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Abstract

Strict exogeneity of covariates other than the lagged dependent variable, and conditional on un-

observed heterogeneity, is often required for consistent estimation of binary panel data models.

This assumption is likely to be violated in practice because of feedback effects from the past of

the outcome variable on the present value of covariates and no general solution is yet available.

In this paper, we provide the conditions for a logit model formulation that takes into account

feedback effects without specifying a joint parametric model for the outcome and predetermined

explanatory variables. Our formulation is based on the equivalence between Granger’s definition

of noncausality and a modification of the Sims’ strict exogeneity assumption for nonlinear panel

data models, introduced by Chamberlain (1982) and for which we provide a more general theo-

rem. We further propose estimating the model parameters with a recent fixed-effects approach

based on pseudo conditional inference, adapted to the present case, thereby taking care of the

correlation between individual permanent unobserved heterogeneity and the model’s covariates

as well. Our results hold for short panels with a large number of cross-section units, a case of

great interest in microeconomic applications.
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Granger causality in dynamic binary
short panel data models

Francesco Bartolucci Claudia Pigini

1 Introduction

There is an increasing number of empirical microeconomic applications that require the esti-

mation of binary panel data models, which are typically dynamic so as to account for state

dependence (Heckman, 1981).1 In these contexts, strict exogeneity of covariates other than the

lagged dependent variable, conditional on unobserved heterogeneity, is required for consistent

estimation of the regression and state dependence parameters, when the estimation relies on

correlated random effects or on fixed effects which are eliminated when conditioning on suit-

able sufficient statistics for the individual unobserved heterogeneity. However, the assumption

of strict exogeneity is likely to be violated in practice because there may be feedback effects

from the past of the outcome variable on the present values of the covariates, namely the model

covariates may be Granger-caused by the response variable (Granger, 1969). While in linear

models the mainstream approach to overcome this problem is to consider instrumental variables

(Anderson and Hsiao, 1981; Arellano and Bond, 1991; Arellano and Bover, 1995; Blundell and

Bond, 1998), considerably fewer results are available for nonlinear binary panel data models with

predetermined covariates. This is particularly true with short binary panel data and no general

solution is yet available, despite the relevance of binary these type of data in microeconomic

applications.

Honoré and Lewbel (2002) propose a semiparametric estimator for the parameters of a binary

choice model with predetermined covariates. However, they provide identification conditions

when there is a further regressor that is continuous, strictly exogenous, and independent of the

individual specific effects. These requirements are often difficult to be fulfilled in practice. Arel-

lano and Carrasco (2003) develop a semiparametric strategy based on the Generalized Method of

Moments (gmm) estimator involving the probability distribution of the predetermined covariates

(sample cell frequencies for discrete covariates or nonparametric smoothed estimates for contin-

uous covariates) that can, however, be difficult to employ when the set of relevant explanatory

variables is large. A different approach is taken by Wooldridge (2000), who proposes to specify

1Estimators of dynamic discrete choice models are employed in studies related to labor market participation
(Heckman and Borjas, 1980; Arulampalam, 2002; Stewart, 2007), and specifically to female labor supply and fertil-
ity choices (Hyslop, 1999; Carrasco, 2001; Keane and Sauer, 2009; Michaud and Tatsiramos, 2011), self-reported
health status (Contoyannis et al., 2004; Halliday, 2008; Heiss, 2011; Carro and Traferri, 2012), poverty traps
(Cappellari and Jenkins, 2004; Biewen, 2009), welfare participation (Wunder and Riphahn, 2014), unionization
of workers (Wooldridge, 2005), household finance (Alessie et al., 2004; Giarda, 2013; Brown et al., 2014), firms’
access to credit (Pigini et al., 2016), and migrants’ remitting behavior (Bettin and Lucchetti, 2016)
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a joint model for the response variable and the predetermined covariates; the model parameters

are estimated by a correlated random-effects approach (Mundlak, 1978; Chamberlain, 1984),

to account for the dependence between strictly exogenous explanatory variables and individual

unobserved effects, combined with a preliminary version of the Wooldridge (2005)’s solution to

the initial conditions problem. Although this is an intuitive strategy, it relies on distributional

assumptions on the individual unobserved heterogeneity; moreover, it is computationally de-

manding when the number of predetermined covariates is large and it requires strict exogeneity

of the covariates used for the parametric random-effects correction.

A strategy similar to that developed by Wooldridge (2000) is adopted by Mosconi and Seri

(2006), who test for the presence of feedback effects in binary bivariate time-series by means

of Maximum Likelihood (ml)-based test statistics. They build their estimation and testing

proposals on the definition of Granger causality (Granger, 1969), which is typical of the time

series literature, as adapted to the nonlinear panel data setting by Chamberlain (1982) and

Florens and Mouchart (1982). While attractive, Mosconi and Seri’s approach does not account

for individual time-invariant unobserved heterogeneity and is better suited for quite long panels,

whereas applications, such as intertemporal choices related to the labor market, poverty traps,

and persistence in unemployment, often rely on very short time-series and a large number of

cross-section units resulting from rotated surveys. Furthermore, in the short panel data setting,

dealing properly with time-invariant unobserved heterogeneity is crucial for the attainability of

the estimation results, since individual-specific effects are often correlated with the covariates

of interest. Moreover, the focus is often on properly detecting the causal effects of past events

of the phenomenon of interest, namely the true state dependence, as opposed to the persistence

generated by permanent individual unobserved heterogeneity (Heckman, 1981).

In this paper, we propose a logit model formulation for dynamic binary fixed T -panel data

model that takes into account general forms of feedback effects from the past of the outcome

variable on the present value of the covariates. Our formulation presents three main advantages

with respect to the available solutions. First, it does not require the specification of a joint

parametric model for the outcome and predetermined explanatory variables. In fact, the start-

ing point to build the proposed formulation is the definition of noncausality (Granger, 1969),

the violation of which corresponds to the presence of feedback effects, as stated in terms of con-

ditional independence by Chamberlain (1982) for nonlinear models. Translating the definition

of noncausality to a parametric model requires, however, the specification of the conditional

probability for the covariates (x). On the contrary, we follow Chamberlain (1982) and introduce

an equivalent definition based on a modification of Sims (1972)’s strict exogeneity for nonlinear

models, which only involves specifying the probability for the binary dependent variable at each

time occasion (yt) conditional on past, present, and future values of x, and for which we provide

a more general theorem of equivalence to noncausality.

Second, the proposed model has a simple formulation and allows for the inclusion of even

a large number of predetermined covariates. Under the logit model, it amounts to augment

the linear index function with a linear combination of the leads of the predetermined covariates,

along with the lags of the binary dependent variable. We analytically prove that this augmented
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linear index function corresponds to the logit for the joint distribution of yt and the future

values of x, under the assumption that the distribution of the predetermined covariates belongs

to the exponential family with dispersion parameters (Barndorff-Nielsen, 1978) and that their

conditional means depend on time-fixed effects. In the other cases, we anyway assume a linear

approximation which proves to be effective in series of simulations while allowing us to maintain

a simple approach.

Third, the logit formulation allows for a fixed-effects estimation approach based on sufficient

statistics for the incidental parameters, thus avoiding parametric assumptions on the distribu-

tion of the individual unobserved heterogeneity. In particular, we propose estimating the model

parameters by means of a Pseudo Conditional Maximum Likelihood (pcml) estimator recently

put forward by Bartolucci and Nigro (2012), and here adapted to the proposed extended formu-

lation. They approximate the dynamic logit with a Quadratic Exponential (qe) model (Cox,

1972; Bartolucci and Nigro, 2010), which admits a sufficient statistics for the incidental param-

eters and has the same interpretation as the dynamic logit model in terms of log-odds ratio

between pairs of consecutive outcomes. In simpler contexts, this approach leads to a consistent

estimator of the model parameters under the null hypothesis of absence of true state dependence,

whereas has a reduced bias even with strong state dependence.

We study the finite sample properties of the pcml estimator for the proposed model through

an extensive simulation study. The results show that the pcml estimator exhibits a negligible

bias, for both the regression parameter associated with the predetermined covariate and the state

dependence parameter, in the presence of substantial departures from noncausality. In addition,

the estimation bias is almost negligible when the density of the predetermined covariate does not

belong to the exponential family or its conditional mean depends on time-varying effects. It is

also worth noting that the qualities of the proposed approach emerge for quite short T and a large

number of cross-section units. Finally, the pcml is compared with the correlated random-effects

ml estimator of Wooldridge (2005), adapted for the proposed formulation. This ml estimator

is consistent for the parameters of interest in presence of feedbacks, although remarkably less

efficient than the pcml in estimating the state dependence parameter, especially with short T .

However, differently from our approach, consistency relies on the assumption of independence

between the predetermined covariates and the individual unobserved effects, which is hardly

tenable in practice.

The rest of the paper is organized as follows. Section 2 introduces the definitions of non-

causality and strict exogeneity for nonlinear models. In Section 3 we illustrate the proposed

model formulation. Section 4 describes the pcml estimation approach. Section 5 outlines the

simulation study, and Section 6 provides main conclusions.

2 Definitions

Consider panel data for a sample of n units observed at T occasions according to a single

explanatory variable xit and binary response yit, with i = 1, . . . , n and t = 1, . . . , T , where the

response variable is affected by a time-constant unobservable intercept ci. Also let xi,t1:t2 =
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(xit1 , . . . , xit2)′ and yi,t1:t2 = (yit1 , . . . , yit2)′ denote the column vectors with elements referred to

the period from the t1-th to the t2-th occasion, so that xi = xi,1:T and yi = yi,1:T are referred

to the entire period of observation for the same sample unit i. Note that here we consider only

one covariate to maintain the illustration simple, but all definitions and results below naturally

extend to the case of more covariates per time occasion.

In this framework, and as illustrated in Chamberlain (1982), assuming that the economic

life of any individual begins at time t = 1, the Granger’s definition of noncausality is:

Definition. g - The response (y) does not cause the covariate (x) conditional on the time-fixed

effect (c) if xi,t+1 is conditionally independent of yi,1:t, given ci and xi,1:t, for all i and t, that

is:

p(xi,t+1|ci,xi,1:t,yi,1:t) = p(xi,t+1|ci,xi,1:t), i = 1, . . . , n, t = 1, . . . , T − 1. (1)

Testing for g requires the knowledge and formulation of the model for each time-specific

covariate given the the previous covariates and responses. However, following Chamberlain

(1982), we introduce a condition that is the basis of the approach that we present in the next

sections.

Definition. s’ - x is strictly exogenous with respect to y, given c and the past responses, if yit

is independent of xi,t+1:T conditional on ci, xi,1:t, and yi,1:t−1, for all i and t, that is

p(yit|ci,xi,yi,1:t−1) = p(yit|ci,xi,1:t,yi,1:t−1), i = 1, . . . , n, t = 1, . . . , T − 1, (2)

where yi,t−1 disappears from the conditioning argument for t = 1.

The following result holds, whose proof is related to that provided in Chamberlain (1982).

Theorem 1. g and s’ are equivalent conditions.

Proof. g may be reformulated as

p(xi,t+1, ci,xi,1:t,yi,1:t)

p(ci,xi,1:t,yi,1:t)
=
p(xi,t+1, ci,xi,1:t)

p(ci,xi,1:t)
, t = 1, . . . , T − 1,

for all i. Exchanging the denominator at lhs with the numerator at rhs, the previous equality

becomes

p(yi,1:t|ci,xi,1:t+1) = p(yi,1:t|ci,xi,1:t), t = 1, . . . , T − 1,

which, by marginalization, implies that

p(yi,1:s|ci,xi,1:t+1) = p(yi,1:s|ci,xi,1:t), t = 1, . . . , T − 1, s = 1, . . . , t.

Therefore, we have

p(yis|ci,xi,1:t+1,yi,1:s−1) = p(yis|ci,xi,1:t,yi,1:s−1), t = 1, . . . , T − 1, s = 1, . . . , t.
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Finally, by recursively using the previous expression for a fixed s and for t from T − 1 to s we

obtain condition s’ as defined in (2). Similarly, s’ implies that

p(xi,t+1:T |ci,xi,1:t,yi,1:t) = p(xi,t+1:T |ci,xi,1:t,yi,1:t−1), t = 1, . . . , T − 1,

for all i and implies

p(xi,s+1|ci,xi,1:s,yi,1:t) = p(xi,s+1|ci,xi,1:s,yi,1:t−1), t = 1, . . . , T − 1, s = 1, . . . , T − 1,

which, in turn, leads to condition (1) and then g. 2

It is worth noting that, apart from the case T = 2, definition s’ is stronger than the definition

of strict exogeneity of Sims (1972) adapted to the case of binary panel data, which we denote

by s. Then, being equivalent to s’, g implies s, but in general s does not imply g. In fact, s is

expressed avoiding to condition on the previous responses:

Definition. s - x is strictly exogenous with respect to y, given c, if yit is independent of xi,t+1:T

conditional on ci and xi,1:t, for all i and t, that is

p(yit|ci,xi) = p(yit|ci,xi,1:t), i = 1, . . . , n, t = 2, . . . , T. (3)

Theorem 2. g implies s.

Proof. Proceeding as in the proof of Theorem 1, g implies that

p(yis|ci,xi,1:t+1) = p(yis|ci,xi,1:t), t = 1, . . . , T − 1, s = 1, . . . , t.

By recursively using the previous expression for a fixed s and for t from T − 1 to s, we obtain

condition (3). 2

Although the focus here is on nonlinear binary panel data models, it is useful to accompany

the discussion with the Granger’s and the Sims’ definitions in the simpler context of linear mod-

els, as laid out by Chamberlain (1984), where testable restrictions on the regression parameters

can be derived directly. The starting point is a linear panel data model of the form

yit = xitβ + ci + εit, i = 1, . . . , n, t = 1, . . . , T, (4)

where now the dependent variables yit are continuous and the error terms εit are iid. The usual

exogeneity assumption is stated as

E(εit|ci,xi) = 0, i = 1, . . . , n, t = 1, . . . , T, (5)

which rules out the lagged response variables from the regression specification, as well as possible

feedback effects from past values of yit on to the present and future values of the covariate.
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Now consider the minimum mean-square error linear predictor, denoted by E∗(·), and con-

sider the following definitions, which hold for all i:

E∗(ci|xi) = η + x′iλ, (6)

E∗(yit|xi) = αt + x′iπt, t = 1, . . . , T, (7)

where λ = (λ1, . . . , λT )′ and πt = (πt1, . . . , πtT )′ are vectors of regression coefficients. Equation

(7) may also be expressed as

E∗(yi|xi) = α+ Πxi,

with α = (α1, . . . , αT )′ and Π = (π1, . . . ,πT )′. It may be simply proved that assumptions (4),

(5), together with definition (6), imply that

Π = βI + 1λ′,

where I is an identity matrix and 1 is a column vector of ones of suitable dimension; in the

present case they are of dimension T . In Chamberlain (1984), the structure of Π is related to

the definition of strict exogeneity in Sims (1972) for linear models (equivalent to condition s for

binary models defined above) that, conditional on the permanent unobserved heterogeneity, is

stated as

E∗ (yit|ci,xi) = E∗ (yit|ci,xi,1:t) , t = 1, . . . , T. (8)

Sims (1972) proved the equivalence of this condition with that of noncausality of Granger (1969).

In matrix notation, condition (8) can be written as

E∗(yi|ci,xi) = ϕ+ Ψxi + ciτ , (9)

where Ψ is a lower triangular matrix, τ = (τ1, . . . , τT )′, and ϕ = (ϕ1, . . . , ϕT )′. Assumptions

(6) and (9) then imply the following structure for Π:

Π = B + δλ′,

where B is a lower triangular matrix and δ = (δ1, . . . , δT )′.

It is straightforward to translate the restrictions in the structure of Π to the linear index

function of a nonlinear model. In fact, Chamberlain (1984) and then Wooldridge (2010, Section

15.8.2) show that a simple test for strict exogeneity, s, in binary panel data models can be readily

derived by adding xi,t+1 to the set of explanatory variables. In the next section we show not

only that noncausality s’ can be tested in a similar manner within a dynamic model formulation,

but also that the linear index augmented with xi,t+1 represents, under rather general conditions,

the exact log-odds ratio for the joint probability of yit and xi,t+1 when s’ is violated, thereby

providing a model formulation that accounts for feedback effects and whose parameters may be

consistently estimated.
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3 Model formulation

Consider the general case in which, for i = 1, . . . , n and t = 1, . . . , T , we observe a binary

response variable yit and a vector of k covariates denoted by xit. Then, we extend the previous

notation by introducing Xi,t1:t2 = (xit1 , . . . ,xit2), with Xi = Xi,1:T being the matrix of the

covariates for all time occasions. In order to illustrate the proposed model, we first recall the

main assumptions of the dynamic logit model.

3.1 Dynamic logit model

A standard formulation of a dynamic binary choice model assumes that, for i = 1, . . . , n and

t = 1, . . . , T , the binary response yit has conditional distribution

p(yit|ci,Xi,yi,1:t−1) = p(yit|ci,xit, yi,t−1), (10)

corresponding to a first-order Markov model for yit with dependence only on the present values

of the explanatory variables. The above conditioning set can be easily enlarged to include further

lags of xit and yit.

Moreover, adopting a logit formulation for the conditional probability (see Hsiao, 2005, ch.

7, for a review), that is,

p(yit|ci,xit, yi,t−1) =
exp [yit (ci + x′itβ + yi,t−1γ)]

1 + exp (ci + x′itβ + yi,t−1γ)
, t = 2, . . . , T, (11)

the conditional distribution of the overall vector of responses becomes:

p(yi,2:T |ci,Xi, yi1) =

exp

[
yi+ci +

T∑
t=2

yit (x′itβ + yit−1γ)

]
T∏
t=2

[1 + exp (ci + x′itβ + yi,t−1γ)]

, (12)

where β and γ are the parameters of interest for the covariates and the true state dependence

(Heckman, 1981), respectively, yi+ =
∑T

t=2 yit is the total score and the individual-specific

intercepts ci are often considered as nuisance parameters; moreover, the initial observation yi1

is considered as given.

Expression (10) embeds assumption s’ by excluding leads of xit from the probability con-

ditioning set. It therefore rules out feedbacks from the response variable to future covariates,

that is, the Granger causality. Noncausality is often a hardly tenable assumption, as when the

covariates of interest depend on individual choices. If covariates are predetermined, as opposed

to strictly exogenous, estimation of the model parameters of interest can be severely biased,

when estimation is based on eliminating or approximating ci with quantities depending on the

entire observed history of covariates (Mundlak, 1978; Chamberlain, 1984; Wooldridge, 2005).

7



3.2 Proposed model

As stated at the end of Section 2, dealing with violations of condition s’, formulated as in

(2), amounts to propose a generalization of the standard dynamic binary choice model based

on assumption (10). In order to allow for such violations, we specify the probability of yit

conditional on individual intercept now denoted by di, Xi, and yi,1:t−1 as

p(yit|di,Xi,yi,1:t−1) = p(yit|di,Xi,t:t+1, yi,t−1), (13)

retaining the assumption that previous covariates and responses before yi,t−1 do not affect yit.

Note that, differently from (10), the conditioning set on the rhs includes the first-order leads of

xit. Moreover, we use a different symbol for the unobserved individual intercept that, as will be

clear in the following, is related to the individual parameter di. The formulation can easily be

extended to include an arbitrary number of leads Xi,t:t+H , with H ≤ T − 3, so that we retain

at least two observations, which is necessary for inference (see Section 4). However, we do not

explicitly consider this extension because, while being rather obvious, it strongly complicates

the following exposition.2 Following the discussion in Chamberlain (1984) and the suggestion

in Wooldridge (2010, 15.8.2) on testing the strict exogeneity assumption, a test for noncausality

can be derived by specifying the model as

p(yit|di,Xi,t:t+1, yi,t−1) = g−1(di + x′itβ + x′i,t+1ν + yi,t−1γ), t = 2, . . . , T − 1,

where g−1(·) is an inverse link function. It is worth noting that the null hypothesis H0 : ν = 0

corresponds to condition s’, and then to Granger noncausality g. The identification of β and

γ in presence of departures from noncausality requires further assumptions that lead to the

formulation here proposed. In particular, we rely on the logit formulation

p(yit|di,Xi,t:t+1, yi,t−1) =
exp

[
yit

(
di + x′itβ + x′i,t+1ν + yit−1γ

)]
1 + exp

(
di + x′itβ + x′i,t+1ν + yi,t−1γ

) . (14)

Under a particular, very relevant, case this formulation is justified according to the following

arguments.

First of all, denote the conditional density of the distribution of the covariate vector xi,t+1

as

f(xi,t+1|ξi,Xi,1:t,yi,1:t) = f(xi,t+1|ξi,xit, yit), t = 1, . . . , T − 1, (15)

where ξi is a column vector of time-fixed effects and the presence of yit allows for feedback

2Chamberlain (1984) reports an empirical example where the linear index function of a logit model corresponds
to the lhs of s in (3), where all the available lags and leads of xit are used. However, this specification is valid
only when t = 1 is the beginning of the subject’s economic life. We do not make the same assumption here.
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effects.3 Then the logit for the distribution yit conditional on ci, ξi, Xi,t:t+1, and yi,t−1 is

log
p(yit = 1|ci, ξi,Xi,t:t+1, yi,t−1)

p(yit = 0|ci, ξi,Xi,t:t+1, yi,t−1)
= log

f(yit = 1,xi,t+1|ci, ξi,xi,t, yi,t−1)

f(yit = 0,xi,t+1|ci, ξi,xit, yi,t−1)
=

log
p(yit = 1|ci,xit, yi,t−1)f(xi,t+1|ξi,xit, yit = 1)

p(yit = 0|ci,xit, yi,t−1)f(xi,t+1|ξi,xit, yit = 0)
, (16)

where the presence of time-fixed effects in the conditioning sets for yit and xit is determined by

(13) and (15).4 Furthermore, we assume that the probability of yit conditional on ci, xit, yi,t−1

has the dynamic logit formulation expressed in (11) so that the above expression becomes

log
p(yit = 1|ci, ξi,Xi,t:t+1, yi,t−1)

p(yit = 0|ci, ξi,Xi,t:t+1, yi,t−1)
= ci + x′itβ + yi,t−1γ + log

f(xi,t+1|ξi,xit, yit = 1)

f(xi,t+1|ξi,xit, yit = 0)
.

The main point now is how to deal with the components involving the ratio between the con-

ditional density of xi,t+1 for yit = 0 and yit = 1. Suppose that the conditional distribution of

xi,t+1 belongs to the following exponential family:

f(xi,t+1|ξi,xit, yit = z) =
exp[x′i,t+1(ξi + ηz)]h(xi,t+1;σ)

K(ξi + ηz;σ)
, t = 1, . . . , T − 1, z = 0, 1, (17)

where h(xi,t+1) is an arbitrary strictly positive function, possibly depending on suitable disper-

sion parameters σ, and K(·) is the normalizing constant. Note that this structure also covers

the case of xi,t+1 depending on time-fixed effects through ξi. The following result holds, the

proof of which is trivial.

Theorem 3. Under assumptions (11) and (17), we have

log
p(yit = 1|ci, ξi,Xi,t:t+1, yi,t−1)

p(yit = 0|ci, ξi,Xi,t:t+1, yi,t−1)
= log

p(yit = 1|di,Xi,t:t+1, yi,t−1)

p(yit = 0|di,Xi,t:t+1, yi,t−1)
=

di + x′itβ + x′i,t+1ν + yi,t−1γ,

where di = ci + logK(ξi + η1;σ) − logK(ξi + η0;σ) and ν = η1 − η0, and then model (14)

holds.

Two cases satisfying (17) are for continuous covariates having multivariate normal distribu-

tion with common variance-covariance matrix and the case of binary covariates. More precisely,

in the first case suppose that

xi,t+1|ci,xit, yit = z ∼ N(ζi + µz,Σ);

then (17) holds with ξi = Σ−1ζi and ηz = Σ−1µz, z = 0, 1, where the upper (lower) triangular

part of Σ go in ψ. Regarding the second case, we suppose that given ξi, Xit, and yit = z,

3In assumption (15) we maintain the same first-order dynamic as for (13). Nevertheless the assumptions on
the conditioning set on the right-hand-side can be relaxed to include more lags of xit and yit.

4Notice that the extension of (13) to a number of leads 1 < H ≤ T − 3 requires to rewrite the conditional
density of covariates as

∏H
h=1 r(xi,t+h|ξi,xi,t+h−1, yit = z), with z = 0, 1.
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the elements of xi,t+1 are conditionally independent, with the j-th element having Bernoulli

distribution with success probability

exp(ξij + ηzj)

1 + exp(ξij + ηzj)
, j = 1, . . . , k,

where k is the number of covariates. In the other cases, when (17) does not hold, we anyway

assume a linear approximation for the ratio between the conditional density of xi,t+1 for yit = 0

and yit = 1 in (16) which is the most natural solution to maintain an acceptable level of

simplicity.

For the following developments, it is convenient to derive the conditional distribution of

the entire vector of responses, which holds under the extended logit formulation (14) and that

directly compares with (12). For all i, the distribution at issue is

p(yi,2:T−1|di,Xi, yi1, yiT ) = (18)

exp

[
y∗i+di +

T−1∑
t=2

yit

(
x′itβ + x′i,t+1ν + yit−1γ

)]
T−1∏
t=2

[
1 + exp

(
di + x′itβ + x′i,t+1ν + yi,t−1γ

)] .

where y∗i+ =
T−1∑
t=2

yit. In particular, model (18) reduces to the dynamic logit (12) under the null

hypothesis of noncausality H0 : ν = 0, if the probability in (12) is conditioned on yiT and with

different individual intercepts.

The parameters in (18) can be estimated by either a random- or fixed-effects approach,

keeping in mind that a (correlated) random-effects strategy (Mundlak, 1978; Chamberlain, 1984)

requires the predetermined covariates in xit to be independent of di. As this assumption may

often be hardly tenable, in the next section we discuss a fixed-effects estimation approach, first

put forward by Bartolucci and Nigro (2012) and here adapted to the present case.

4 Fixed-effects estimation

With fixed-T panel data, a fixed-effects approach to the estimation of the parameters of the

standard logit model is based on the maximization of the conditional likelihood given suitable

sufficient statistics for the incidental parameters. The conditional estimator is common practice

for static binary panel data models (Chamberlain, 1980), whereas, for the dynamic logit model,

a sufficient statistic can only be derived in special cases: in absence of covariates with T =

3 (Chamberlain, 1985); with covariates on the basis of a weighted conditional log-likelihood,

although the estimator is consistent only under certain conditions on the distribution of the

covariates and the rate of convergence is slower than
√
n (Honoré and Kyriazidou, 2000). These

shortcomings have been overcome by Bartolucci and Nigro (2012), who approximate the dynamic

logit with a qe model (Cox, 1972; Bartolucci and Nigro, 2010), which admits a sufficient statistic

for the incidental parameters and has the same interpretation as the dynamic logit model in terms
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of log-odds ratio. Bartolucci and Nigro (2012) also propose to adopt a pcml estimator for the

model parameters. In the following, we extend the approximating qe model to accommodate

the parametrization of the proposed model formulation in (18).

4.1 Approximating model

The approximating model for (18) is derived by taking a linearization of the log-probability of

the latter, similar to that used in Bartolucci and Nigro (2012), that is,

log p(yi,2:T−1|di,Xi, yi1, yiT ) = y∗i+di +
T−1∑
t=2

yit
(
x′itβ + x′i,t+1ν + yi,t−1γ

)
−

T−1∑
t=2

log
[
1 + exp

(
di + x′itβ + x′i,t+1ν + yi,t−1γ

)]
. (19)

The term that is nonlinear in the parameters is approximated by a first-order Taylor series

expansion around di = d̄i, β = β̄, ν = ν̄, and γ = 0, leading to

T−1∑
t=2

log
[
1 + exp

(
di + x′itβ̄ + x′i,t+1ν + yi,t−1γ

)]
≈

T−1∑
t=2

[
1 + exp

(
d̄i + x′itβ̄ + x′i,t+1ν̄

)]
+

T−1∑
t=2

qit
[
di − d̄i + x′it

(
β − β̄

)
+ x′i,t+1 (ν − ν̄)

]
+

T−1∑
t=2

qityi,t−1γ, (20)

where

qit =
exp

(
d̄i + x′itβ̄ + x′i,t+1ν̄

)
1 + exp

(
d̄i + x′itβ̄ + x′i,t+1ν̄

) .
Since only the last sum in (20) depends on yi,2:T−1, we can substitute (20) in (19) and obtain

the approximation of the joint probability (18) that gives the following qe model

p∗(yi,2:T−1|di,Xi, yi1, yiT ) =

exp

[
y∗i+di +

T−1∑
t=2

yit

(
x′itβ + x′i,t+1ν

)
+
∑
t

(yit − qit)yi,t−1γ

]
∑

z2:T−1

exp

[
z∗+di +

T−1∑
t=2

zt

(
x′itβ + x′i,t+1ν

)
+
∑
t

(zt − qit)ztγ
] , (21)

where the sum at the denominator ranges over all the possible binary response vectors z2:T−1 =

(z2, . . . , zT−1)′ and z∗+ =
T−1∑
t=2

zt, with z1 = yi1.

The joint probability in (21) is closely related to the probability of the response configuration

yi,2:T−1 in the true model in (18). In particular, the approximating qe and the proposed true

model share the properties summarized by the following theorem that can be proved along the

11



lines of Bartolucci and Nigro (2010):5

Theorem 4. For i = 1, . . . , n:

(i) In the case of γ = 0, the joint probability p∗(yi,2:T−1|di,Xi, yi1, yiT ) does not depend on

yi,t−1 or on qit, and both the true (18) and approximating model (21), correspond to the

following static logit model

p∗(yi,2:T−1|di,Xi, yi1, yiT ) =

exp

[
y∗i+di +

T−1∑
t=2

yit

(
x′itβ + x′i,t+1ν

)]
∑

z2:T−1

exp
[
z∗+di +

(
x′itβ + x′i,t+1ν

)] =

T−1∏
t=2

exp
[
yit

(
di + x′itβ + x′i,t+1ν

)]
1 + exp

(
di + x′itβ + x′i,t+1ν

) .
(ii) yit is conditionally independent of yi,1:t−2 given di, Xi, and yi,t−1, for t = 2, . . . , T .

(iii) Under both models, the parameter γ has the same interpretation in terms of log-odds ratio

between the responses yit and yi,t−1, for t = 2, . . . , T − 1:

log
p∗(yit = 1|di,Xi, yi,t−1 = 1)

p∗(yit = 0|di,Xi, yi,t−1 = 1)
− log

p∗(yit = 1|di,Xi, yi,t−1 = 0)

p∗(yit = 0|di,Xi, yi,t−1 = 0)
= γ.

The nice feature of the qe model in (21) is that it admits sufficient statistics for the incidental

parameters di, which are the total scores y∗i+ for i = 1, . . . , n. The probability of yi,2:T−1,

conditional on Xi, yi1, yiT , and y∗i+, for the approximating model is then

p∗
(
yi,2:T−1|Xi, yi1, yiT , y

∗
i+

)
=

exp

[
T−1∑
t=2

yit

(
x′itβ + x′i,t+1ν

)
+

T−1∑
t=2

(yit − qit)yi,t−1γ

]
∑

z2:T−1

z∗+=y∗i+

exp

[
T−1∑
t=2

zt

(
x′itβ + x′i,t+1ν

)
+

T−1∑
t=2

(zt − qit)zt−1γ

] , (22)

which no longer depends on di and where the sum at the denominator is extended to all the

possible response configurations z2:T−1 such that z∗+ = y∗i+, where z∗+ =
T−1∑
t=2

.

4.2 Pseudo conditional maximum likelihood estimator

The formulation of the conditional log-likelihood for (22) relies on the fixed quantities qit, that

are based on a preliminary estimation of the parameters associated with the covariate and of

the individual effects. Let φ = (β′,ν ′)′ be the vector collecting all the regression parameters

and θ = (φ′,γ ′)′. The estimation approach is based on two-steps:

5Results (ii) and (iii) can easily be derived by extending to the present case Theorem 1 in Bartolucci and
Nigro (2012), that clarifies the connection between the qe and the dynamic logit model.
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1. Preliminary estimates of the parameters needed to compute qit are obtained by maximizing

the following conditional log-likelihood

`(φ̄) =

n∑
i=1

1{0 < yit < T − 2}`i(φ̄),

`i(φ̄) = log

exp

[
T−1∑
t=2

yit

(
x′itβ̄ + x′i,t+1ν̄

)]
∑

z2:T−1

z∗+=y∗i+

exp

[
T−1∑
t=2

zt

(
x′itβ̄ + x′i,t+1ν̄

)] ,

which can be maximized by a Newton-Raphson algorithm.

2. The parameter vector θ is estimated by maximizing the conditional log-likelihood of (22),

that can be written as

`∗(θ|φ̄) =
∑
i

1{0 < yit < (T − 2)}`∗i (θ|φ̄), (23)

`∗i (θ|φ̄) = log p∗θ|φ̄(yi,2:T−1|Xi, yi1, yi1, y
∗
i+).

The resulting θ̂ is the pseudo conditional maximum likelihood estimator.

Function `∗(θ|φ̄) may be maximized by Newton-Raphson using the score and observed in-

formation matrix reported below (Section 4.2.1). We also illustrate how to derive standard

errors for the two-step estimator (Section 4.2.2). We leave out of the exposition the asymptotic

properties of the pcml estimator, which can be derived along the same lines as in Bartolucci

and Nigro (2012).

4.2.1 Score and information matrix

In order to write the score and information matrix for θ, it is convenient to rewrite `∗i (θ|φ̄) as

`∗i (θ|φ̄) = u∗(yi,1:T−1)′A∗(Xi)
′θ −

log
∑
z2:T−1

z∗+=y∗i+

exp
[
u∗(zi,1:T−1)′A∗(Xi)

′θ
]
, (24)

where the notation u∗(yi,1:T−1) is used to stress that u∗ is a function of both the initial value

yi1 and the response configuration yi,2:T−1; similarly u∗(zi,1:T−1) is a function of yi1 and z2:T−1,

since z1 = yi1 as in (21). Moreover u∗(yi,1:T−1) and A∗(Xi) in (24) are

u∗(yi,1:T−1) =

(
y′i,2:T−1,

T−1∑
t=2

(yit − qit)yi,t−1

)′

A∗(Xi) =

(
Xi,2:T 0

0′ 1

)
, (25)
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where Xi,2:T is a matrix of T − 1 rows and 2k columns, with k the number of covariates and

typical row x′i,t:t+1, while 0 is column vector of zeros having a suitable dimension.6 Using the

above notation, the score s∗(θ|φ̄) = ∇θ`∗i (θ|φ̄) and the observed information matrix J∗(θ|φ̄) =

−∇θθ`∗i (θ|φ̄) are

s∗(θ|φ̄) =
∑
i

1{0 < y∗i+ < T − 2}A∗(Xi){u∗(yi,2:T−1)−

E∗θ|φ̄
[
u∗(yi,2:T−1)|Xi, yi1, , yiT , y

∗
i+

]
}, (26)

and

J∗(θ|φ̄) =
∑
i

1{0 < y∗i+ < T − 2}A∗(Xi)×

V∗θ|φ̄
[
u∗(yi,2:T−1)|Xi, yi1, y

∗
i+

]
A∗(Xi)

′, (27)

where the conditional expected value and variance are defined as

E∗θ|φ̄
[
u∗(yi,2:T−1)|Xi, yi1, y

∗
i+

]
=∑

zH+1:T−H

z∗+=y∗i+

u∗(zi,2:T−2)p∗θ|φ̄
(
zi,2:T−2|Xi, yi1, y

∗
i+

)
,

and

V∗θ|φ̄
[
u∗(yi,2:T−1)|Xi,yi,1:H , y

∗
i+

]
=

E∗θ|φ̄
[
u∗(yi,2:T−1)u∗(yi,2:T−1)′|Xi, yi1, y

∗
i+

]
−

E∗θ|φ̄
[
u∗(yi,2:T−1)|Xi, yi1, y

∗
i+

]
E∗θ|φ̄

[
u∗(yi,2:T−1)|Xi, yi1, y

∗
i+

]′
.

Following the results in Bartolucci and Nigro (2012), which can be applied directly to the

present case, `∗(θ|φ̄) is always concave and J∗(θ|φ̄) is almost surely positive definite.7 Then θ̂

that maximizes `∗(θ|φ̄) is found at convergence of the standard Newton-Raphson algorithm.

4.2.2 Standard errors

The computation of standard errors must take into account the first step estimation of φ̄. As

Bartolucci and Nigro (2012) we also rely on the gmm approach (Hansen, 1982) and cast the

6In order to clarify the structure ofA∗(Xi), consider the simple case of T = 4 time occasions and one covariate.
Then

A∗(Xi) =

 xi2 xi3 0
xi3 xi4 0
0 0 1

 .

7See Bartolucci and Nigro (2012), Section 5, Theorem 2.
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estimating equations as

m(φ̄,θ) =

n∑
i=1

1{0 < y∗i+ < T − 2}mi(φ̄,θ) = 0,

where mi(φ̄,θ) contains the score vectors of the first step, ∇φ̄`i(φ̄), and of the second step,

∇θ|φ̄`∗i (θ|φ̄). Then the gmm estimator is (φ̃
′
, θ̂
′
)′ and its variance-covariance matrix can be

estimated as

V (φ̃, θ̂) = H(φ̃, θ̂)−1S(φ̃, θ̂)
[
H(φ̃, θ̂)−1

]′
,

where

S(φ̄,θ) =
∑
i

1{0 < y∗i+ < T − 2}mi(φ̄,θ)mi(φ̄,θ)′,

H(φ̄,θ) =
∑
i

1{0 < y∗i+ < T − 2}H i(φ̄,θ).

Matrix H i(φ̄,θ) is composed of four blocks as follows:

H i(φ̄,θ) =

(
∇φ̄φ̄`i(φ̄) 0

∇θφ̄`∗i (θ|β̄) ∇θθ`∗i (θ|β̄)

)
.

The north-west block is expressed as

∇φ̄φ̄`i(φ̄) = Xi,2:TVφ̄
[
u(yi,2:T−1)|Xi, yi1, yiT , y

∗
i+

]
X ′i,2:T ,

where Xi,2:T is defined in (25) and Vφ̄ is the conditional variance in the static logit model.

Moreover, ∇θθ`∗i (θ|φ̄) is equal to −J∗(θ|φ̄); see definition (27). Finally, the derivation of

∇θφ̄`∗i (θ|φ̄) is not straightforward and we therefore rely on the numerical derivative of (26)

with respect to φ̄.

5 Simulation study

In this section we describe the design and illustrate the main results of the simulation study we

used to investigate about the final sample properties of the pcml estimator for the parameters

of the proposed model formulation. In the first part of the study, the main focus is on the

performance under substantial departures from noncausality, which we obtain by a non-zero

effect from the past values of the binary dependent variable on the present value of the covariate.

In the second part, we compare the pcml estimator of (18) with an alternative ml random-effects

estimator for the same model, based on the proposal by Wooldridge (2005) to account for the

initial condition problem.
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5.1 Simulation design

The simulation study is based on samples drawn from a dynamic logit model, where the linear

index specification includes the lagged dependent variable, one explanatory variable xit possibly

predetermined, one strictly exogenous variable vit, and individual unobserved heterogeneity.

The model assumes that

yit = 1{ci + βxit − 0.5vit + γyit−1 + εit ≥ 0}, (28)

for i = 1, . . . , n, t = 2, . . . , T , with initial condition

yi1 = 1{ci + βxi1 − 0.5vi1 + εi1 ≥ 0}.

In the considered scenarios, the error terms εit, t = 1, . . . , T , follow a logistic distribution with

zero mean and variance equal to π2/3 and the individual specific intercepts ci are allowed to be

correlated with xit and vit.

We consider a benchmark design and some extensions that are characterized by different

choices for the distribution of the explanatory variable xit. The general formulation is

xit = w(ξi + x∗it + ψvit + ηyit−1), (29)

x∗it ∼ N(0, π2/3),

for t = 2, . . . , T , the initial value is xi1 = w(ξi + x∗i1 + ψvi1) with x∗i1 being again a zero mean

normal with variance π2/3, and vit = ξi + v∗it, for t = 1, . . . , T , where v∗it is also N(0, π2/3).

The parameter η governs the violation of s’, stated in Section 2, and it takes value η = 0

under the assumption of noncausality, with η 6= 0 otherwise. In our benchmark design, we let

w(·) be the identity function and ψ = 0, so that assumption (17) is satisfied and the model

of Theorem 3 holds. We also consider two alternative designs where (17) does not hold and

the model formulated in Theorem 3 is an approximation: first, we let w(·) be an indicator

function so that xit becomes a binary covariate with a normally distributed error term, with

p(xit = 1|ξi, vit, yi,t−1) = Φ(ξi + x∗it + ψvit + ηyi,t−1), where Φ(·) is the standard normal cdf and

therefore does not belong to the exponential family in (17); secondly, we let the w(·) be the

identity function and set ψ = 0.5 in order for xit to depend on other time varying covariates.

Based on x∗it, the individual intercepts ci and ξi are derived as

ci = (1/T )

4∑
t=1

x∗it, (30)

ξi = $ ci +
√

1−$2uit,

with $ = 0.5, uit ∼ N(0, 1) and for i = 1, . . . , n. This way, the generating model admits a

correlation between the covariates and the individual-specific intercepts and dependence between

the unobserved heterogeneity in both processes for y and x.
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In most economic applications, the parameters of interest are γ, measuring the state depen-

dence, and the regression coefficient β. Based on the generating model (28), we ran experiments

for scenarios with γ = 0, 1 and β = 0,−1. We examine violations of noncausality by setting

η = −1, compared with the same scenarios with η = 0. The chosen values for β, γ, and η are

consistent with likely situations in practice that relate, for instance, to the feedback effect of

past employment on present child birth when analyzing female labor supply (see also Mosconi

and Seri, 2006, for a related application). Notice that here we are implicitly assuming that the

only source of contemporaneous endogeneity, namely the reverse causality between xit and yit,

is completely captured by the correlation between the individual specific intercepts in the two

processes. The sample sizes considered are n = 500, 1000 for T = 4, 8. The number of Monte

Carlo replications is 1000.

5.2 Main results

Tables 1–6 report the main results of our simulation study. Tables 1–4 show the results for the

benchmark design, under which the covariate xit, generated as in (29), is normally distributed,

with w(·) being the identity function, and ψ = 0, for all the combinations of the chosen values of

β and γ. Tables 5 and 6 report the simulation results for the two extensions of our benchmark

design, under which xit is generated as a binary variable and with a dependence on the time

varying covariate vit, respectively, for β = −1, γ = 1, and η = 0,−1.

For each scenario, we investigate the finite sample performance of the pcml estimator in

Section 4 for the proposed formulation (18) in two cases representing the null and alternative

hypotheses of noncausality described by s’ in Section 2: pcml1 denotes the pcml estimator for

the parameters in (18); pcml0 denotes the estimator of (18) with the constraint ν = 0. For each

estimator, we report the mean bias, the median bias, the root-mean square error (RMSE), the

median absolute error (MAE), as in Honoré and Kyriazidou (2000), and the t-tests at the 5%

nominal size for H0 : β̂ = β, and H0 : γ̂ = γ. Finally we report the t-tests at the 5% nominal

size for noncausality, H0 : ν = 0. We expect pcml0 to yield biased estimators when η 6= 0 since,

following s’, the lead of xit is omitted from the model specification. We limit the discussion to

the estimation of β and γ, which are likely to be the parameters of main interest in applications.

Results concerning the other model parameters are available upon request.

Table 1 summarizes the simulation results for our benchmark design and β = γ = 0. With

η = 0, that is, in absence of feedback effects, the mean bias and median bias are always negligible,

whereas the MAE and RMSE decrease with both n and T for the two models considered. While

the same considerations hold for pcml1 when η = −1, the pcml estimators of β provided by

pcml0 is severely biased and leads to misleading inference, although this pattern is alleviated

for T = 8. The same patterns are shown in Table 2, where β is equal to −1. Moreover, the

t-test for H0 : ν = 0 always attains its nominal size and exhibits strong empirical power in all

the scenarios with η = −1

Tables 3 and 4 summarize simulation results for the same designs when γ = 1. They depict

similar situations to those in Tables 1 and 2, with the exception of the bias of γ, that slightly
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increases. In fact, the performance of the pcml estimator may be especially sensitive to the

degree of state dependence in the generated samples. A high value of γ leads to a reduction of

the actual sample size via the indicator function in (23) and represents a large deviation from

the approximating point by which (20) is derived. Nevertheless, Bartolucci and Nigro (2012)

show that the bias and root-mean square error of pcml estimator of γ in the dynamic logit

model decrease at a rate close to
√
n and as T grows also for γ moving away from 0.

Tables 5 and 6 report the simulation results for two departures from the benchmark design:

Table 5 refers to a binary covariate generated by a normal link function, while Table 6 refers

to a normally distributed covariate depending on the time-varying covariate vit (see Section 5.1

for details). These exercises are meant to investigate the properties of the pcml estimator when

assumption (17) does not hold and the model formulated in Theorem 3 just embeds a linear

approximation of (17). When the covariate is binary, the bias of the pcml1 estimator of β and

γ is always negligible. As for efficiency, the RMSE and MAE are slightly higher for β, although

they decrease with both n and T (see Table 5). On the other hand, the results for ψ = 0.5 in

Table 6 mirror closely those in Table 4, except for a larger bias with T = 4.

5.3 Comparison with alternative estimators

We compare the performance of the pcml estimator for model (18) with two alternative ap-

proaches. The first, denoted by W, is the correlated random-effects approach based on the

proposal by Wooldridge (2005) for nonlinear dynamic panel data models, where the individual

unobserved heterogeneity is assumed to be normally distributed and initial conditions are han-

dled by specifying the distribution of ci conditional on the initial value of yi. In Wooldridge

(2005) a general formulation for this conditional distribution is proposed, where the individ-

ual random effects are allowed to depend on linear combinations of time-averages of strictly

exogenous covariates (Mundlak, 1978). We specify the following conditional distribution of ci

ci|yi1 ∼ yi1α+ v̄iπ + c∗i , c∗i ∼ N(0, σ2
c ), i = 1, . . . , n.

where v̄i = (1/T )
∑T

t=1 vit. It is worth noting that, in this case, the ml estimator of the

model parameters is consistent if c∗i is independent of the possibly predetermined covariate xit.

Therefore, we generate samples where ci in (30) is distributed as a normal random variable with

zero mean, unit variance, and $ = 0, in order to avoid the misspecification of the random effects.

Nevertheless we also compare the ml and pcml estimator in the scenario where the individual

intercepts are generated as in (30).

The second is the so-called infeasible logit estimator (Honoré and Kyriazidou, 2000) denoted

by inf, where the generated individual intercepts are used as an additional covariate and the

model parameters are then estimated by ml based on the pooled logit model formulation. The

purpose is to compare the pcml estimator with a benchmark that is not sensitive to substantial

deviations from the approximating model (20).

Tables 7 and 8 summarize the results of the simulation study, that we limit to the scenarios

with β = −1, γ = −1, and η = 0,−1. Table 7 contains the results based on the samples
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Table 1: Normally distributed covariate, β = 0, γ = 0, ψ = 0

Estimation of β Estimation of γ H0 : ν = 0

Mean RMSE Median MAE t-test Mean RMSE Median MAE t-test t-test
bias bias bias bias

η = 0
n = 500, T = 4

pcml1 -0.003 0.072 -0.003 0.048 0.052 -0.026 0.305 -0.031 0.210 0.039 0.051
pcml0 -0.001 0.060 0.001 0.039 0.045 -0.027 0.302 -0.025 0.209 0.036

n = 500, T = 8

pcml1 -0.000 0.027 0.000 0.018 0.066 0.003 0.106 0.002 0.073 0.055 0.037
pcml0 -0.000 0.027 -0.000 0.018 0.062 0.003 0.106 0.002 0.073 0.056

n = 1000, T = 4

pcml1 0.000 0.051 -0.000 0.034 0.051 0.002 0.224 0.009 0.143 0.055 0.050
pcml0 -0.000 0.043 -0.001 0.029 0.052 0.002 0.223 0.010 0.143 0.052

n = 1000, T = 8

pcml1 0.001 0.019 0.001 0.012 0.048 0.000 0.074 -0.002 0.048 0.053 0.055
pcml0 0.001 0.018 0.001 0.012 0.053 0.000 0.074 -0.002 0.048 0.053

η = −1
n = 500, T = 4

pcml1 0.002 0.078 -0.001 0.054 0.042 -0.013 0.338 -0.009 0.224 0.045 0.984
pcml0 0.155 0.167 0.154 0.154 0.694 0.138 0.346 0.152 0.236 0.057

n = 500, T = 8

pcml1 -0.003 0.027 -0.002 0.018 0.047 -0.000 0.112 -0.000 0.076 0.044 1.000
pcml0 0.048 0.054 0.048 0.048 0.498 0.053 0.115 0.049 0.078 0.078

n = 1000, T = 4

pcml1 -0.002 0.053 -0.002 0.037 0.051 -0.003 0.245 -0.002 0.166 0.055 1.000
pcml0 0.149 0.155 0.149 0.149 0.935 0.149 0.275 0.153 0.195 0.089

n = 1000, T = 8

pcml1 -0.003 0.020 -0.004 0.014 0.071 0.004 0.080 0.003 0.055 0.046 1.000
pcml0 0.048 0.052 0.048 0.048 0.795 0.057 0.092 0.056 0.063 0.129
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Table 2: Normally distributed covariate, β = −1, γ = 0, ψ = 0

Estimation of β Estimation of γ H0 : ν = 0

Mean RMSE Median MAE t-test Mean RMSE Median MAE t-test t-test
bias bias bias bias

η = 0
n = 500, T = 4

pcml1 -0.049 0.178 -0.027 0.106 0.039 0.037 0.482 0.028 0.325 0.056 0.055
pcml0 -0.039 0.165 -0.020 0.102 0.048 0.033 0.473 0.018 0.318 0.056

n = 500, T = 8

pcml1 -0.007 0.049 -0.005 0.034 0.057 -0.006 0.135 -0.000 0.095 0.049 0.045
pcml0 -0.007 0.049 -0.004 0.033 0.056 -0.006 0.134 -0.001 0.094 0.053

n = 1000, T = 4

pcml1 -0.019 0.117 -0.005 0.075 0.043 0.005 0.309 0.010 0.219 0.041 0.037
pcml0 -0.015 0.111 -0.007 0.073 0.046 0.006 0.307 0.007 0.222 0.042

n = 1000, T = 8

pcml1 -0.001 0.035 0.001 0.023 0.051 0.005 0.090 0.006 0.060 0.040 0.056
pcml0 -0.001 0.035 0.001 0.022 0.055 0.005 0.090 0.007 0.060 0.041

η = −1
n = 500, T = 4

pcml1 -0.058 0.208 -0.037 0.122 0.058 -0.015 0.501 -0.020 0.333 0.051 0.808
pcml0 0.122 0.199 0.138 0.158 0.222 0.045 0.474 0.058 0.317 0.050

n = 500, T = 8

pcml1 -0.006 0.055 -0.005 0.035 0.049 0.002 0.148 0.002 0.101 0.058 1.000
pcml0 0.047 0.069 0.048 0.052 0.194 -0.097 0.170 -0.095 0.122 0.112

n = 1000, T = 4

pcml1 -0.027 0.134 -0.018 0.082 0.060 -0.003 0.340 -0.003 0.224 0.049 0.981
pcml0 0.140 0.177 0.148 0.150 0.330 0.055 0.325 0.043 0.213 0.051

n = 1000, T = 8

pcml1 -0.003 0.039 -0.003 0.027 0.056 0.007 0.101 0.007 0.069 0.055 1.000
pcml0 0.050 0.061 0.051 0.051 0.311 -0.091 0.133 -0.091 0.096 0.172
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Table 3: Normally distributed covariate, β = 0, γ = 1, ψ = 0

Estimation of β Estimation of γ H0 : ν = 0

Mean RMSE Median MAE t-test Mean RMSE Median MAE t-test t-test
bias bias bias bias

η = 0
n = 500, T = 4

pcml1 -0.002 0.079 0.001 0.051 0.033 -0.003 0.418 -0.000 0.289 0.063 0.040
pcml0 -0.000 0.069 -0.003 0.046 0.025 -0.010 0.412 -0.013 0.288 0.060

n = 500, T = 8

pcml1 -0.002 0.027 -0.003 0.018 0.049 0.005 0.113 0.004 0.076 0.048 0.052
pcml0 -0.002 0.027 -0.003 0.017 0.049 0.005 0.113 0.003 0.075 0.046

n = 1000, T = 4

pcml1 -0.003 0.054 -0.003 0.037 0.031 -0.025 0.279 -0.029 0.195 0.052 0.035
pcml0 -0.002 0.048 -0.000 0.032 0.045 -0.029 0.277 -0.033 0.193 0.049

n = 1000, T = 8

pcml1 -0.001 0.020 -0.000 0.014 0.051 -0.001 0.080 -0.006 0.054 0.049 0.059
pcml0 -0.001 0.020 -0.000 0.014 0.051 -0.002 0.080 -0.005 0.054 0.048

η = −1
n = 500, T = 4

pcml1 0.006 0.085 0.008 0.056 0.037 -0.004 0.441 -0.016 0.297 0.050 0.894
pcml0 0.143 0.157 0.143 0.143 0.520 0.147 0.442 0.140 0.281 0.055

n = 500, T = 8

pcml1 0.007 0.031 0.006 0.021 0.065 0.006 0.125 0.003 0.084 0.057 1.000
pcml0 0.018 0.032 0.017 0.022 0.104 0.008 0.114 0.002 0.078 0.055

n = 1000, T = 4

pcml1 0.004 0.060 0.005 0.042 0.039 -0.001 0.301 -0.002 0.191 0.059 0.992
pcml0 0.139 0.147 0.137 0.137 0.815 0.148 0.323 0.147 0.225 0.075

n = 1000, T = 8

pcml1 0.004 0.020 0.003 0.013 0.059 0.002 0.089 0.004 0.060 0.055 1.000
pcml0 0.015 0.023 0.014 0.016 0.118 0.005 0.082 0.003 0.056 0.058
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Table 4: Normally distributed covariate, β = −1, γ = 1, ψ = 0

Estimation of β Estimation of γ H0 : ν = 0

Mean RMSE Median MAE t-test Mean RMSE Median MAE t-test t-test
bias bias bias bias

η = 0
n = 500, T = 4

pcml1 -0.030 0.207 0.003 0.120 0.056 0.056 0.571 0.032 0.365 0.038 0.056
pcml0 -0.027 0.190 -0.001 0.106 0.052 0.045 0.560 0.035 0.360 0.038

n = 500, T = 8

pcml1 -0.007 0.052 -0.005 0.036 0.048 0.005 0.143 0.006 0.092 0.059 0.056
pcml0 -0.006 0.052 -0.003 0.036 0.048 0.005 0.142 0.004 0.093 0.055

n = 1000, T = 4

pcml1 0.006 0.124 0.012 0.085 0.063 0.009 0.393 0.001 0.267 0.050 0.043
pcml0 0.000 0.116 0.007 0.077 0.050 0.012 0.389 0.001 0.265 0.044

n = 1000, T = 8

pcml1 -0.001 0.036 -0.001 0.024 0.047 0.009 0.100 0.011 0.064 0.057 0.058
pcml0 -0.000 0.036 -0.000 0.024 0.047 0.009 0.099 0.009 0.065 0.056

η = −1
n = 500, T = 4

pcml1 -0.031 0.211 -0.002 0.133 0.045 0.035 0.632 0.032 0.392 0.041 0.509
pcml0 0.123 0.219 0.148 0.175 0.185 0.053 0.590 0.055 0.386 0.045

n = 500, T = 8

pcml1 -0.003 0.059 0.001 0.041 0.052 -0.020 0.158 -0.021 0.108 0.052 1.000
pcml0 0.022 0.060 0.025 0.042 0.084 -0.150 0.211 -0.147 0.155 0.186

n = 1000, T = 4

pcml1 0.012 0.139 0.025 0.095 0.057 0.018 0.405 0.012 0.269 0.035 0.809
pcml0 0.151 0.193 0.165 0.168 0.334 0.045 0.391 0.042 0.261 0.037

n = 1000, T = 8

pcml1 0.003 0.043 0.005 0.029 0.059 -0.016 0.113 -0.015 0.079 0.046 1.000
pcml0 0.027 0.048 0.029 0.035 0.130 -0.145 0.180 -0.144 0.144 0.299
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Table 5: Binary covariate, β = −1, γ = 1, ψ = 0

Estimation of β Estimation of γ H0 : ν = 0

Mean RMSE Median MAE t-test Mean RMSE Median MAE t-test t-test
bias bias bias bias

η = 0
n = 500, T = 4

pcml1 -0.007 0.352 -0.005 0.242 0.040 0.005 0.398 0.009 0.263 0.049 0.045
pcml0 -0.011 0.309 0.001 0.210 0.038 -0.003 0.390 0.004 0.260 0.048

n = 500, T = 8

pcml1 -0.010 0.116 -0.010 0.078 0.050 0.000 0.113 -0.002 0.076 0.053 0.060
pcml0 -0.008 0.115 -0.009 0.076 0.049 0.000 0.113 -0.001 0.076 0.051

n = 1000, T = 4

pcml1 0.019 0.238 0.023 0.160 0.042 -0.018 0.279 -0.029 0.187 0.060 0.045
pcml0 -0.000 0.211 0.003 0.140 0.040 -0.019 0.277 -0.033 0.187 0.057

n = 1000, T = 8

pcml1 -0.009 0.080 -0.012 0.054 0.049 0.004 0.079 0.002 0.054 0.040 0.065
pcml0 -0.008 0.079 -0.010 0.053 0.047 0.004 0.079 0.001 0.054 0.040

η = −1
n = 500, T = 4

pcml1 0.022 0.364 0.038 0.236 0.044 0.001 0.409 -0.007 0.278 0.048 0.579
pcml0 0.432 0.528 0.447 0.449 0.309 0.042 0.399 0.029 0.267 0.052

n = 500, T = 8

pcml1 0.008 0.121 0.005 0.083 0.047 -0.003 0.116 -0.009 0.080 0.048 1.000
pcml0 0.049 0.124 0.046 0.080 0.074 -0.024 0.114 -0.027 0.083 0.049

n = 1000, T = 4

pcml1 0.044 0.265 0.063 0.185 0.048 -0.022 0.290 -0.032 0.193 0.052 0.883
pcml0 0.447 0.494 0.450 0.451 0.553 0.029 0.283 0.018 0.189 0.055

n = 1000, T = 8

pcml1 0.013 0.088 0.014 0.057 0.063 -0.001 0.081 0.002 0.055 0.043 1.000
pcml0 0.053 0.098 0.052 0.067 0.108 -0.022 0.081 -0.019 0.054 0.057
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Table 6: Normally distributed covariate, β = −1, γ = 1, ψ = 0.5

Estimation of β Estimation of γ H0 : ν = 0

Mean RMSE Median MAE t-test Mean RMSE Median MAE t-test t-test
bias bias bias bias

η = 0
n = 500, T = 4

pcml1 -0.075 0.278 -0.037 0.140 0.043 0.103 0.774 0.111 0.469 0.049 0.058
pcml0 -0.044 0.222 -0.015 0.125 0.039 0.077 0.708 0.073 0.447 0.038

n = 500, T = 8

pcml1 -0.006 0.058 -0.004 0.036 0.054 0.007 0.154 0.008 0.101 0.032 0.056
pcml0 -0.004 0.057 -0.001 0.036 0.053 0.005 0.152 0.006 0.098 0.035

n = 1000, T = 4

pcml1 -0.017 0.158 -0.009 0.099 0.064 0.013 0.491 -0.008 0.321 0.038 0.046
pcml0 -0.008 0.144 0.004 0.091 0.063 0.009 0.475 -0.024 0.316 0.034

n = 1000, T = 8

pcml1 -0.002 0.042 0.001 0.027 0.049 0.015 0.113 0.013 0.073 0.049 0.049
pcml0 -0.001 0.041 0.001 0.027 0.047 0.015 0.112 0.013 0.074 0.051

η = −1
n = 500, T = 4

pcml1 -0.115 0.372 -0.045 0.170 0.062 0.087 0.970 0.022 0.527 0.071 0.408
pcml0 0.092 0.257 0.132 0.184 0.164 0.059 0.810 0.008 0.475 0.065

n = 500, T = 8

pcml1 -0.002 0.066 -0.001 0.044 0.057 -0.001 0.183 -0.000 0.119 0.061 1.000
pcml0 0.027 0.067 0.028 0.048 0.092 -0.107 0.200 -0.101 0.133 0.115

n = 1000, T = 4

pcml1 -0.027 0.191 -0.001 0.119 0.055 0.032 0.538 0.029 0.345 0.050 0.690
pcml0 0.133 0.203 0.151 0.167 0.248 0.054 0.503 0.053 0.318 0.048

n = 1000, T = 8

pcml1 0.001 0.046 0.002 0.032 0.060 -0.014 0.126 -0.014 0.084 0.055 1.000
pcml0 0.029 0.053 0.030 0.037 0.121 -0.118 0.166 -0.119 0.124 0.173
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generated with individual effects independent of the model covariate. The biases for β obtained

by pcml and w are similar to those obtained by the infeasible logit, especially with T = 8, and

the RMSE and MAE attain the same order of magnitude to those of inf with n = 1000 and

T = 8. With η = −1, w shows a small bias for β and values of RMSE and MAE similar to the

pcml estimator. As for γ, the bias of w increases with both values of η. This result is likely due

to the fact that the actual number of time occasions exploited by the ml estimator is too small

for w to deliver a negligible bias, for which at least 8 occasions are required (Akay, 2012). As

expected, though, w exhibits rather large biases when the individual intercepts are generated as

in (30) with $ = 0.25 (see Table 8), which makes the pcml a more attractive alternative since

this is a scenario that is more likely to occur in practice.

6 Conclusions

In this paper, we propose a novel model formulation for dynamic binary panel data models

that accounts for feedback effects from the past of the outcome variable on the present value

of covariates. Our proposal is particularly well suited for short panels with a large number of

cross-section units, typically provided by rotated or strongly unbalanced continuous surveys,

often employed for microeconomic applications. Our formulation is based on the equivalence

between Granger’s definition of noncausality and a modification of the Sims’ strict exogeneity

assumption for nonlinear panel data models, introduced by Chamberlain (1982) and for which

we provide a more general theorem.

Under the logit model, the proposed model formulation yields three main advantages com-

pared to the few available alternatives: (i) it does not require the specification of a parametric

model for the predetermined explanatory variables; (ii) it has a simple formulation and allows,

in practice, for the inclusion of a large number of predetermined covariates, discrete or contin-

uous; (iii) its parameters can be estimated within a fixed-effects approach by a pcml, thereby

allowing for an arbitrary dependence structure between the model covariates and the individual

permanent unobserved heterogeneity.

From our simulation results, it emerges that pcml provides consistent estimation of the

regression and state dependence parameters in presence of substantial departures from non-

causality and that the bias is negligible even when the conditions for the exact logit model

formulation are violated. Furthermore, we show that the alternative random-effects ml estima-

tor based on Wooldridge (2005) for the model here proposed exhibits comparable finite-sample

properties, provided the dependence between the predetermined covariate and the unobserved

heterogeneity is reliably accounted for.

Finally, the logit model here proposed is fairly easy to estimate using available software.

The pcml estimator of the proposed model can be implemented using the package cquad (Bar-

tolucci and Pigini, 2016), whereas any routine for the random-effects logit model can be used

for correlated-random effects ml estimator.
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Table 7: Normally distributed covariate, β = −1, γ = 1, ci ∼ N(0, 1), $ = 0

Estimation of β Estimation of γ H0 : ν = 0

Mean RMSE Median MAE t-test Mean RMSE Median MAE t-test t-test
bias bias bias bias

η = 0
n = 500, T = 4

pcml 0.003 0.204 0.024 0.133 0.063 0.011 0.454 -0.006 0.317 0.051 0.059
w -0.013 0.131 -0.003 0.090 0.054 0.030 0.279 0.031 0.199 0.045 0.046
inf -0.012 0.094 -0.013 0.063 0.045 0.013 0.102 0.012 0.066 0.051 0.053

n = 500, T = 8

pcml -0.003 0.064 0.002 0.045 0.049 0.005 0.121 0.004 0.080 0.047 0.046
w -0.002 0.060 -0.000 0.041 0.045 0.005 0.112 0.005 0.076 0.045 0.040
inf -0.002 0.055 -0.001 0.037 0.055 0.005 0.056 0.003 0.038 0.047 0.043

n = 1000, T = 4

pcml 0.022 0.138 0.032 0.092 0.052 -0.023 0.294 -0.031 0.197 0.045 0.060
w -0.003 0.095 0.004 0.065 0.060 0.025 0.203 0.034 0.138 0.061 0.051
inf -0.005 0.070 -0.003 0.047 0.064 0.007 0.069 0.007 0.047 0.042 0.037

n = 1000, T = 8

pcml -0.000 0.046 -0.000 0.032 0.056 -0.003 0.083 -0.003 0.056 0.040 0.064
w 0.002 0.042 0.003 0.028 0.062 -0.003 0.079 -0.002 0.052 0.042 0.056
inf 0.002 0.038 0.001 0.024 0.057 0.002 0.040 0.002 0.028 0.041 0.044

η = −1
n = 500, T = 4

pcml -0.010 0.279 0.020 0.173 0.058 0.023 0.559 -0.004 0.343 0.049 0.993
w -0.059 0.187 -0.035 0.118 0.044 0.061 0.370 0.072 0.254 0.059 1.000
inf -0.014 0.113 -0.006 0.074 0.054 0.007 0.120 0.003 0.078 0.045 1.000

n = 500, T = 8

pcml 0.025 0.085 0.027 0.057 0.061 -0.030 0.162 -0.029 0.111 0.050 1.000
w -0.051 0.090 -0.049 0.061 0.089 0.104 0.180 0.103 0.124 0.118 1.000
inf -0.004 0.065 -0.001 0.043 0.047 0.002 0.070 -0.001 0.047 0.051 1.000

n = 1000, T = 4

pcml 0.016 0.182 0.028 0.128 0.048 -0.025 0.379 -0.028 0.242 0.044 1.000
w -0.041 0.134 -0.036 0.087 0.059 0.063 0.268 0.062 0.186 0.060 1.000
inf -0.010 0.081 -0.009 0.055 0.055 0.011 0.085 0.011 0.057 0.044 1.000

n = 1000, T = 8

pcml 0.025 0.064 0.026 0.044 0.077 -0.038 0.121 -0.038 0.080 0.071 1.000
w -0.050 0.073 -0.050 0.053 0.148 0.096 0.143 0.098 0.105 0.165 1.000
inf -0.000 0.046 0.000 0.030 0.052 0.003 0.050 0.001 0.033 0.061 1.000
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Table 8: Normally distributed covariate, β = −1, γ = 1, ci = (1/T )
∑4

t=1 x
∗
it, $ = 0.5

Estimation of β Estimation of γ H0 : ν = 0

Mean RMSE Median MAE t-test Mean RMSE Median MAE t-test t-test
bias bias bias bias

η = 0
n = 500, T = 4

pcml -0.002 0.194 0.018 0.123 0.053 -0.011 0.432 -0.020 0.290 0.055 0.057
w 0.162 0.205 0.167 0.169 0.311 -0.205 0.362 -0.197 0.245 0.085 0.663
inf -0.011 0.098 -0.008 0.066 0.058 0.016 0.094 0.015 0.064 0.049 0.065

n = 500, T = 8

pcml -0.011 0.065 -0.009 0.045 0.052 0.005 0.118 0.003 0.078 0.041 0.054
w 0.056 0.082 0.058 0.061 0.183 -0.061 0.125 -0.064 0.089 0.067 0.277
inf -0.005 0.054 -0.006 0.036 0.051 0.005 0.056 0.005 0.038 0.055 0.050

n = 1000, T = 4

pcml 0.028 0.132 0.038 0.094 0.058 -0.010 0.305 -0.009 0.206 0.056 0.051
w 0.173 0.194 0.176 0.176 0.547 -0.196 0.289 -0.193 0.212 0.148 0.915
inf -0.005 0.068 -0.006 0.045 0.059 0.006 0.067 0.009 0.045 0.058 0.053

n = 1000, T = 8

pcml -0.003 0.043 -0.004 0.028 0.047 0.006 0.088 0.004 0.057 0.058 0.045
w 0.063 0.074 0.062 0.062 0.325 -0.060 0.100 -0.060 0.070 0.124 0.488
inf -0.000 0.037 -0.000 0.025 0.037 0.000 0.039 -0.000 0.026 0.051 0.037

η = −1
n = 500, T = 4

pcml 0.002 0.276 0.021 0.177 0.058 0.003 0.534 -0.023 0.356 0.039 0.996
w 0.057 0.200 0.072 0.143 0.101 0.007 0.416 0.037 0.293 0.060 1.000
inf -0.068 0.130 -0.068 0.083 0.074 0.229 0.255 0.226 0.226 0.517 1.000

n = 500, T = 8

pcml 0.023 0.086 0.021 0.060 0.059 -0.030 0.163 -0.033 0.114 0.055 1.000
w -0.020 0.079 -0.016 0.055 0.062 0.060 0.158 0.058 0.107 0.073 1.000
inf -0.016 0.069 -0.016 0.046 0.056 0.117 0.135 0.116 0.116 0.399 1.000

n = 1000, T = 4

pcml 0.023 0.183 0.040 0.122 0.050 -0.022 0.370 -0.028 0.245 0.045 1.000
w 0.072 0.152 0.075 0.107 0.129 0.007 0.298 0.011 0.203 0.066 1.000
inf -0.063 0.102 -0.060 0.070 0.114 0.222 0.236 0.220 0.220 0.814 1.000

n = 1000, T = 8

pcml 0.024 0.062 0.025 0.042 0.075 -0.029 0.115 -0.032 0.084 0.059 1.000
w -0.021 0.057 -0.022 0.039 0.056 0.057 0.116 0.058 0.081 0.076 1.000
inf -0.018 0.050 -0.017 0.033 0.061 0.113 0.123 0.113 0.113 0.669 1.000
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