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Abstract

We develop a multiple-step procedure for the estimation of point and average partial effects in

fixed-effects logit panel data models that admit sufficient statistics for the incidental parameters.

In these models, estimates of the individual effects are not directly available and have to be

recovered by means of an additional step. We also derive a standard error formulation for the

average partial effects. We study the finite-sample properties of the proposed estimator by

simulation and provide an application based on unionised workers.
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Partial effects estimation for
fixed-effects logit panel data models

Francesco Bartolucci Claudia Pigini

1 Introduction

The fixed-effects approach is particularly attractive in modelling panel data, as it does not require

distributional assumptions for the individual unobserved heterogeneity, which is also allowed to

be correlated with the model covariates in a nonparametric way. In nonlinear models, however,

the inclusion of individual intercepts among the model covariates typically gives rise to the well-

known incidental parameters problem (Neyman and Scott, 1948; Lancaster, 2000), which makes

the Maximum Likelihood (ML) estimator inconsistent for all the model parameters if T is fixed.

For the standard fixed-effects logit model, the incidental parameters problem can be solved

by conditioning on simple sufficient statistics for the individual intercepts (Andersen, 1970;

Chamberlain, 1980) and the model parameters can be consistently estimated by Conditional

Maximum Likelihood (CML). If, however, a dynamic logit is specified (Hsiao, 2005), namely

the lagged dependent variable is included among the model covariates, CML inference is not

viable in a simple form.1 This is overcome by Bartolucci and Nigro (2010), who propose a

Quadratic Exponential (QE) formulation (Cox, 1972) to model dynamic binary panel data, that

has the advantage of admitting sufficient statistics for the individual intercepts. Furthermore,

Bartolucci and Nigro (2012) propose a QE model, that approximates more closely the dynamic

logit model, the parameters of which can easily be estimated by pseudo-CML.

The CML and pseudo-CML estimators of the static and dynamic logit models have been

shown to perform quite well in finite samples, even with very short T . However, one drawback

that may have limited their application in practice is the lack of a back-of-the-envelope calcula-

tion of Partial Effects (PE), as estimates of the individual effects are not directly available with

CML. Here we develop a multiple-step procedure for the computation of point PE and Average

PE (APE) for the static and dynamic logit models. Structural parameters are estimated by

CML in the first steps and used in a second step to estimate the individual effects by ML. While

the ML estimator is not consistent for the individual parameters with fixed T , we show by sim-

ulation that it provides a very close approximation of the true APE. We derive the formulation

for the standard errors of the APE, which does not depend on the estimates of the individual

intercepts and therefore holds with fixed T .

1Conditioning in sufficient statistics eliminates the incidental parameters only in the in the special case of T = 3
and no other explanatory variables (Chamberlain, 1985). Honoré and Kyriazidou (2000) extend this approach to
include explanatory variables and parameters can be estimated by CML on the basis of a weighted conditional
log-likelihood. However, time effects cannot be included in the model specification and the estimator’s rate of
convergence to the true parameter value is slower than

√
n.
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The remainder of the paper is organised as follows: in Section 2 we illustrate the multiple-step

procedure for the static and dynamic logit model and derive the APE standard error formulation.

In Section 3 we investigate the finite-sample performance of the proposed estimator by simulation

and in Section 4 we provide a real data application based on unionised workers. Finally, Section

5 concludes.

2 Partial effects estimation

We consider n units, indexed with i = 1, . . . , n, observed at time occasions t = 1, . . . , T .2 Let

yit be the binary response variable for unit i at occasion t and xit the corresponding vector of

K covariates. In the following, we first consider the static logit model and then the dynamic

logit, for which the estimation of partial effects involves an additional step.

2.1 Static logit model

Consider the logit formulation

p(yit|αi,xit) =
exp [yit(αi + x′itβ)]

1 + exp(αi + x′itβ)
, (1)

where αi is the individual specific intercept, bxit is vector of strictly exogenous covariates, and

β collects the regression parameters. It can be shown that the total score yi+ =
∑

t yit is a

sufficient statistic for the individual intercepts αi (Andersen, 1970). The joint probability of

yi = (yi1, . . . , yiT ) conditional on yi+ does not depend on αi and can therefore be written as

p(yi|Xi, yi+) =
exp

[
(
∑

t yitxit)
′ β
]∑

z:z+=yi+

exp
[
(
∑

t ztxit)
′ β
] , (2)

where the individual intercepts αi have been cancelled out (see also Bartolucci and Pigini, 2017,

for details).

Considering expression (1), the PE of covariate xitk for i at time t on the probability of

yit = 1 can be written, depending on the typology of covariate, as

fitk(αi,β,xit) =


p(yit = 1|αi,xit) [1− p(yit = 1|αi,xit)]βk, xitk continuous

p(yit = 1|αi,xit,−k, xitk = 1)−
p(yit = 1|αi,xit,−k, xitk = 0), xitk discrete

(3)

where xit,−k denotes the subvector of all covariates but xitk. The APE of the k-th covariate can

then be obtained by simply taking the expected value of fitk(αi,β,xit) with respect to xit:

φk = Exit [fitk(αi,β,xit)] . (4)

2In order to keep the notation clearer only balanced panel data are considered, however the developed methods
apply to unbalanced panel data as well with obvious adjustments.
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Estimation of the PEs in (3) and of the APEs in (4) requires an estimate of the individual

intercepts, which is not directly available if the parameters of the logit model are estimated by

CML based on (2). We therefore propose the following two-step procedure:

Step 1. We estimate the structural parameters of the logit model in (1) by CML. The log-

likelihood function is

`(β) =
∑
i

I(0 < yi+ < T ) log p(yi|Xi, yi+), (5)

where the indicator function I(·) takes into account that observations with total score yi+ equal

to 0 or T do not contribute to the log-likelihood and p(yi|Xi, yi+) is defined in (2). The above

function can be maximised with respect to β by a Newton-Raphson algorithm using standard

results on the regular exponential family (Barndorff-Nielsen, 1978), so as to obtain the CML

estimator β̂.

Step 2. We obtain the ML estimates of the individual intercepts αi, for those subjects such

that 0 < yi+ < T , by maximising the individual log-likelihood functions

`i(αi|β̂) =
∑
t

log pβ̂(yit|αi,xit),

where pβ̂(yit|αi,xit) is the logit model probability in (1) evaluated at β = β̂. The resulting

estimates of the individual intercepts α̂i will depend on β̂, which we write as α̂i(β̂). The PEs

and the APEs can then be estimated by simply substituting β = β̂ and αi = α̂i(β̂) in (3) and

by taking the sample average

φ̂k =
1

nT

∑
i

∑
t

fitk(α̂i(β̂), β̂,xit) (6)

to estimate φk in (4).

2.2 Dynamic logit

For the dynamic logit model (Hsiao, 2005), the conditional probability of yit being equal to 1 is

p(yit|ηi,xit, yi,t−1) =
exp [yit(ηi + x′itδ + yi,t−1γ)]

1 + exp(ηi + x′itδ + yi,t−1γ)
, (7)

where γ is the regression coefficient for the lagged response variable that measures the true state

dependence. The dynamic logit model does not admit sufficient statistics for the incidental

parameters and Bartolucci and Nigro (2012) propose a pseudo-CML estimator based on approx-

imating the dynamic logit model by a QE model (Cox, 1972). Under the approximating model,

each yi+ is a sufficient statistic for the fixed effect ηi. By conditioning on the total score, the

joint probability of yi becomes:

p∗(yi|Xi, yi0, yi+) =
exp(

∑
t yitx

′
itδ −

∑
t q̄ityi,t−1γ + yi∗γ)∑

z:z+=yi+

exp(
∑

t ztx
′
itδ −

∑
t q̄itzi,t−1γ + zi∗γ)

, (8)
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where yi∗ =
∑

t yi,t−1yit, and zi∗ = yi0z1 +
∑

t>1 zt−1zt. Moreover, q̄it is a function of given

values of δ and ηi, resulting from a first-series Taylor approximation of the log-likelihood based

on (7) around δ = δ̄ and ηi = η̄i, i = 1, . . . , n, and γ = 0 (see Bartolucci and Nigro, 2012, for

details). The expression for q̄it is then q̄it = exp(η̄i + x′itδ̄)/
[
1 + exp(η̄i + x′itδ̄)

]
Expressions for PEs and APEs are derived in the same way as for the static logit model. Let

wit = (x′it, yit−1)
′ collect the K + 1 model covariates. Based on (7), the PE of covariate witk for

i at time t on the probability of yit = 1 can be written as

fitk(ηi,θ,wit) =


p(yit = 1|ηi,wit) [1− p(yit = 1|ηi,wit)] δk, witk continuous

p(yit = 1|ηi,wit,−k, witk = 1)−
p(yit = 1|ηi,wit,−k, witk = 0), witk discrete

(9)

where wit,−k again denotes the the vector wit excluding witk, and θ = (δ′, γ)′. Notice that the

PE function does not depend on δ̄, since the probability in (7) does not depend on q̄it. The

APE of the k-th covariate can then be obtained by taking the expected value with respect to

wit of fitk(ηi,θ,wit):

ψk = Ewit [fitk(ηi,θ,wit)] . (10)

As for the static logit model, the estimation of PEs in (9) and APEs in (10) requires an

estimate of ηi, which we recover in a similar manner as in step 2 in Section 2.1. Here, however,

the CML estimation of θ based on (8) relies on a preliminary step in order to obtain q̄it and the

estimation of PEs and APEs is thus based on the following three-step procedure:

Step 1 A preliminary estimate of δ̄ is obtained by maximising the conditional log-likelihood

`(δ̄) =
∑
i

I(0 < yi+ < T )`i(δ̄),

where

`i = log
exp

[
(
∑

t yitxit)
′ δ̄
]∑

z:z+=yi+

exp
[
(
∑

t ztxit)
′ δ̄
] ,

which is the same conditional log-likelihood of the static logit model and may be maximised

by a standard Newton-Raphson algorithm. We denote the resulting CML estimator by δ̃. The

estimate η̃i is then computed by maximising the individual log-likelihood

`i(η̄i) =
∑
t

log
exp

[
yit(η̄i + x′itδ̃)

]
1 + exp(η̄i + x′itδ̃)

,

where δ̃ is fixed. The probability q̄it in (8) can the be estimated by

q̃it =
exp(η̃i + x′itδ̃)[

1 + exp(η̃i + x′itδ̃)
] .
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Step 2 We estimate θ by maximising the following conditional log-likelihood

`(θ) =
∑
i

I(0 < yi+ < T ) log p∗q̃i(yi|Xi, yi0, yi+), (11)

where p∗q̃i(yi|Xi, yi0, yi+) is the joint probability in (8) evaluated at q̃i = (q̃i1, . . . , q̃iT )′. The

above function can be easily maximised with respect to θ by the Newton-Raphson algorithm,

so as to obtain the pseudo-CML estimator θ̂.

Step 3 We obtain the ML estimates of the individual intercepts ηi, for those subjects such that

0 < yi+ < T , by maximising the following log-likelihood function

`i(ηi|θ̂) = log pθ̂(yit|ηi,xit, yit−1),

where pθ̂(yit|ηi,xit, yit−1) is the dynamic logit model probability in (7) evaluated at θ̂. The

resulting estimates of the individual intercepts η̂i will depend on θ̂, η̂i(θ̂). The PEs and the

APEs can then be estimated by simply substituting θ = θ̂ and ηi = η̂i(θ̂) in (9) and taking the

sample average to estimate ψk in (10).

2.3 Standard errors

In order to derive an expression for the standard errors of the APEs φ̂ = (φ̂1, . . . , φ̂K)′ and

ψ̂ = (ψ̂1, . . . , ψ̂K)′, we need to account for the use of the estimated parameters β̂ in step 1 and

θ̂ in step 2 for the static and dynamic logit model, respectively. In the following we derive the

standard error formulation for the first model and the same strategy can be directly applied to

the dynamic logit as well, since the preliminary estimates obtained in step 1 for the dynamic

logit model do not enter the probability in (7), used for the formulation of PEs in (9) and APEs

in (10)

We rely on the Generalised Method of Moments (GMM) approach by Hansen (1982) and also

implemented by Bartolucci and Nigro (2012) for the QE model. The proposed method consists

in presenting the proposed multi-step procedure as the solution of the system of estimating

equations

g(β,φ) = 0,

where

g(β,φ) =

n∑
i=1

I(0 < yi+ < T )gi(β,φ),

gi(β,φ) =


∇β`i(β)

∇φ1mi(β, φ1)
...

∇φKmi(β, φK)

 , (12)

and

mi(β, φk) =
1

T

∑
t

[fitk(β, αi(β))− φk]2 , k = 1, . . . ,K.
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The asymptotic variance of (β̂
′
, φ̂
′
)′ is then

W (β̂, φ̂) = H(β̂, φ̂)−1S(β̂, φ̂)[H(β̂, φ̂)−1]′, (13)

where

S(β̂, φ̂) =
∑
i

I(0 < yi+ < T )gi(β̂, φ̂)gi(β̂, φ̂)′,

H(β̂, φ̂) =
∑
i

I(0 < yi+ < T )H i(β̂, φ̂),

and

H i(β,φ) =

(
∇ββ`i(β) O

∇φβmi(β,φ) ∇φφmi(β,φ)

)
, (14)

is the derivative of g(β,φ) with respect to (β,φ), where O denotes a K × K matrix of zeros

and mi(β,φ) collects mi(β, φk), for k = 1, . . . ,K Expressions for the derivatives in gi(β,φ) and

H i(β,φ) are given in Appendix. Once the matrix in (13) is computed, the standard errors for

the APEs φ̂ may be obtained by taking the square root of the elements in the main diagonal of

the lower right submatrix of W (β̂, φ̂).

3 Simulation study

We evaluate the finite sample performance of the estimators for the APEs in (4) and (10) and

of the procedure to obtain the standard errors by means of a simulation study, where data are

generated as follows:

yit = I(αi + xit1β1 + xit2β2 + γyi,t−1εit > 0), i = 1, . . . , n, t = 2, . . . , T,

with initial condition

yi1 = I(αi + xi11β1 + xi12β2 + εi1 > 0).

In our benchmark design xit1 is a standard normal random variable, and xit2 is a binary

variable generated as xit2 = I(x∗it2 > 0), with x∗it2 following a standard normal distribution,

for t = 1, . . . , T . Furthermore, the individual effects are generated as αi = 1/4
∑4

t=1 xit1 and

the terms εit follow a standard logistic distribution. In a second design, we let xit1 ∼ χ2
1 and

x∗it2 ∼ χ2
1, centred at −0.1 so that the sample average of xit2 is about 0.765.

For each design, the study is based on four scenarios. For the static logit model, we hold

γ = 0 and set (β1, β2) first to (0, 0) and then to (1,−1). For the dynamic logit model we set

the regression parameters to (1,−1) while γ takes values 0 and 1. For each scenario, we ran the

simulation for n = 500, 1000, T = 4, 8, with 1000 Monte Carlo replications.

Table 1 reports the simulation results for the static logit model, based on CML estimates and

Table 2 reports the results for the dynamic logit model, based on pseudo-CML estimates, with

normally distributed covariates. The results for the design with χ2
1 covariates are reported in

Appendix in Tables 4 and 5. Each sub-panel of the tables reports the true value of the APE and
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Table 1: Logit model (1), CML estimator

β1 = 0, β2 = 0 β1 = 1, β2 = −1

True Mean RMSE Median MAE True Mean RMSE Median MAE
value bias bias value bias bias

n = 500, T = 4

APE(β̂1) 0.000 -0.000 0.011 -0.000 0.008 0.183 -0.004 0.012 -0.004 0.008
stderr[APE(β̂1)] 0.011 0.000 0.001 0.000 0.000 0.011 -0.000 0.001 -0.000 0.000
APE(β̂2) 0.000 -0.000 0.023 0.001 0.015 -0.186 0.004 0.023 0.004 0.016
stderr[APE(β̂2)] 0.023 -0.000 0.001 -0.000 0.000 0.023 -0.000 0.001 -0.000 0.001

n = 500, T = 8

APE(β̂1) 0.000 -0.001 0.007 -0.000 0.005 0.183 -0.012 0.014 -0.012 0.012
stderr[APE(β̂1)] 0.007 0.000 0.000 0.000 0.000 0.006 -0.000 0.000 -0.000 0.000
APE(β̂2) 0.000 0.000 0.015 0.000 0.009 -0.187 0.013 0.019 0.013 0.014
stderr[APE(β̂2)] 0.015 -0.000 0.000 -0.000 0.000 0.014 0.000 0.000 0.000 0.000

n = 1000, T = 4

APE(β̂1) 0.000 0.000 0.008 0.001 0.005 0.183 -0.004 0.009 -0.004 0.006
stderr[APE(β̂1)] 0.008 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.000 0.000
APE(β̂2) 0.000 -0.000 0.017 -0.001 0.011 -0.186 0.004 0.016 0.004 0.011
stderr[APE(β̂2)] 0.017 -0.001 0.001 -0.001 0.001 0.016 0.000 0.000 0.000 0.000

n = 1000, T = 8

APE(β̂1) 0.000 -0.000 0.005 0.000 0.003 0.183 -0.012 0.013 -0.012 0.012
stderr[APE(β̂1)] 0.005 -0.000 0.000 -0.000 0.000 0.004 0.000 0.000 0.000 0.000
APE(β̂2) 0.000 0.000 0.011 0.001 0.007 -0.187 0.013 0.016 0.013 0.013
stderr[APE(β̂2)] 0.011 -0.000 0.000 -0.000 0.000 0.009 0.000 0.000 0.000 0.000

the standard deviation of its estimator in the simulation sample, the mean bias, the root mean

square error (RMSE), the median bias, and the median absolute error (MAE) of the estimators

of the APEs and of their standard errors.

The results in Table 1 suggest that the proposed two-step procedure provides a very close

approximation of the true APE, with both the sample size and the time dimensions considered:

when the true APEs depart from 0, the mean and median biases are rather small and the

standard errors exhibit almost no bias. The results in Table 2 suggest that the estimator

based on the pseudo-CML estimates of the dynamic logit regression parameters provides a good

approximation of the true APEs as well. It is also worth noticing that while the RMSE and

MAE of APE(γ̂) are slightly higher than the others with T = 4, they sharply decrease with

T = 8.

4 Empirical application

We provide a real data application based on a dataset of unionised workers extracted form the

US National Longitudinal Survey of Youth. The dataset is referred to 3648 women between 16

and 46 years old in 1968, interviewed between 1970 and 1988. The panel is unbalanced and the

maximum number of occasions for the same subject is 12.

The response variable is the dummy “union”, equal to 1 if the worker is unionised and 0
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Table 2: Dynamic logit model (7), pseudo-CML estimator

γ = 0, β1 = 1, β2 = −2 γ = 1, β1 = 1, β2 = −2

True Mean RMSE Median MAE True Mean RMSE Median MAE
value bias bias value bias bias

n = 500, T = 4

APE(γ̂) 0.000 0.001 0.041 0.003 0.029 0.184 0.020 0.051 0.020 0.034
stderr[APE(γ̂)] 0.041 0.001 0.002 0.001 0.002 0.047 0.001 0.003 0.001 0.002
APE(β̂1) 0.183 0.008 0.017 0.008 0.012 0.182 0.009 0.020 0.008 0.013
stderr[APE(β̂1)] 0.041 0.001 0.002 0.001 0.002 0.047 0.001 0.003 0.001 0.002
APE(β̂2) -0.186 -0.005 0.030 -0.005 0.020 -0.185 -0.003 0.032 -0.004 0.021
stderr[APE(β̂2)] 0.015 0.000 0.001 0.000 0.001 0.018 -0.001 0.001 -0.001 0.001

n = 500, T = 8

APE(γ̂) 0.000 0.000 0.017 0.000 0.011 0.187 -0.010 0.021 -0.011 0.014
stderr[APE(γ̂)] 0.017 -0.001 0.001 -0.001 0.001 0.018 0.000 0.001 0.000 0.000
APE(β̂1) 0.183 -0.011 0.013 -0.011 0.011 0.180 -0.015 0.016 -0.014 0.014
stderr[APE(β̂1)] 0.017 -0.001 0.001 -0.001 0.001 0.018 0.000 0.001 0.000 0.000
APE(β̂2) -0.187 0.012 0.019 0.013 0.013 -0.187 0.019 0.024 0.020 0.020
stderr[APE(β̂2)] 0.007 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000

n = 1000, T = 4

APE(γ̂) 0.000 -0.000 0.030 -0.002 0.020 0.184 0.020 0.039 0.020 0.026
stderr[APE(γ̂)] 0.030 -0.000 0.001 -0.000 0.001 0.033 0.000 0.001 0.000 0.001
APE(β̂1) 0.183 0.007 0.013 0.008 0.010 0.182 0.008 0.014 0.008 0.010
stderr[APE(β̂1)] 0.030 -0.000 0.001 -0.000 0.001 0.033 0.000 0.001 0.000 0.001
APE(β̂2) -0.186 -0.005 0.023 -0.005 0.016 -0.185 -0.004 0.023 -0.005 0.016
stderr[APE(β̂2)] 0.011 -0.001 0.001 -0.001 0.001 0.012 0.000 0.001 0.000 0.000

n = 1000, T = 8

APE(γ̂) 0.000 0.000 0.012 0.000 0.008 0.187 -0.011 0.017 -0.011 0.012
stderr[APE(γ̂)] 0.012 -0.000 0.000 -0.000 0.000 0.013 -0.000 0.001 -0.000 0.000
APE(β̂1) 0.183 -0.012 0.013 -0.012 0.012 0.180 -0.015 0.015 -0.015 0.015
stderr[APE(β̂1)] 0.012 -0.000 0.000 -0.000 0.000 0.013 -0.000 0.001 -0.000 0.000
APE(β̂2) -0.187 0.013 0.016 0.013 0.013 -0.187 0.018 0.021 0.018 0.018
stderr[APE(β̂2)] 0.005 -0.000 0.000 -0.000 0.000 0.005 -0.000 0.000 -0.000 0.000
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Table 3: Estimation results for the static and dynamic logit model. Response variable: union.
Regression coefficients and average partial effects

Static logit Dynamic logit

coeff. APE coeff. APE

uniont−1 1.6104∗∗∗ 0.3109∗∗∗

[0.0757] [0.0008]

age 0.0163∗∗∗ 0.0028∗∗∗ 0.0082∗ 0.0013∗

[0.0041] [0.0011] [0.0047] [0.0008]

grade 0.0826∗∗ 0.0142 -0.0252 -0.0040

[0.0419] [0.0101] [0.0512] [0.0086]

not smsa -0.0274 -0.0047 0.0726 0.0115

[0.1135] [0.0279] [0.1440] [0.0241]

Log-likelihood -4485.095 -3121.596

# of subjects 1618 1393

Standard errors in square brackets. ∗∗∗ p-value < 0.01, ∗∗ p-value < 0.05, ∗ p-value < 0.10. # of subjects refers

to the actual number of workers contributing to the log-likelihoods in (5) and (11) for the static and dynamic

logit, respectively.

otherwise. The regression covariates are two continuous variables “age” and “grade”, which is

the level of educational attainment, and the binary variable “not smsa”, which is equal to 1 if

the worker does not live in a metropolitan area and 0 otherwise.

Table 3 reports the estimation results for the regression coefficients and APEs for both the

static and dynamic logit model, where the lagged dependent variable enters the set of covariates.

The estimation results for the static logit model show that age has a positive significant

effect on the probability of being unionised, which amounts to around 0.3 percentage points

for one more year. It is interesting to note that while the coefficient associated with “grade”

is statistically significant at the 5% level, the results for the APE suggest that the level of

educational attainment has not effect on the probability of being unionised. Finally, both

the coefficient and APE associated with “not smsa” indicate that there is no effect of living

in a metropolitan area on participating in unions. Looking at the estimation results for the

dynamic logit model, a strong persistence in the dependent variable emerges, as indicated by

the coefficient and the APE associated with the lagged response. The latter measures the effect

of the true state dependence, which, in this case, entails that being unionised in t− 1 increases

the probability of being unionised at time t by 31 percentage points. With this specification,

the only covariate still exerting a statistically significant effect is “age”, whose effect however

reduces to 0.1 percentage points.
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5 Concluding remarks

Logit models that can be estimated by CML and PCML provide an attractive approach for

the analysis of binary responses with fixed-effects, where incidental parameters are allowed to

be correlated with the model covariates in a nonparametric way. As these estimators rely on

eliminating the incidental parameters, the estimation of PEs and APEs, however, is not directly

available.

We show that individual effects can be recovered by a simple additional step and then used to

estimate PEs and APEs in a rather straightforward manner. We also provide a standard error

formulation for the APEs that does not involve the estimators of the incidental parameters

and therefore holds with fixed T , as also testified by our simulation results, thereby avoiding

computationally intensive procedures such as bootstrapping. The real data application supports

the key role of APEs in interpreting estimation results, especially because t-tests may yield

contrasting results.

Finally, the models here presented can be estimated using the R package cquad and the R

functions to estimate the PEs, APEs, and APEs standard errors are available upon request from

the Authors.
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Appendix

Expressions for the derivatives in (12) are

∇β`i(β) =
∑
t

yitxit −
∑

z:z+=yi+

(
p(z|Xi, yi+)

∑
t

ztxit

)
,

and

∇φkmi(β, φk) = − 2

T

∑
t

[fitk(β, αi(β)− φk] .

The second derivatives in (14) are

∇ββ`i(β) =
∑

z:z+=yi+

p(z|Xi, yi+)e(z,Xi)e(z,Xi)
′,

where

e(z,Xi) =
∑
t

ztxit −
∑

z:z+=yi+

(
p(z|Xi, yi+)

∑
t

ztxit

)
,

and ∇φφm(β,φ) is a K ×K diagonal matrix with element 2. Finally, for the computation of

the block ∇φβmi(β,φ) we rely on numerical differentiation.

11



Table 4: Logit model (1), CML estimator, χ2
1 covariates

β1 = 0, β2 = 0 β1 = 1, β2 = −1

True Mean RMSE Median MAE True Mean RMSE Median MAE
value bias bias value bias bias

n = 500, T = 4

APE(β̂1) 0.000 -0.000 0.012 -0.000 0.008 0.192 -0.004 0.017 -0.004 0.012
stderr[APE(β̂1)] 0.012 -0.000 0.001 -0.000 0.000 0.017 0.000 0.001 0.000 0.001
APE(β̂2) 0.000 -0.000 0.026 0.000 0.018 -0.185 0.001 0.026 0.002 0.017
stderr[APE(β̂2)] 0.026 -0.000 0.001 -0.000 0.001 0.026 0.000 0.001 0.000 0.001

n = 500, T = 8

APE(β̂1) 0.000 -0.000 0.007 -0.000 0.005 0.182 -0.010 0.014 -0.011 0.011
stderr[APE(β̂1)] 0.007 0.000 0.000 0.000 0.000 0.010 -0.000 0.001 -0.000 0.000
APE(β̂2) 0.000 0.001 0.017 0.001 0.012 -0.173 0.008 0.017 0.008 0.012
stderr[APE(β̂2)] 0.017 0.000 0.001 0.000 0.000 0.015 0.000 0.001 0.000 0.000

n = 1000, T = 4

APE(β̂1) 0.000 0.000 0.008 -0.000 0.005 0.192 -0.005 0.013 -0.005 0.009
stderr[APE(β̂1)] 0.008 -0.000 0.000 -0.000 0.000 0.012 0.000 0.001 0.000 0.000
APE(β̂2) 0.000 0.001 0.018 0.002 0.013 -0.185 0.002 0.020 0.001 0.014
stderr[APE(β̂2)] 0.018 0.000 0.000 0.000 0.000 0.020 -0.001 0.001 -0.001 0.001

n = 1000, T = 8

APE(β̂1) 0.000 -0.000 0.005 -0.000 0.003 0.182 -0.011 0.013 -0.010 0.010
stderr[APE(β̂1)] 0.005 0.000 0.000 0.000 0.000 0.007 -0.000 0.000 -0.000 0.000
APE(β̂2) 0.000 -0.000 0.012 -0.000 0.008 -0.173 0.009 0.014 0.009 0.010
stderr[APE(β̂2)] 0.012 0.000 0.000 0.000 0.000 0.011 0.000 0.000 0.000 0.000
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Table 5: Dynamic logit model (7), pseudo-CML estimator, χ2
1 covariates

γ = 0, β1 = 1, β2 = −2 γ = 1, β1 = 1, β2 = −2

True Mean RMSE Median MAE True Mean RMSE Median MAE
value bias bias value bias bias

n = 500, T = 4

APE(γ̂) 0.000 0.001 0.044 0.000 0.028 0.185 0.019 0.051 0.020 0.036
stderr[APE(γ̂)] 0.044 -0.001 0.003 -0.001 0.002 0.048 0.000 0.003 0.000 0.002
APE(β̂1) 0.180 0.011 0.019 0.010 0.012 0.181 0.011 0.021 0.010 0.013
stderr[APE(β̂1)] 0.044 -0.001 0.003 -0.001 0.002 0.048 0.000 0.003 0.000 0.002
APE(β̂2) -0.187 -0.004 0.034 -0.005 0.024 -0.187 -0.003 0.037 -0.003 0.026
stderr[APE(β̂2)] 0.015 0.000 0.001 0.000 0.001 0.018 -0.000 0.001 -0.001 0.001

n = 500, T = 8

APE(γ̂) 0.000 -0.000 0.017 0.000 0.012 0.188 -0.011 0.021 -0.012 0.014
stderr[APE(γ̂)] 0.017 0.000 0.001 0.000 0.000 0.018 0.000 0.001 0.000 0.001
APE(β̂1) 0.178 -0.009 0.011 -0.009 0.009 0.180 -0.013 0.015 -0.013 0.013
stderr[APE(β̂1)] 0.017 0.000 0.001 0.000 0.000 0.018 0.000 0.001 0.000 0.001
APE(β̂2) -0.187 0.011 0.021 0.011 0.014 -0.187 0.019 0.025 0.018 0.019
stderr[APE(β̂2)] 0.007 -0.000 0.000 -0.000 0.000 0.007 0.000 0.000 0.000 0.000

n = 1000, T = 4

APE(γ̂) 0.000 -0.000 0.031 -0.001 0.021 0.185 0.019 0.038 0.017 0.025
stderr[APE(γ̂)] 0.031 0.000 0.001 0.000 0.001 0.034 0.000 0.001 0.000 0.001
APE(β̂1) 0.180 0.011 0.015 0.011 0.011 0.181 0.009 0.015 0.009 0.011
stderr[APE(β̂1)] 0.031 0.000 0.001 0.000 0.001 0.034 0.000 0.001 0.000 0.001
APE(β̂2) -0.187 -0.005 0.025 -0.005 0.017 -0.187 -0.003 0.025 -0.004 0.017
stderr[APE(β̂2)] 0.010 0.000 0.001 0.000 0.000 0.012 0.001 0.001 0.001 0.001

n = 1000, T = 8

APE(γ̂) 0.000 -0.000 0.012 -0.000 0.008 0.188 -0.011 0.017 -0.011 0.012
stderr[APE(γ̂)] 0.012 -0.000 0.000 -0.000 0.000 0.013 -0.000 0.000 -0.000 0.000
APE(β̂1) 0.178 -0.009 0.010 -0.009 0.009 0.180 -0.013 0.014 -0.013 0.013
stderr[APE(β̂1)] 0.012 -0.000 0.000 -0.000 0.000 0.013 -0.000 0.000 -0.000 0.000
APE(β̂2) -0.187 0.011 0.016 0.011 0.012 -0.187 0.019 0.023 0.020 0.020
stderr[APE(β̂2)] 0.005 -0.000 0.000 -0.000 0.000 0.005 -0.000 0.000 -0.000 0.000
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