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Abstract

Estimation of random-effects dynamic probit models for panel data entails
the so-called “initial conditions problem”. We argue that the relative finite-
sample performance of the two main competing solutions is driven by the
magnitude of the individual unobserved heterogeneity and/or of the state
dependence in the data. We investigate our conjecture by means of a com-
prehensive Monte Carlo experiment and offer useful indications for the prac-
titioner.
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Riccardo Lucchetti Claudia Pigini

1 Introduction

Dynamic probit models for longitudinal data are nowadays largely employed
in applied research. The most basic version of these models, without ex-
planatory variables, can be written as:

y∗
it = γyit−1 + αi + εit (1)
yit = 1{y∗

it ≥ 0} for i = 1, . . . , n and t = 1, . . . , T.

The above formulation includes both the lagged response variable, which
captures the so-called true state dependence (the effect of a past event on the
probability of its future occurrence) via the parameter γ and the individual
permanent unobserved effect αi (Heckman, 1981a).

As customary with panel data models, estimation of this model may
follow a fixed-effects or a random-effects approach. The former allows the
individual unobserved heterogeneity to be arbitrarily correlated with the
model covariates and several alternative solutions have been proposed to
correct the bias of the Maximum Likelihood estimator arising because of
the incidental parameters problem (Neyman and Scott, 1948).1 However,
random-effects models are often preferred as they allow for the identification
of the effects associated with time-invariant explanatory variables, which are
frequently of interest in many microeconomic applications.

In a random-effects setting, the recursive nature of the model requires
that the process is initialised for yi0, giving rise to the so-called “initial con-
ditions” problem. Moreover, αi and εit are usually assumed independent
Gaussian random variables, with variances σ2

α and 1, respectively; this as-
sumption introduces the problem of sequentially factoring the log-likelihood,

‡We thank an anonymous referee for the comments and suggestions made to this paper,
with the usual disclaimer.

1See, among others, Carro (2007), Fernández-Val (2009), Bartolucci and Nigro (2010),
Dhaene and Jochmans (2015), Bartolucci, Bellio, Salvan, and Sartori (2016)
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since the initial observation yi0 and the individual effect αi are correlated
by construction.

Two main approaches have been proposed to deal with this problem. The
solution proposed by Heckman (1981b) (HS, Heckman’s Solution, hence-
forth) is derived by approximating the density f(yi0|αi) via a linearised
reduced form equation as

y∗
i0 = η + θαi + εi0, yi0 = 1{y∗

i0 ≥ 0}, (2)

where θ is a nuisance parameter. An alternative approach was proposed
by Wooldridge (2005) (WS, Wooldridge’s Solution, from here on) by re-
versing the conditioning and specifying a distribution for the individual un-
observed heterogeneity conditional on the initial value of the dependent
variable f(αi|yi0),2 which amounts to writing

αi = δyi0 + ξi, ξi ∼ N(0, σ2
α), (3)

where δ is a nuisance parameter.
WS has the virtue of being considerably simpler than HS from a compu-

tational viewpoint; however, it is well known that, for small T , it produces
a severely biased estimator of γ (Arulampalam and Stewart, 2009; Akay,
2012). In this paper, we will make this statement more precise: we show
by simulation that, for a given T , the major factor which determines the
relative performance of HS versus WS is the magnitude of the individual
effects, as measured by the σ2

α parameter, especially for positive values of
the state dependence parameter γ. We further show that a simple descrip-
tive statistic, the between variance of yit, may offer the practitioner valid
guidance in this respect.

The paper is as follows: in Section 2 we explain the main conjecture; in
Section 3 we illustrate the simulation design and discuss the main results;
section 4 concludes.

2 The main conjecture

We conjecture that, in the presence of strong persistence, HS is preferable,
especially for small values of T . Strong persistence in yit can be the result of
both large positive values of γ and/or large values of V (αi) = σ2

α. Especially
in the latter case, the auxiliary model in (2) is likely to yield a much better
initialisation to the log-likelihood. In f(αi|yi0), the conditioning variable is

2The original specification proposed by Wooldridge (2005) for this auxiliary model also
includes functions of strictly exogenous covariates. See also Rabe-Hesketh and Skrondal
(2013) and Skrondal and Rabe-Hesketh (2014) for the choice of the functional form.
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binary by definition, and therefore provides information at most about the
sign of αi, but says very little about its magnitude.3

This intuition can be made more precise: from equation (1) it is straight-
forward to build the 2× 2 Markov transition matrix for yit:

Π =
[

1− Φ(αi) Φ(αi)
1− Φ(αi + γ) Φ(αi + γ)

]

where 1 − Φ(αi) = P (yit = 0|yit−1 = 0), Φ(αi) = P (yit = 1|yit−1 = 0)
et cetera, and Φ(·) is the cumulative Normal distribution; the steady-state
probability for yit = 1 is

π(αi) = Φ(αi)
Φ(αi) + 1− Φ(αi + γ) .

It is worth noting that the above expression is an increasing, invertible func-
tion of αi (see Figure 1), so in principle the idea of inferring αi given π(αi)
is sound. However, the function is practically flat for large αi, especially
when γ = 1.

Figure 1: π(αi) as a function of αi
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A simple delta-method argument suggests that any estimate of π(αi)
would translate into a rather imprecise estimate of the individual effect αi
when its absolute value is large; especially so, for γ � 0; note, for example,

3If this conjecture is correct, WS for other models, such as the Poisson or the Tobit
model, should exhibit a much better performance.
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that for γ = 1, positive values of αi are virtually observationally equivalent.
In these cases, initialising the log-likelihood via f(αi|yi0), as per WS, is likely
to result in large finite-sample bias and/or variance.

In order to choose between the two approaches, it would be useful for
the practitioner to have available a simple descriptive statistic flagging the
cases in which σα and γ are likely to assume large positive values, so as to
have an indication of when to prefer HS to WS. We argue that the between
variance of yi,t

Vb = 1
N

N∑
i=1

(ȳi − ȳ)2 , (4)

where ȳi = 1
T

∑T
t=1 yit and ȳ = 1

N

∑N
i=1 ȳi, is informative in this respect,

in that Vb is increasing in the number of subjects in the sample exhibiting
a high degree of persistence, which results in response configurations with
almost all ones for some subjects, almost all zeros for others. This situation
is likely to occur in presence of a large positive (negative) individual effect
αi, which increases the probability of yit being equal to one (zero) in every
time occasion, and a large positive value of γ, which reduces the likelihood
of transitions between consecutive periods.4 Moreover, since the dependent
variable is binary, Vb lies by construction in the [0, 0.25] interval, which
makes it easy to interpret its magnitude.

3 Monte Carlo study

We perform a simulation study where each sample is generated by the model
described in expression (1), with T = 4, 8 and N = 500, 1000. We generate
200 artificial datasets for each point in a bivariate grid of parameters γ =
−1,−0.9, . . . , 0.9, 1 and σα = 0.3, 0.4, . . . , 1.4; these are parameter values
that we consider most likely to be relevant in real-world applications. For
each subject i, we burn in 32 time periods, staring from an initial observation
generated as yi0 = 1{αi + εi0 > 0}. Estimation is carried out via the DPB
gretl package (Lucchetti and Pigini, 2017).

In order to compare the relative performance of the Maximum Likelihood
estimators of γ for the two alternative solutions, we use the following index:

ρ(γ, σα) = log
[
RMSEW (γ, σα)
RMSEH(γ, σα)

]
,

where RMSEW and RMSEH denote the root mean square error of γ̂ from
WS and HS, respectively, and the function arguments γ, σα link the index to

4Clearly, in a real-world situation Vb is also influenced by the distribution of observable
covariates; therefore, in this case, it would be reasonable to use the variance of the residuals
of a “between” OLS regression, instead.
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each scenario identified by the bivariate grid for the state dependence and
unobserved heterogeneity parameters.

Figure 2 shows the results, where ρ(γ, σα) is mapped over the grid for
γ and σα, represented by the x and the left y axes, respectively. ρ(γ, σα)
is uniformly positive over all the configurations considered. The relative
advantage of HS is higher with small T , since WS is likely to yield a large
bias in γ̂ in this case, as also shown by Akay (2012). HS’s edge in relative
performance also increases with σα, which seems to affect the values of
ρ(γ, σα) more importantly than γ. For T = 8, the largest difference in the
relative performance occurs for large positive values of γ, increasing with
σα. These results confirm the conjecture we proposed in Section 2: HS
outperforms WS when persistence in the dependent variable is high, which
may be the result of large individual effects and/or large positive values of
the state dependence parameter.

Figure 2: Relative performance index ρ(γ, σα).

In each scenario, the values of γ are reported the x-axis, the values of σα are reported
in the left y-axis. The right y-axis colour-codes the values of ρ(γ, σα). The uncharted
area for N = 500, T = 4 corresponds to cases in which the simulation could not be
completed, as at least one of the Monte Carlo replications generated a sample with no
within variation.
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Table 1: Correlation coefficient between ρ(γ, σα) and Vb

T=4 T=8
N = 500 0.797 0.857
N = 1000 0.808 0.872

For each scenario, we have also computed the between variance Vb in (4).
Table 1 shows that Vb works quite well as a predictor of ρ(γ, σα). Therefore
Vb is a useful descriptive statistic in assessing whether HS actually has a
relative advantage over WS: the higher the value of Vb, the greater the
advantage.

4 Summary and indications for the practitioner

The superior computational simplicity of WS has made it popular among
practitioners. However, it is well known that its computational advantage
over HS may be outweighed, for small T , by its inferior small-sample per-
formance. We add to this result by showing that, for a given T , the relative
performance of HS versus WS is importantly driven by the magnitude of
the individual effects and of the state dependence. Specifically, WS works
rather poorly when persistence in the dependent variable is high. The be-
tween variance of the dependent variable, possibly adjusted for exogenous
explanatory variables, can be used to choose between the two solutions, since
it shows good predictive power for their relative performance.
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