52
(0.0456) (0.0626) (0.8941) (1.2457) (1.1792)

0.2 1.404 2.172 8.112 17.68 8.532
(0.0467) (0.0694) (1.1073) (1.2814) (1.1479)

δF

0 1.054 1.729 2.938 12.428 9.387
(0.0364) (0.0767) (0.6809) (1.3978) (1.0309)

0.05 0.936 1.135 1.75 4.06 6.226
(0.031) (0.0427) (0.5336) (0.8727) (0.8836)

0.1 1.118 1.304 3.914 6.484 6.58
(0.0343) (0.0425) (0.7544) (1.0461) (0.9344)

0.2 1.196 1.399 5.136 7.614 7.025
(0.0355) (0.045) (0.8374) (0.9683) (0.943)

β
0.75 1.203 3.149 5.028 26.336 24.792

(0.0356) (0.1241) (0.7995) (1.4113) (1.3228)
1 1.345 2.521 7.108 20.088 14.619

(0.0497) (0.1196) (1.02) (1.4231) (2.1747)
1.5 1.713 1.705 12.206 12.08 20.246

(0.0559) (0.0571) (1.2165) (1.2355) (1.0843)
1.75 1.607 1.672 10.604 11.502 20.297

(0.0502) (0.0499) (1.1364) (1.2538) (0.2484)
k
0 1.121 1.553 3.966 10.02 10.286

(0.0391) (0.0702) (0.7702) (1.3826) (1.4704)
5 1.049 1.343 3.114 6.986 8.004

(0.0399) (0.051) (0.8146) (1.0595) (1.1516)
15 1.377 1.88 7.672 14.092 5.137

(0.044) (0.065) (0.9183) (1.1835) (0.7352)
20 1.986 3.109 15.312 24.398 5.164

(0.0742) (0.1226) (1.3545) (1.3383) (0.6968)
r̄

0.003 1.316 2.931 6.758 23.704 17.253
(0.0448) (0.1317) (0.9906) (1.553) (1.5681)

0.004 1.192 1.734 4.924 12.374 9.78
(0.0384) (0.0682) (0.7805) (1.3966) (1.5062)

0.006 1.772 1.757 13.014 12.822 5.622
(0.056) (0.0571) (1.2303) (1.2335) (1.5292)

0.007 1.705 1.707 12.04 12.098 19.812
(0.0544) (0.0531) (1.1976) (1.1287) (0.4019)

η
5 1.18 1.718 4.896 12.278 9.844

(0.0385) (0.0713) (0.8187) (1.2713) (1.6626)
7.5 1.102 1.425 3.788 8.016 7.618

(0.0364) (0.0464) (0.9038) (1.0248) (0.826)
12.5 0.939 0.992 1.798 2.29 5.784

(0.0336) (0.0317) (0.5857) (0.6453) (0.7992)
15 1.806 1.785 13.44 12.94 5.476

(0.0631) (0.0621) (1.2905) (1.3164) (1.3424)

32



Table 4: Meso Configuration Sensitivity Analysis, percentage values.
variable sd(Output) sd(Credit) prob(Crisis

Output)
prob(Crisis

Credit)
rsd(Bank

net-worth)
Meso

0.996 1.151 2.296 4.15 6.272
(0.0365) (0.0443) (0.72) (0.8726) (0.792)

δ
0 0.893 0.152 1.15 0.004 12.528

(0.0344) (0.1135) (0.4959) (0.0281) (4.6958)
0.05 0.775 0.599 0.52 0.08 5.282

(0.0233) (0.0232) (0.2814) (0.1421) (0.7199)
0.15 1.295 1.771 6.252 12.838 7.516

(0.0349) (0.0579) (0.8573) (1.2123) (0.9714)
0.2 1.601 2.409 10.858 20.206 8.93

(0.0491) (0.0845) (1.2431) (1.2363) (1.1169)

δB

0 0.786 0.271 0.458 0 7.595
(0.0294) (0.1545) (0.2701) (0) (2.7443)

0.05 0.801 0.611 0.72 0.074 5.306
(0.0247) (0.0246) (0.3846) (0.1088) (0.7034)

0.15 1.182 1.638 4.78 11.286 6.892
(0.0343) (0.0554) (0.7798) (1.1113) (0.9584)

0.2 1.334 2.057 6.874 16.44 7.95
(0.0487) (0.0718) (1.1636) (1.3689) (1.0557)

δF

0 1.043 1.535 2.772 9.274 8.231
(0.036) (0.0666) (0.6382) (1.2029) (1.1871)

0.05 0.934 1.11 1.782 3.842 6.145
(0.0312) (0.0369) (0.5364) (0.8506) (0.8072)

0.1 1.076 1.242 3.424 5.48 6.509
(0.0351) (0.0411) (0.7506) (0.9194) (0.7977)

0.2 1.141 1.319 4.212 6.566 6.837
(0.0347) (0.0454) (0.7669) (0.9312) (0.8309)

β
0.75 1.392 3.366 7.748 27.488 18.175

(0.0448) (0.1068) (1.0853) (1.4189) (1.5009)
1 1.255 1.91 5.552 13.59 12.179

(0.0443) (0.0884) (0.9203) (1.4271) (1.7305)
1.5 1.713 1.705 12.206 12.08 20.246

(0.0559) (0.0571) (1.2165) (1.2355) (1.0843)
1.75 1.607 1.672 10.604 11.502 20.297

(0.0502) (0.0499) (1.1364) (1.2538) (0.2484)
k
0 1.088 1.509 3.502 9.262 10.253

(0.0406) (0.0679) (0.7058) (1.1833) (1.41)
5 1.03 1.309 2.836 6.338 7.75

(0.0355) (0.0498) (0.659) (0.9784) (1.0059)
15 1.383 1.913 7.722 14.372 5.146

(0.0479) (0.0743) (1.03) (1.2384) (0.6419)
20 1.982 3.112 15.44 24.544 5.109

(0.0748) (0.1229) (1.3421) (1.4383) (0.6439)
r̄

0.003 1.334 2.572 6.916 21.122 15.05
(0.0471) (0.1121) (0.9901) (1.36) (2.2364)

0.004 1.133 1.558 4.008 9.636 8.623
(0.0327) (0.0559) (0.7445) (1.1358) (1.1235)

0.006 1.776 1.76 12.888 12.626 6.008
(0.0466) (0.0479) (1.1429) (1.2009) (1.6597)

0.007 1.705 1.707 12.04 12.098 19.812
(0.0544) (0.0531) (1.1976) (1.1287) (0.4019)

η
5 1.122 1.574 3.956 10.218 8.774

(0.0362) (0.0593) (0.7689) (1.2476) (1.1604)
7.5 1.054 1.327 3.078 6.718 7.011

(0.0352) (0.0453) (0.7269) (1.0131) (0.8711)
12.5 0.934 0.978 1.754 2.21 5.694

(0.0317) (0.0322) (0.5825) (0.5745) (0.8278)
15 1.807 1.789 13.376 13.02 5.649

(0.0639) (0.0634) (1.3476) (1.3149) (1.3103)
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Table 5: Macro Configuration Sensitivity Analysis, percentage values.
variable sd(Output) sd(Credit) prob(Crisis

Output)
prob(Crisis

Credit)
rsd(Bank

net-worth)
Macro

0.989 1.132 2.378 4.098 7.309
(0.0332) (0.035) (0.624) (0.8028) (1.0755)

δ
0 0.895 0.316 1.096 0.036 14.036

(0.0328) (0.1215) (0.4561) (0.0772) (5.8194)
0.05 0.764 0.567 0.58 0.086 5.905

(0.026) (0.0183) (0.3321) (0.1311) (0.7924)
0.15 1.387 1.907 7.722 14.76 9.061

(0.0534) (0.0775) (1.0552) (1.4176) (1.3145)
0.2 1.919 3.017 15.06 25.21 10.827

(0.067) (0.1266) (1.2185) (1.4423) (1.6364)

δB

0 0.792 0.328 0.486 0 7.834
(0.0283) (0.1543) (0.3065) (0) (2.5249)

0.05 0.793 0.58 0.634 0.082 5.871
(0.0266) (0.0202) (0.3888) (0.1395) (0.8723)

0.15 1.231 1.747 5.47 12.82 8.681
(0.0375) (0.0617) (0.991) (1.3545) (1.3205)

0.2 1.521 2.448 9.72 20.472 9.632
(0.0567) (0.0995) (1.1652) (1.4112) (1.4306)

δF

0 1.004 1.624 2.486 10.856 11.72
(0.0357) (0.0722) (0.6853) (1.2962) (1.9122)

0.05 0.906 1.077 1.516 3.198 7.263
(0.0275) (0.0325) (0.5543) (0.7328) (0.9902)

0.1 1.084 1.215 3.462 5.21 7.701
(0.0324) (0.0412) (0.7296) (0.9352) (1.0031)

0.2 1.171 1.316 4.748 6.752 8.401
(0.0395) (0.04) (0.8469) (1.0538) (1.2216)

β
0.75 1.226 3.08 5.466 24.976 27.727

(0.0442) (0.1053) (0.9543) (1.3613) (2.4675)
1 1.31 2.321 6.576 18.304 18.285

(0.0484) (0.0891) (1.0388) (1.5563) (2.6735)
1.5 1.725 1.714 12.212 12.262 20.196

(0.0578) (0.0599) (1.1423) (1.2169) (1.0691)
1.75 1.608 1.672 10.614 11.498 20.294

(0.0504) (0.0505) (1.135) (1.2619) (0.2459)
k
0 1.079 1.417 3.542 8.264 11.062

(0.0349) (0.0515) (0.7766) (1.0205) (1.6437)
5 1.021 1.26 2.828 5.866 8.752

(0.0356) (0.0412) (0.7975) (0.907) (1.3323)
15 1.896 2.903 13.622 22.228 5.789

(0.1107) (0.1942) (1.5157) (1.8315) (0.8351)
20 7.242 77.252 22.944 39.58 6.236

(2.039) (54.7402) (7.9463) (1.8896) (2.0183)
r̄

0.003 1.291 2.692 6.532 21.92 19.842
(0.0466) (0.1043) (0.9599) (1.3862) (2.4957)

0.004 1.163 1.622 4.544 10.726 11.755
(0.037) (0.0649) (0.7811) (1.26) (1.7539)

0.006 1.781 1.763 13.064 12.632 5.771
(0.0519) (0.0515) (1.1082) (1.24) (1.3808)

0.007 1.705 1.707 12.042 12.088 19.807
(0.0538) (0.0523) (1.2431) (1.1432) (0.4099)

η
5 1.154 1.618 4.49 10.852 11.591

(0.039) (0.0596) (0.7875) (1.2096) (1.6655)
7.5 1.064 1.33 3.302 6.924 8.934

(0.0362) (0.043) (0.8469) (1.0397) (1.1742)
12.5 0.911 0.937 1.658 1.786 6.449

(0.0343) (0.034) (0.5645) (0.568) (0.9157)
15 1.813 1.791 13.504 13.156 5.595

(0.0552) (0.0556) (1.1348) (1.1643) (1.3118)
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