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Abstract

An alternative to using normally distributed random effects in modeling clu-
stered binary and ordered responses is based on using a finite-mixture. This
approach gives rise to a flexible class of generalized linear mixed models for
item responses, multilevel data, and longitudinal data. A test of misspeci-
fication for these finite-mixture models is proposed which is based on the
comparison between the Marginal and the Conditional Maximum Likelihood
estimates of the fixed effects as in the Hausman’s test. The asymptotic distri-
bution of the test statistic is derived; it is of chi-squared type with a number
of degrees of freedom equal to the number of covariates that vary within the
cluster. It turns out that the test is simple to perform and may also be used
to select the number of components of the finite-mixture, when this number
is unknown. The approach is illustrated by a series of simulations and three
empirical examples covering the main fields of application.
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A Misspecification Test for Finite-Mixture
Logistic Models for Clustered Binary and
Ordered Responses

Francesco Bartolucci Silvia Bacci Claudia Pigini

1 Introduction

Generalized Linear Mixed Models (GLMMs, Skrondal and Rabe-Hesketh,
2004; McCulloch et al., 2008; Stroup, 2012) represent a very useful instrument
for the analysis of clustered data, as they use random effects to account for the
dependence between observations within the same cluster. This structure of
the data arise in Item Response Theory (IRT) applications (Hambleton and
Swaminathan, 1985; De Boeck and Wilson, 2004), in the multilevel context
where individuals are collected in groups (Goldstein, 2003), and in longitu-
dinal/panel studies in which repeated responses on the same individuals are
available (Molenberghs and Verbeke, 2005; Verbeke and Molenberghs, 2009).
In this article, we focus on logistic regression models for binary and orde-
red responses; for one of the first applications see Stiratelli et al. (1984) and
Anderson and Aitkin (1985).

The random effects in a GLMM are typically assumed to have a nor-
mal distribution and the consequences of non-normality have been receiving
considerable attention in the literature, especially for nonlinear models. In
fact, in linear models, the wrong specification of the random effect distri-
bution tends to have minor consequences, as the maximum likelihood esti-
mators are consistent and asymptotically normally distributed under mild
conditions. In particular, recent studies conclude that the consequences of
violations of normality on the quality of the estimates and on random effects
predictions are rather severe (Heagerty, 1999; Heagerty and Kurland, 2001;
Rabe-Hesketh et al., 2003; Agresti et al., 2004; Litière et al., 2008). The
negative effects of distributional misspecification motivate the development
of alternative approaches to formulate and test hypotheses about this latent
(also called mixing) distribution.

A well known approach, that formulates in a flexible way the random
effect distribution, is based on assuming a discrete distribution that leads to
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a finite-mixture model. This approach is seen as semiparametric because a
discrete distribution may approximate arbitrary well any continuous distri-
bution. Nevertheless, the idea of approximating the true mixing distribution
by a discrete one goes back to studies preceding the development of the class
of GLMMs and, then, in the context of simpler models involving incidental
parameters. In particular, we refer to the nonparametric maximum likelihood
approach (Kiefer and Wolfowitz, 1956; Laird, 1978; Lindsay, 1983).

The first applications of random effects with discrete distribution in the
GLMM context are Lindsay et al. (1991) in the IRT context, Aitkin (1999)
in the general context of clustered data, and Vermunt (2003) with multilevel
data. Heckman and Singer (1984) used the finite-mixture approach to formu-
late a flexible model for survival data, and Aitkin (1996) used this approach
to create overdispersion in a generalized linear model.

In addition to a greater flexibility, the finite-mixture approach has so-
me advantages over the normal approach. Mainly, it avoids integrating out
the random effects, which may be complex when random effects are multidi-
mensional, and a rather simple Expectation Maximization (EM) algorithm
(Dempster et al., 1977) may be used instead. Moreover, the approach leads to
a natural clustering of sample units that may be of main interest in certain
relevant applications (e.g., Deb, 2001). In fact, a GLMM based on finite-
mixture formulation may be seen as a latent class model (Lazarsfeld and
Henry, 1968; Goodman, 1974; Hagenaars and McCutcheon, 2002) extended
with the inclusion of covariates. The finite-mixture approach has also so-
me limitations with respect to the normal approach for the distribution of
the random effects, such as the difficult interpretation in certain contexts,
in which these effects represent missing covariates that are naturally seen as
continuous. Moreover, there is the need to choose the number of mixture
components (also called latent classes or support points), and some insta-
bility problems in estimation often arise due to multimodality of the likeli-
hood function. For a comparison between the normal and the finite-mixture
approaches we refer the reader to Skrondal and Rabe-Hesketh (2004) and
Bartolucci et al. (2014a). Nevertheless, the finite-mixture approach is the
main alternative to the normal approach to formulate the distribution of the
random effects for GLMMs, and in particular for logistic regression models.
This is testified by recent applications such as Jain et al. (1994) and Kim
et al. (1995) in the context of brand preferences, Pudney et al. (1998) for the
analysis of data about farm tenure contracts, and Deb (2001) for the study
of the demand for preventive care. Several further applications are described
in Skrondal and Rabe-Hesketh (2004); see also Azzimonti et al. (2013) and
Heinzl and Tutz (2013).

Testing hypotheses about the mixing distribution, and in particular the
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normality, has attracted a considerable attention in the recent statistical lite-
rature. A standard method to check for normality of the mixing distribution
is based on empirical Bayes estimates of the individual effects (Lange and
Ryan, 1989). However, this method has been criticized because of its lack of
power (Verbeke and Lesaffre, 1996; Verbeke and Molenberghs, 2013). Among
other methods, it is worth mentioning the method based on residuals (Ri-
tz, 2004; Pan and Lin, 2005), the method based on simulating the random
effects from their posterior distribution given the observed data (Waagepeter-
sen, 2006), the method based on comparing Marginal Maximum Likelihood
(MML) and Conditional Maximum Likelihood (CML) estimates (Tchetgen
and Coull, 2006), methods based on the covariance matrix of the parameter
estimates and the information matrix (Alonso et al., 2008, 2010), and that
based on the gradient function (Verbeke and Molenberghs, 2013).

In the present article, we propose a general test for misspecification of
the discrete mixing distribution in logistic models with binary and ordered
responses. We extend the approach developed by Tchetgen and Coull (2006)
which, as mentioned above, is based on the comparison of CML and MML
estimates for the fixed effects, as in the Hausman’s test (Hausman, 1978); the
difference between the two estimates is normalized on the basis of an estimate
of the variance-covariance matrix of this difference. The test relies on the
consistency of the CML estimator that is attained under mild distributional
assumptions; essentially the only requirement is that the random effects are
constant within each cluster. At least to our knowledge, this approach has
not been developed in the context of finite-mixture models. Moreover, with
respect to the approach of Tchetgen and Coull (2006), which is only referred
to the case of normally distributed random effects, our approach presents
some novelties and peculiarities deriving from the finite-mixture nature of
the models of interest, as we argument below.

First of all, since none of the two estimators compared is ensured to be
fully efficient, we use a generalized estimate of the variance-covariance matrix
of the difference through a method adopted, in a related context, by Barto-
lucci et al. (2014c). This also ensures stable results in small samples, while
retaining the simplicity of the approach and its low computational comple-
xity. Second, the proposed test may also be used to select the number of
support points of the discrete distribution, which is alternative to commonly
used selection criteria, such as the Akaike Information Criterion (AIC; Akai-
ke, 1973) and the Bayesian Information Criterion (BIC; Schwarz, 1978). This
is a crucial issue in the use of the models of our interest that, obviously, does
not arise when random effects are normally distributed. Third, an issue that
is typically ignored in the statistical field is that one of the possible sources
of misspecification is the dependence between the random effects and the ob-
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servable covariates, that is, a problem of endogeneity. In the finite-mixture
approach, a greater variety of methods to model this dependence is available
with respect to the normal approach, and the proposed test has an important
role in this regard, as will be clear in the following.

The paper is organized as follows. In the next section we describe the class
of GLMMs with a special focus on the case of binary and ordinal response
variables. In Section 3, the two estimation methods applied for the test are
described, that is, the MML method under the discreteness assumption of
random effects and the CML method. In Section 4 we recall the traditional
Hausman test and, then, we illustrate the proposed test in the finite-mixture
context. Application on real data are provided in Section 6 and some final
remarks conclude the work in Section 7. The finite-sample properties of
the proposed test are investigated through an extensive Monte Carlo study,
whose design and main results are reported in the Appendix, whereas a
summary of this study is provided in Section 5. Upon request, we also make
available the R codes we used to implement the proposed approach.

2 The class of GLMMs of interest

The class of GLMMs is highly flexible, because it allows us to accommodate
several types of response variables (e.g., continuous, binary, count) and to
account for different hierarchical data structures (i.e., multilevel data, lon-
gitudinal data, and item response data). These models are based on a link
function (McCullagh and Nelder, 1989) applied to the conditional expected
value of each response variable given the available covariates and a set of
random effects having a suitable distribution, which is typically normal. As
mentioned in Section 1, we focus in particular on versions of these models
for binary and ordinal response variables, which are based on a logit link
function.

Let n denote the number of clusters and, for each cluster i, let Ji denote
the number of units in the cluster and let xi be a column vector of covariates.
Moreover, for each unit j in cluster i, let yij denote the response variable of
interest and let zij be the corresponding column vector of specific covariates.
In the binary case we have yij = 0, 1, whereas in the more general ordinal
case we have yij = 0, . . . , L − 1, where L is the number of categories. In
any case the response variables are collected in the cluster-specific vectors
yi = (yi1, . . . , yiJi)

′, i = 1, . . . , n. Similarly, the unit-specific covariates are
collected in the matrices Zi = (zi1, . . . ,ziJi), i = 1, . . . , n.

The notation defined above is completely general as it is suitable for diffe-
rent settings of interest. In the multilevel setting, units j refer to individuals,
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each of them being nested in a given group i (e.g., pupils within schools,
patients within hospitals). In such a case, xi is a vector of group-specific
characteristics (e.g., number of pupils per school, number of hospital beds),
whereas zij is a vector of individual-specific covariates (e.g., age, gender). In
the case of longitudinal data, index j refers to time occasions and i identifies
different individuals. In such a context, xi is a vector of time-constant indi-
vidual covariates (e.g., gender) and zij is a vector of time-varying individual
covariates (e.g., income). Finally, in the similar context of item responses
data, j denotes the item to which individual i answers, but zij is simply a
vector of dummies and xi is usually null.

In the case of binary responses, the basic model we consider is the random
intercept logit model based on the assumption

log
p(yij = 1|αi,xi, zij)
p(yij = 0|αi,xi, zij)

= αi+x
′
iβ+z′ijγ, i = 1, . . . , n, j = 1, . . . , Ji, (1)

where αi is the random effect for cluster i, β is the vector of regression
parameters for the cluster-specific covariates, and γ is that for the unit-
specific covariates. The random effects αi are typically assumed to have
distribution N(0, σ2), so that the common intercept is absorbed in β. The
alternative approach, that is of main interest in the present paper, assumes
that the distribution of each of these random parameters is discrete with
k support points ξ1, . . . , ξk and corresponding probabilities πh = p(αi =
ξh), h = 1, . . . , k, so that the result is a finite-mixture model (McLachlan
and Peel, 2000). In each case, local independence is assumed, that is, the
response variables in each yi are conditionally independent given αi, xi, and
Zi = (zi1, . . . ,ziJi). It is also well-known that an alternative to random-
effects approaches is a fixed-effects approach in which the αi parameters
are estimated together with β and γ or are eliminated by conditioning on
suitable sufficient statistics, as in the CML method. For an up to date review
see Bartolucci et al. (2014b).

With ordinal responses, the above model is extended as follows:

log
p(yij ≥ l|αi,xi, zij)
p(yij < l|αi,xi, zij)

= αi + δy + x′iβ + z′ijγ, l = 1, . . . , L− 1, (2)

on the basis of cumulative logits in increasing order, also known as global logi-
ts (McCullagh, 1980; Agresti, 2002). In the above expression, the cut-points
are in suitable order, that is, δ1 < . . . < δL−1. A more general formulation
is based on substituting the cut-points δl with cluster-specific cut-points αil,
as follows:

log
p(yij ≥ l|αi,xi, zij)
p(yij < l|αi,xi, zij)

= αil + x′iβ + z′ijγ, l = 1, . . . , L− 1, (3)
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with αi = (αi1, . . . , αi,L−1) having multivariate normal distribution N(0,Σ)
or a discrete distribution with support points ξ1, . . . , ξk and corresponding
probabilities πh = p(αi = ξh), h = 1, . . . , k.

It is worth noting that, in the IRT setting, models (1) and (2) correspond
to the Rasch model (Rasch, 1960) in the binary case and to the graded re-
sponse model with fixed discriminating parameters (Samejima, 1969) in the
ordinal case, being xi the null vector and the elements of γ corresponding to
item difficulty parameters. For details on the possible parameterizations for
polytomous IRT models, see Bacci et al. (2014). Moreover, a nice interpre-
tation of these models is provided by introducing an underlying continuous
response y∗ij defined as

y∗ij = αi + x′iβ + z′ijγ + εij.

This variable is related to the observed response yij through a suitable func-
tion, that is, yij = G(y∗ij), defining an observation rule. In particular, G(·) is
a parametric function which depends in a suitable way on specific parameters
according to the different nature of yij. With binary responses, we have

G(y∗ij) = I{y∗ij > 0}, (4)

where I{·} is an indicator function assuming value 1 when its argument is
true and value 0 otherwise, so that the model defined in (1) results, provided
that εij has a standard logistic distribution. More generally, when yij is an
ordinal variable with l categories, the model in (2) derives when

G(y∗ij) =


0, y∗ij ≤ −δ1,
1, −δ1 < y∗ij ≤ −δ2,
...

...
L− 1, y∗ij > −δL−1,

(5)

with εij still having standard logistic distribution.
All the above models may be extended to deal with the dependence of

the random effects on one or more cluster-specific covariates wi, which may
be seen as a form of endogeneity. Two approaches are here considered. First,
an interaction term may be included so that, in the binary case, we have

log
p(yij = 1|αi,wi,xi, zij)

p(yij = 0|αi,wi,xi, zij)
= w′iαi+x

′
iβ+z′ijγ, i = 1, . . . , n, j = 1, . . . , Ji,

(6)
where the cluster-specific covariates in wi may be a subset of those in xi.
Another possible extension consists in assuming that mass probabilities may
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depend on the covariates in wi by a multinomial logit parametrization:

log
p(αi = ξh+1|wi)

p(αi = ξ1|wi)
= φh +w′iψh, h = 1, . . . , k − 1, (7)

where φh are intercepts and ψh are vectors of regression parameters (see also
Huang and Bandeen-Roche, 2004). When the support points ξh are suitably
ordered, then alternative parametrizations based on cumulative logits may
be adopted, which are more parsimonious and easier to interpret than the
multinomial logits.

3 Estimation methods

In this section we describe two estimation methods for the GLMM parame-
ters that will be used for the proposed Hausman test. First, we illustrate
the MML method under the assumption of the discreteness of αi. Then, a
description of the CML method is provided, which is based on a fixed-effects
approach.

3.1 Discrete Marginal Maximum Likelihood

The assumption of local independence implies that

p(yi|αi,xi,Zi) =
∏
j

p(yij|αi,xi, zij), i = 1, . . . , n, (8)

where p(yij|αi,xi, zij) depends on the model specification; see, for instance,
equation (1) for the random-intercept model for binary responses. Then, the
manifest distribution of yi given the covariates is obtained by marginalizing
p(yi|αi,xi,Zi) with respect to αi:

p(yi|xi,Zi) =
∑
h

[∏
j

p(yij|ξh,xi, zij)
]
πh, i = 1, . . . , n,

that provides the following marginal log-likelihood function

`M(θ) =
∑
i

log p(yi|xi,Zi) =
∑
i

log
∑
h

[∏
j

p(yij|ξh,xi, zij)
]
πh,

with θ denoting the overall vector of free parameters including β, γ, the
support points ξh, h = 1, . . . , k, and k − 1 logits for the probabilities πh.

7



The maximization of function `M(θ) may be efficiently performed through
an Expectation Maximization (EM) algorithm (Dempster et al., 1977), based
on the complete data log-likelihood function, that is the log-likelihood that
could be computed knowing the latent class from which every unit comes
(i.e., knowing the discrete random effects αi):

`∗M(θ) =
∑
i

ahi

[
log πh +

∑
j

log p(yij|ξh,xi, zij)
]
, (9)

with ahi being an indicator variable equal to 1 if αi = ξh and to 0 otherwise.
The EM algorithm is implemented along the usual lines, alternating two

steps. The E-step consists in computing the posterior expected value of each
ahi, which is equal to the posterior probability of belonging to a certain latent
class given the response configuration he/she provided, that is,

âhi = p(αi = ξh|xi,Zi,yi) =
p(yi|ξh,xi,Zi)πh
p(yi|xi,Zi)

.

The resulting values âhi are then substituted in (9) so as to obtain ˆ̀∗
M(θ).

The following M-step consists in maximizing function ˆ̀∗
M(θ) with respect to

θ and the result is used to update the estimates at the E-step. This iterative
process continues until convergence so as to obtain the MML estimate θ̂M .
Besides, this scheme may be easily adapted to estimate extended models
based on assumptions (6) and (7).

For deriving the Hausman test, it is important to recall that the asymp-
totic variance-covariance matrix for θ̂M may be estimated by the sandwich
formula (White, 1982), as follows:

V̂ M(θ̂M) = HM(θ̂M)−1 SM(θ̂M)HM(θ̂M)−1, (10)

with

HM(θ) =
∑
i

∂2 log p(yi|xi,Zi)

∂θ∂θ′
,

SM(θ) =
∑
i

uM,i(θ)[uM,i(θ)]′,

uM,i(θ) =
∂ log p(yi|αi,xi,Zi)

∂θ
.

In particular, HM(θ) is the Hessian of the log-likelihood function, whereas
SM(θ) is equal to n times the empirical variance-covariance matrix of the

score vector. From the matrix V̂ M(θ̂M) we can extract in the usual way the
standard errors for the parameter estimates.
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3.2 Conditional Maximum Likelihood (CML)

An alternative to the semi-parametric MML approach described above is
given by the CML method (Andersen, 1970, 1972; Chamberlain, 1980), which
is based on considering intercepts αi as fixed parameters rather than random
effects. This method gives a consistent estimator of the γ parameters for the
covariates in Zi under mild regularity conditions and independently of the
true distribution from which values αi come, as it relies on conditioning on
a sufficient statistic for αi.

In presence of binary data, the CML approach consists of maximizing the
conditional log-likelihood function

`C(γ) =
∑
i

log p(yi|yi+,Zi), yi+ =

Ji∑
j=1

yij,

where

p(yi|yi+,Zi) =
exp

(∑
j yij z

′
ijγ
)

∑
s∈SJi (yi+) exp

(∑
j sj z

′
ijγ
) (11)

and the sum
∑
s∈SJi (yi+) is extended to all binary vectors s = (s1, . . . , sJi)

′

with sum equal to yi+. We observe that p(yi|yi+,Zi) does not depend any-
more on αi and xi (and, possibly, on wi under extended model based on as-
sumption (7)), but only on the regression parameters γ for the unit-specific
covariates in Zi.

The conditional log-likelihood `C(γ) may be simply maximized by a
Newton-Raphson algorithm, based on the score vector

uC(γ) =
∑
i

uC,i(γ),

uC,i(γ) =
∂ log p(yi|yi+,Zi)

∂γ
,

and Hessian matrix

HC(γ) =
∑
i

∂2 log p(yi|yi+,Zi)

∂γ∂γ ′
,

so as to obtain the CML estimate θ̂C . Finally, the asymptotic variance-
covariance matrix for γ̂C is estimated as

V̂ C(γ̂C) = HC(γ̂C)−1SC(γ̂C)HC(γ̂C)−1, (12)
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with
SC(γ) =

∑
i

uC,i(γ)[uC,i(γ)]′.

There exist several ways to implement the CML method in the presence of
ordinal response variables; see Baetschmann et al. (2011) for a review. Here
we rely on the idea of reducing the model of interest to a model for binary
data by suitably dichotomizing the response variables and considering the
contributions to the conditional log-likelihood as those resulting from all the
possible dichotomizations of these variables (Chamberlain, 1980); see also
Bartolucci et al. (2014c).

More in detail, we consider the L − 1 possible dichotomizations and for
each of them we transform the response variables yij in the binary variables

y
(l)
ij = I{yij ≥ l}, i = 1, . . . , n, j = 1, . . . , Ji.

The sum of the conditional log-likelihood functions corresponding to each
dichotomization provides the pseudo conditional log-likelihood function

˜̀
C(γ) =

∑
i

∑
l

log p(y
(l)
i |y

(l)
i+,Zi), y

(l)
i+ =

Ji∑
j=1

y
(l)
ij , (13)

where y
(l)
i = (y

(l)
i1 , . . . , y

(l)
iJi

) and p(y
(l)
i |y

(l)
i+,Zi) is defined as in (11) substitu-

ting each yij with y
(l)
ij .

The pseudo conditional log-likelihood ˜̀
C(γ) may be maximized by a sim-

ple extension of the Newton-Raphson algorithm implemented for the binary
case, using the pseudo-score vector

ũC(γ) =
∑
i

ũC,i(γ),

ũC,i(γ) =
∑
l

∂ log p(y
(l)
i |y

(l)
i+,Zi)

∂γ

and the pseudo-observed information matrix

H̃C(γ) =
∑
i

∑
l

∂2 log p(y
(l)
i |y

(l)
i+,Zi)

∂γ∂γ ′
.

Finally, the sandwich estimator of the variance-covariance matrix of the re-
sulting pseudo CML estimator, still denoted by θ̂C to simplify the notation,
has the same expression as in (12) with the appropriate adjustments.
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To conclude, we remind that the CML method does not allow to estimate
the effect of cluster-specific covariates in vector xi, differently from the MML
method. Moreover, it is known to provide less efficient estimators than MML
if the distribution of the random effects is correctly specified. Nonetheless,
the robustness of CML estimator to misspecification of the distribution of
αi makes it appropriate for the comparison with MML estimator in finite-
mixture models, as will be illustrated in the following.

4 The proposed Hausman-type test for mis-

specification

In this section we describe the proposed Hausman-type test for misspecifica-
tion of the distribution of the random effects for the finite-mixture GLMMs
illustrated in Section 2. We also discuss its use for selecting the number of
mixture components.

4.1 Test formulation

The traditional Hausman test (Hausman, 1978) is typically used to test the
assumption of normality of the random effects in linear mixed models, which
are a special case of GLMMs for normal responses. The test is based on
the comparison of two estimators that under the null hypothesis of correct
model specification (H0) are both consistent, but if the model is misspecified
(H1) only one of them remains consistent. Consequently, we have evidence
of misspecification from the distance between the two estimators as they
converge to two different points in the parameter space under H1. Moreover,
it is required that one of the two estimators is asymptotically efficient under
H0, so as to simplify the estimation of the variance-covariance matrix of the
difference between them.

In the present context, H0 corresponds to a model of type (1) for binary
data or (2) for ordinal data, or its extended versions defined in Section 2,
in which the distribution of the random effects αi is discrete with k support
points. Moreover, under the basic formulations there is independence of these
random effects from the observable covariates, so as to rule out endogeneity.
In this context, the Hausman test is based on the statistic

T1 = n(γ̂M − γ̂C)′Ŵ
−1
1 (γ̂M − γ̂C), (14)

Ŵ 1 = V̂ C(γ̂C)− V̂ M(γ̂M), (15)
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which has asymptotical χ2
c distribution under H0, where c is the dimension

of parameter vector γ or, equivalently, the number of unit-specific covariates
in zij. Note that the test is based on a comparison between the CML and
MML estimators for the unit-specific covariates, as only these parameters are
estimable under the CML approach. In this regard, we have to clarify that
V M(γ̂M) is a suitable block of matrix V M(θ̂M) defined in (10). Moreover,
the variance-covariance matrix of

√
n(γ̂M− γ̂C), denoted by W , is estimated

as the difference between V̂ C(γ̂C) and V̂ M(γ̂M) due to the efficiency of γ̂M
under H0 which, in turn, implies that the covariance matrix between γ̂M and
γ̂C is C(γ̂M , γ̂C) = V M(γ̂M).

It is worth noting that, in the present context, the formula to estimateW
may rise some instability problems for small samples in which the difference
between V C(γ̂C) and V M(θ̂M) is not ensured to be positive definite; see also
Vijverberg (2011) for related problems. Therefore, we rely on a generalized
version of the test based on a different way of estimating W that has been
used by Bartolucci et al. (2014c) in a related context. In particular, we
propose to use the following estimator:

Ŵ 2 = nD V̂ (θ̂M , γ̂C)D′,

D = (E,−I),

with I being the identity matrix of dimension q and E a matrix such that
γ̂M = E θ̂M . Moreover, the joint variance-covariance matrix of γ̂C and θ̂M
is obtained by the generalized sandwich formula

V̂ (θ̂M , γ̂C) =

(
HM(θ̂M) 0

0 HC(γ̂C)

)−1
S
(
θ̂M , γ̂C

)(
HM(θ̂M) 0

0 HC(γ̂C)

)−1
,

with

S
(
θ̂M , γ̂C

)
=
∑
i

(
uM,i(θ̂M)
uC,i(γ̂C)

)(
uM,i(θ̂M)′ uC,i(γ̂C)′

)
,

and HM(θ̂M), HC(γ̂C), uM,i(θ̂M), and uC,i(γ̂C) defined as in Sections 3.1
and 3.2. HC(γ̂C) and uC,i(γ̂C) are substituted by H̃C(γ̂C) and ũC,i(γ̂C) in
case of ordinal responses, as illustrated in Section 3.2.

Overall, the test statistic defined as

T2 = n(γ̂M − γ̂C)′Ŵ
−1
2 (γ̂M − γ̂C) (16)

has still an asymptotically distribution of type χ2
c under H0, but it gives more

stable results, while being easy to compute. This is the approach that we
adopt in the following.
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4.2 Use of the proposed test for finite-mixture GLMMs

The traditional Hausman test is typically employed to investigate about the
possible sources of misspecification of the distribution of the random effects,
being the absence of normality and the possible dependence between the
random effects and the covariates (i.e., endogeneity) the most relevant ones.
Similarly, the proposed test based on statistic T2 allows us to assess the
model specification in the general setting of GLLMs, with some peculiarities
deriving from the discrete nature of the distribution of the random effects,
as we argument in the following.

A crucial aspect related to the models with discrete random effects is the
choice of the number of latent classes (or mixture components), denoted by
k. In general, the prevailing approaches which have been adopted in the
literature balance model fit and parsimony and are based on information cri-
teria, obtained through penalization of the maximum log-likelihood. Among
these criteria, the most common are the Akaike Information Criterion (AIC;
Akaike, 1973) and the Bayesian Information Criterion (BIC; Schwarz, 1978),
which are based on the minimization of the following indices:

AIC = −2 ˆ̀+ 2 #par,

BIC = −2 ˆ̀+ log(n) #par,

where ˆ̀= `(θ̂M) is the maximum of the marginal log-likelihood of the model
of interest and #par stands for the number of free parameters. Several alter-
natives have been developed in the literature, which are based on different
penalization terms; see the Appendix for a detailed description. Unfortu-
nately, there is not any result in the literature that indicates one of these
criteria as clearly outperforming the others, although there is a certain evi-
dence in favor of BIC. Among the most recent comparative studies, see Dias
(2006), Nylund et al. (2007), and Yang and Yang (2007).

The proposed Hausman test based on T2 represents an interesting alter-
native to the information criteria mentioned above to select the number of
mixture components, when this number is unknown. In this regard, we sug-
gest to adopt a sequential strategy consisting in increasing k until the test
does not stop to reject H0. We expect that the selection criterion for k based
on T2 is more parsimonious with respect to the available criteria mentioned
above, provided that the assumption of independence between the random
effects and the covariates hold. In particular, this is expected to happen
when the distribution of the random effects is continuous rather than discre-
te. In this situation, the estimator γ̂M may attain values very close to the
estimator γ̂C , which is consistent, even for small values of k; see also Lindsay
et al. (1991). On the other hand, note that the above information criteria are
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typically considered unsatisfactory by applied researches because they tend
to select large values of k and then non parsimonious models, especially with
large samples.

It is also worth noting that, while the other criteria to select k only per-
form relative comparisons among differently specified models, the proposed
test allows us to formulate an absolute judgment about the appropriateness
of the model based on a certain number of mixture components. In fact,
a sufficiently high p-value for a certain k leads to conclude for the correct
specification of such a model in the complex.

Finally note that, with longitudinal data, the proposed test can be used
in connection with that proposed by Bartolucci et al. (2014c) to test the as-
sumption that the random-effects are time-constant rather than time-varying.
More in detail, we may adopt a two-step procedure consisting in testing first
the assumption of time-constant random effects and, only if this hypothesis
is not rejected, the modified Hausman test here proposed is applied to select
the correct number of mixture components.

5 Simulation study

In order to analyze the proposed approach, we performed a Monte Carlo
simulation study. A detailed description of the design and results of this
study is reported in the Appendix, whereas we provide a brief summary in
the following.

The simulation study is based on the random intercept model specified in
Section 2 by assumptions (1) and (2). We consider two scenarios: one refers
to the longitudinal setting and the other to the IRT setting. In our bench-
mark design, the distribution of the random effects αi has k0 = 3 support

points
[
−
√

3/2, 0,
√

3/2
]

with probabilities 0.25, 0.50, and 0.25 respective-

ly. For the longitudinal setting, we consider one cluster-specific covariate
xi following a standard normal distribution together with one unit-specific
covariate zij, with j = 1, . . . , J denoting the time occasions, generated from
an AR(1) process with correlation ρ = 0.5. The parameters of the mean
specification are both scalars and equal to 1. The Hausman test statistic will
therefore be asymptotically distributed as a χ2

1. For the IRT setting, model
(1) based on a logit link function simplifies to a Rasch model. Therefore,
the Hausman test statistic T2 will have null asymptotic distribution of type
χ2
J−1, where J is the number of items.

The experiment on the two models is repeated with different discre-
te distributions for αi, including a shift in the original distribution, αi ∈
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[
1−

√
3/2, 1, 1 +

√
3/2
]

with probabilities 0.25, 0.50, and 0.25, and formu-

lating a strongly asymmetric distribution, αi ∈ [−5, 0, 25] with probabilities
0.33, 0.50, and 0.17 respectively.

The second part of our simulation study deals with possible misspecifica-
tions of the random effect distribution. First, a case where the true distribu-
tion of αi is continuous is considered: the data are generated as above with
the exception of the random effects which are now αi ∼ N(0, 3). Second, the
analysis considers a case where the random effects are correlated with the
regression covariates.

In terms of results, the proposed test presents good size properties under
the null hypothesis of correct specification of the number of mixture compo-
nents of the distribution of the random effects. If the number of classes is
underspecified, the Hausman test’s rejection rate considerably increases when
the distribution of the random effects is skewed. Instead, if the random ef-
fects follow a continuous distribution, a situation that is likely to occur with
real data, the proposed Hausman test typically chooses a more parsimonious
model in comparison to standard model selection criteria. This is particular-
ly true for large values of J , which usually leads to a clearer interpretation of
the results, especially when the aim is data classification or when the interest
in on the regression parameters. In the presence of correlation between the
random effects with the regression covariates, rejection rates are remarkably
high even in very small samples. In addition, the power of the test increases
in the intensity of the correlation, while an increasing number of occasions J
seems to only slightly affect the rejection rates.

6 Applications

We illustrate three applications of the Hausman test in different settings. We
first describe the problem of choosing the number of mixture components in a
Rasch model and in a random intercept logit model for clustered data. Then,
we deal with the proper specification of a model for ordered longitudinal data.

Example 1: Rasch model for the assessment of ability
in mathematics

We illustrate the proposed Hausman test by using a dataset concerning the
responses of a sample of 1510 examines to 12 binary items on Mathematics,
which has been extrapolated from a larger dataset collected in 1996 by the
Educational Testing Service within the National Assessment of Educational
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Progress (NAEP) project. The same set of data was also analyzed by Barto-
lucci and Forcina (2005) and Bartolucci (2007). In particular, Bartolucci and
Forcina (2005) fitted some types of LC models under different constraints.

The Hausman test and the information criteria described in the Appendix
are applied to a sequence of Rasch models with an increasing number of latent
classes. As shown in Table 1, the Hausman test selects k = 3 latent classes,
as well as BIC, CAIC, and the corresponding modified versions BIC∗ and
CAIC∗, whereas the other criteria detect four or more classes.

Tabella 1: Naep data, Rasch model: selection of the number k of mixture
components.

k = 1 k = 2 k = 3 k = 4 k = 5

Hausman T2 414.850 90.071 6.721 2.895 1.639
Hausman p-value 0.000 0.000 0.821 0.992 0.999

AIC 22042.3 20511.4 20364.6 20361.8 20365.0
BIC 22106.2 20585.9 20449.7 20457.6 20471.4
AIC3 22054.3 20525.4 20380.6 20379.8 20385.0
CAIC 22118.2 20599.9 20465.7 20475.6 20491.4
HTAIC 22042.6 20511.7 20365.0 20362.3 20365.6
AICc 22018.5 20483.6 20332.9 20326.2 20325.5
BIC∗ 22068.1 20541.4 20398.9 20400.4 20407.8
CAIC∗ 22080.1 20555.4 20414.9 20418.4 20427.8

Intuitively, the correct specification of the Rasch model is confirmed by
the results in Table 3, which show the item difficulty estimates obtained with
the CML approach and with the MML approach. In fact, we observe that
with k = 3 mixture components the item estimates by MML are already very
close to those obtained with CML; see also Lindsay (1983).

We also perform the Hausman test for the Rasch model based on the
assumption of normality of the distribution of the random effects (Tchet-
gen and Coull, 2006). A value of the test statistic T2 equal to 10.230 with
a p-value equal to 0.510 lead to accept the null hypothesis of correct mo-
del specification. However, the normality assumption does not allow us to
cluster subjects in homogeneous classes in an easy way, differently from the
discreteness assumption. Indeed, according to the Rasch model with k = 3,
we observe (Table 3) that the 37.9% of subjects is allocated to class 3, which
identifies the best performers, whereas the 16.4% of subjects belongs to the
worst performers’ class, that is class 1.

16



Tabella 2: Naep data, Rasch model: item difficulty estimates under CML
(γ̂C) and under MML with k = 1, . . . , 5 (γ̂M).

CML MML
k = 1 k = 2 k = 3 k = 4 k = 5

Item 1 0.000 0.000 0.000 0.000 0.000 0.000
Item 2 -0.047 -0.038 -0.045 -0.047 -0.047 -0.047
Item 3 0.691 0.549 0.670 0.689 0.691 0.691
Item 4 -1.040 -0.855 -0.984 -1.032 -1.037 -1.040
Item 5 1.521 1.207 1.478 1.518 1.521 1.521
Item 6 0.013 0.010 0.012 0.013 0.013 0.013
Item 7 0.662 0.527 0.642 0.661 0.662 0.662
Item 8 1.191 0.945 1.158 1.189 1.191 1.191
Item 9 0.334 0.267 0.323 0.333 0.334 0.334
Item 10 0.525 0.418 0.508 0.524 0.525 0.525
Item 11 2.427 1.945 2.339 2.418 2.427 2.427
Item 12 2.474 1.984 2.383 2.464 2.474 2.474

Tabella 3: Naep data, Rasch model with k = 3: estimated support points and
weights (standard errors in brackets).

h = 1 h = 2 h = 3

ξ̂h -0.647 (0.138) 0.967 (0.131) 2.430 (0.120)
π̂h 0.164 (–) 0.457 (0.154) 0.379 (0.251)
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Example 2: a random intercept logit model for the use
of contraceptives in Bangladesh

The data come from a study about fertility in Bangladesh carried out by
the Bangladesh National Institute of Population Research and Training. It
collects information on the knowledge and use of family planning methods of
a sample of ever-married women. For a detailed description of data see Huq
and Cleland (1990); see also Mazharul Islam and Mahmud (1995).

Here we consider a subset of 1934 women nested in 60 administrative
districts (clusters).1 The response of interest is a binary variable denoting
whether the interviewed woman is currently using contraception. The unit-
specific covariates correspond to the following women’s characteristics: geo-
graphical residence area (0= rural, 1=urban), age, number of children (no
children, a single child, two children, three or more children; no children is
the reference category). No variable describing the district characteristics is
available.

The Hausman test and the information criteria are applied to a sequence
of random intercept logit models with an increasing number of latent classes.
As shown in Table 4, all information criteria agree in selecting two latent
classes, whereas the Hausman test is more parsimonious and gives evidence
for just one latent class at 5% level. In other words, according to the pro-
posed Hausman-type test, the detection of a latent structure seems to be
superfluous with data at issue and this also simplifies the interpretation of
the results.

Parameter estimates for k = 1, reported in Table 5, show that contracep-
tive use is higher in urban than in rural areas (odds ratio = 2.219) and it
declines a little with age (2.358% lower odds per year of age). Besides, con-
traceptive use is higher among women with a child and much higher among
women with two or more children, than among those with no children, with
odds ratios of almost three and more. Note that, if we adopt k = 2 as sug-
gested by the information criteria, we obtain regression parameter estimates
very similar to those shown in Table 5 (output here omitted).

Example 3: random intercept global logit models for
the assessment of self-reported health status

The third example we propose is based on a longitudinal dataset about Self-
Reported Health Status (SRHS), which derives from a subset of version I of

1Data freely downloadable from http://www.stata-press.com/data/r11/bangladesh.dta
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Tabella 4: Bangladesh contraceptive data, random intercept logit model:
selection of the number k of mixture components.

k = 1 k = 2 k = 3 k = 4

Hausman T2 10.160 9.778 5.164 5.163
Hausman p-value 0.071 0.082 0.400 0.396

AIC 2469.1 2427.2 2430.0 2434.0
BIC 2481.7 2444.1 2451.1 2459.4
AIC3 2475.1 2435.2 2440.0 2446.0
CAIC 2487.7 2452.1 2461.1 2471.4
HTAIC 2471.2 2430.8 2435.4 2441.8
AICc 2458.2 2413.4 2413.6 2415.5
BIC∗ 2462.8 2418.9 2419.7 2421.6
CAIC∗ 2468.8 2426.9 2429.7 2433.6

Tabella 5: Bangladesh contraceptive data, random intercept logit model with
k = 1: estimates of regression coefficients (γ̂), standard errors, odds ratios
(exp(γ̂)).

γ̂ st.err.(γ̂) exp(γ̂)

urban area 0.800 0.189 2.218
age -0.024 0.007 0.976
one child 1.067 0.183 2.906
two children 1.276 0.170 3.582
three or more children 1.214 0.201 3.368

the Health and Retirement Study (HRS)2 (Juster and Suzman, 1995), con-
ducted by the University of Michigan and supported by the US National
Institute on Aging and the Social Security Administration. Our data com-
prise 1308 individuals who were asked to express opinions on their health
status at 4 equally spaced time occasions, from 2000 to 2006. The response
variable (SRHS) is measured on a Likert type scale based on 5 ordered ca-
tegories (poor, fair, good, very good, and excellent). A longer version of the
the same set of data was analyzed by Bartolucci et al. (2014c), who perfor-
med a test for the null hypothesis of time-constant random effects, versus the
hypothesis of time-varying random effects, rejecting the null hypothesis (for
more details about the data characteristics, see also Heiss, 2008; Bartolucci

2See http://www.nia.nih.gov/health/publication/growing-older-america-health-and-retirement-study
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Tabella 6: HRS data, random intercept global logit model with free cut-points
and with endogeneity of type (7): selection of the number k of latent classes.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
Hausman T2 75.483 59.454 19.484 22.274 13.767 9.003 5.994 3.374
Hausman p-value 0.000 0.000 0.000 0.000 0.001 0.011 0.050 0.185
AIC 14879.9 13355.1 12852.8 12636.9 12497.6 12486.4 12457.8 12449.3
BIC 14948.6 13499.2 13072.5 12932.1 12868.3 12932.6 12979.4 13046.4
AIC3 14889.9 13376.1 12884.8 12679.9 12551.6 12551.4 12533.8 12536.3
CAIC 14958.6 13520.2 13104.5 12975.1 12922.3 12997.6 13055.4 13133.4
HTAIC 14880.0 13355.2 12853.2 12637.5 12498.5 12487.7 12459.5 12451.5
AICc 14859.9 13313.2 12789.1 12551.4 12390.4 12357.6 12307.4 12277.4
BIC∗ 14916.8 13432.5 12970.8 12795.4 12696.7 12726.0 12737.9 12770.0
CAI∗ 14926.8 13453.5 13002.8 12838.4 12750.7 12791.0 12813.9 12857.0

et al., 2014a). For our illustrative example, we reduced the panel length so
as to minimize the impact of possible time-varying random effects.

We consider three time-constant covariates, describing gender, race, and
educational level of individuals, and two time-varying covariates, correspon-
ding to age and squared age. We first formulate the random intercept global
logit model (2), having constant shift in the cut-points, and the global logit
model (3) with free cut-points. In both cases, the proposed Hausman test
repeatedly rejects the null hypothesis of correct model specification, despi-
te most information criteria tend to choose 5 latent classes (outputs here
omitted). Note that also the traditional Hausman test for the assumption
of normally distributed random effects (Tchetgen and Coull, 2006) strongly
rejects the model with T2 = 32.158 and a p-value smaller than 0.001.

A possible problem with the data at issue may be due to the presen-
ce of endogeneity, that is dependence between the random effects and the
time-varying covariates. For this reason, we extend models (2) and (3) to ac-
count for a possible effect of age and squared age on the mixture components
weights, as in equation (7). In particular, the model based on assumptions
(3) and (7) is not rejected with k = 7, as the corresponding p-value is around
5% (see Table 6). On the other hand, BIC and several other information
criteria tend again to choose k = 5 components.

We conclude highlighting that, on one side, the traditional Hausman test
recognizes the misspecification of the model, but does not detect a valid
alternative, and, on the other side, the information criteria lead to select a
misspecified model since they rely on a relative comparison between models.
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7 Conclusions

We propose a misspecification test for Generalized Linear Mixed Models
(GLMMs) for clustered binary and ordinal responses, which modifies the
traditional Hausman test to account for the assumption of discrete, instead
of normal, random effects. The proposed approach is easy to implement
and may also be used to select the number of latent classes (or mixture
components or support points), characterizing the models at issue.

The proposed Hausman-type test represents an element of novelty in the
context of model selection for finite-mixture models which is mainly based
on information criteria, such as the Bayesian Information Criterion (BIC).
With respect to these selection criteria, our proposal is expected to lead to
more parsimonious models when the true distribution of the random effects
is continuous and the dependence between these effects and the covariates
is correctly specified. This is particularly useful in applications, where in-
formation criteria tend to choose a large number of components, especially
with large samples. Moreover, the proposed test may reject all models ha-
ving a different number of mixture components, so detecting misspecification
problems (e.g., the presence of endogeneity), that are completely ignored by
the information criteria. Finally, while these criteria are only based on re-
lative comparisons among differently specified models, our proposal allows
us to formulate an absolute assessment about the appropriateness of a gi-
ven model, relying on the value of the test statistic and the corresponding
p-value.

The performance of the proposed approach is evaluated through a Mon-
te Carlo simulation study that provides satisfactorily results under different
scenarios. In particular, we observe good size properties under the null hypo-
thesis of correct specification of the number of support points of the random
effect distribution. The results of the power analysis suggest that: (i) when
the number of classes is underspecified, rejection rates are particularly high
especially when the random effect distribution is skewed and has a large va-
riance; (ii) when the random effect distribution is continuous, the Hausman
test tends to select a more parsimonious specification of the number of sup-
port points, with respect to standard selection criteria, especially with many
units per cluster; (iii) in the presence of correlation of the random effects
with the regression covariates, rejection rates are remarkably high even in
very small samples and increase for higher correlation values.

The approach is also illustrated by three applications covering different
settings, that is, multilevel data, longitudinal data, item responses. Inte-
restingly, each application presents a different potentiality of the proposed
approach. In fact, in the first application we obtain the same results of
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selection criteria such as BIC in terms of number of mixture components.
In the second application, contrary to the BIC, the proposed test leads to
the conclusion that a latent structure is not necessary, and then to a very
parsimonious and easily interpretable model. In the third application, the
proposed approach leads to reject all models in which the random effects are
assumed to be independent of the covariates, considering therefore a form of
endogeneity.

Regarding the comparison with the available statistical literature, the
proposed approach can be seen as a development of Tchetgen and Coull
(2006), whose proposal is based on the comparison of MML and CML esti-
mates of models with normally distributed random effects. We acknowledge
that the approach of Tchetgen and Coull (2006) has been criticized by some
authors. We refer, in particular, to Alonso et al. (2008) that, to motivate the
need of alternative approaches, stated that the approach of Tchetgen and
Coull (2006) can only be applied when there is at least one unit-specific co-
variate and that cannot be used for the Rasch model and other IRT models.
Moreover, they state that the test cannot be applied when auto-regressive
random effects are present. Regarding the first aspect, we do not agree with
Alonso et al. (2008) for two reasons: first, in models for item responses a
covariate indeed exists and this is the indicator variable for the item, making
our test easily usable, as we show by an empirical example; second, even
if unit-specific covariates (which vary within the cluster) do not exist, they
can be “artificially” created (e.g., in a longitudinal dataset, interactions of
time-constant covariates with time dummies). Finally, our test is intended
to be used when the assumption that the random-effects are time-constant
is realistic. However, if this assumption is questionable, the proposed test
can be used in connection with that proposed by Bartolucci et al. (2014c),
the latter being specifically devoted to test the assumption that the random
effects are time-constant rather than time-varying by comparing differently
formulated conditional maximum likelihood estimators.

We conclude outlining that the applicability of the modified Hausman test
is limited to certain finite-mixture GLLM based on a canonical link function.
We also evaluated the performance of the test through simulation studies
in case of linear and Poisson models, but we did not obtained interesting
results. However, other cases to try are represented by survival data and by
zero inflated Poisson models.
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Appendix

The simulation study

In this section, we describe the setting and present the main results of a Mon-
te Carlo study limited to models for binary responses. We first investigate
the finite-sample properties of the proposed test in finite-mixture models for
correct specification of the number of mixture components. Then, we study
the power properties of the proposed test when the distribution of the ran-
dom effects is misspecified, namely when the true distribution is continuous
and in presence of correlation between the random effects and the regression
covariates.

The simulation design

The simulation study is based on the random intercept model specified in
Section 2 with a logit link function. We consider two scenarios: one refers to
the longitudinal setting and the other one refers to the IRT setting. In the
longitudinal design, the model is specified as follows

y∗ij = θi + x′iβ + z′itγ + εij (17)

yij = I(y∗ij > 0) for i = 1, . . . , n j = 1, . . . , J (18)

where the distribution of the random effects αi has k0 = 3 support points[
−
√

3/2, 0,
√

3/2
]

with probabilities 0.25, 0.50, and 0.25 respectively. We al-

so consider one observation-specific covariate zij, with j = 1, . . . , Ji denoting
the time occasions and Ji = J for i = 1, . . . , n, generated as

zi0 ∼ N
(
0, π2/3

)
,

zij = zi,j−1ρ+ uij,

uij ∼ N
(
0,
(
1− ρ2

)
π2/3

)
,

with ρ = 0.5. We also consider a cluster-specific covariate xi following a
standard normal distribution. Besides, the error terms εij are i.i.d. with
zero-mean logistic distribution with variance π2/3, whereas γ and β are both
scalars and equal 1. As outlined in Section 4, the Hausman test will com-
pare only the estimators of γ, since the CML approach does not allow for
the identification of cluster-specific effects. The Hausman test statistic will
therefore be asymptotically distributed as a χ2

1.
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In the IRT scenario, model (17) with link a logit function simplifies in a
Rasch model, as follows

log
p(yij = 1|αi, zij)
p(yij = 0|αi, zij)

= αi − z′ijγ.

where j = 2, . . . , Ji with Ji = J for i = 1, . . . , n and γ is a J − 1-dimensional
vector of item difficulty parameters; these parameters are taken as equidistant
points in the interval [−2, 2]. Therefore, the Hausman test statistic will be
asymptotically distributed as a χ2

J−1. We repeat the experiment on the two
models with different discrete distributions for αi: we consider a shift in the

original distribution, αi ∈
[
1−

√
3/2, 1, 1 +

√
3/2
]

with probabilities 0.25,

0.50, and 0.25, and a strongly asymmetric distribution, αi ∈ [−5, 0, 25] with
probabilities 0.33, 0.50, and 0.17 respectively.

In each scenario, we compare the performance of the proposed test with
that of standard selection criteria by estimating finite-mixture models under
the assumption of k number of support points for α, with k = 1, . . . , 6.
More in detail, apart from AIC and BIC (see Section 4.2), we consider the
following information criteria: Consistent AIC (CAIC; Bozdogan, 1987),
AIC3 (Bozdogan, 1993), HT-AIC (Hurvich and Tsai, 1989), AICc (Hurvich
and Tsai, 1993), the adjusted CAIC (CAIC∗; Yang and Yang, 2007), and
adjusted BIC (BIC∗; Sclove, 1987). Overall, they are based on the following
indices:

AIC = −2 ˆ̀
M + 2#par,

BIC = −2 ˆ̀
M + #par log(n),

AIC3 = −2 ˆ̀
M + 3#par,

CAIC = −2 ˆ̀
M + #par(log(n) + 1),

HT-AIC = −2 ˆ̀
M + 2#par +

2(#par + 1)(#par + 2)

n−#par− 2
,

AICc = −2 ˆ̀
M + 2

#par(#par− 1)

n−#par− 1
,

BIC∗ = −2 ˆ̀
M + #par log

n+ 2

24
,

CAIC∗ = −2 ˆ̀
M + #par

(
log

n+ 2

24
+ 1

)
with ˆ̀

M denoting the maximum of log-likelihood and #par is the number
of free parameters. As all these criteria consist in penalized versions of the
maximum log-likelihood, the optimal number of latent classes is that corre-
sponding to the minimum value of the corresponding index. In practice, we
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fit a given discrete GLMM for increasing values of k until the index does not
start to increase. Then, we select the previous k as the optimal number of
latent states, which guarantees the best compromise between goodness-of-fit
and model parsimony.

The second part of our simulation study deals with possible misspecifica-
tion of the random effect distribution. First, we analyze a case where the true
distribution of αi is continuous: the data are generated as above with the
exception of the random effects which are now αi ∼ N(0, 3). Secondly, the
analysis considers a case where the random effects are correlated with the re-
gression covariates. In this scenario, αi is generated starting from a Gaussian
copula: we generate continuous random effects as α∗i = τ z̄i+wi

√
1− τ 2, whe-

re z̄i = (1/Ji)
∑Ji

j=1 zij and wi ∼ N(0, 1). We then obtain the discrete random

effects αi from α∗i so that αi has k0 = 3 support points
[
−
√

3/2, 0,
√

3/2
]

with probabilities 0.25, 0.50, and 0.25 respectively. The parameter τ con-
trols the correlation between αi and zij and we analyze the situations where
τ = 0, 0.5, 0.8.

The main results

Tables 7- 12 summarize the values of the empirical size of test for binary
responses models with longitudinal data and for IRT models considering the
three different discrete distributions for αi described in the previous section.
Each experiment is repeated for n = 500, 1000 and J = 5, 10. The Hausman
test compares γ̂M , obtained by estimating a finite-mixture model for k =
1, . . . , 6, with γ̂C obtained by CML. For each experiment, the tables also
report the number of times (out of 1000 replications) the Hausman test does
not reject the null hypothesis at k and compare these results with the number
of times information criteria are minimized in k.

The results of our simulation study suggest that the proposed Hausman-
type test behaves quite nicely as a test of correct specification in finite-
mixture models. Tables 7-12 show that the empirical size of the proposed test
reaches its nominal value with k = 3 for all the values of n and J considered.
When the finite-mixture model is estimated under the assumption of k = 1,
the proposed test exhibits high rejection rates increasing in both n and J .
However, when symmetric discrete distributions for αi are considered, the
rejection rate for k = 2 is rather low and slowly increasing in n and J
(Tables 7-10). Nevertheless, the standard selection criteria also seem to favor
specifications with k = 2 support points. In contrast, Tables 11 and 12 show
that the rejection rate with k = 1, 2 is almost 100% in every scenario, while
the empirical size attains its nominal value when k = 3.
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Tables 13 and 14 report the simulation results for a different misspecifica-
tion of αi, namely when the random effects are continuous. Table 13 shows
that, with n = 500, J = 5, and k = 2, the Hausman test does not reject
the null hypothesis in a considerable number of replications from 415 for the
nominal size 10% to 841 for 1% and for most of the remaining replications
it selects k = 3. With the exception of AICc, selection criteria tend instead
to select a model with k = 3. Notice that BIC and the Hausman test at
1% present almost the opposite behavior. A similar situation occurs when
n = 1000 and J = 5, while with n = 500, 1000 and J = 10 the proposed test
tends to select k = 3, while the information criteria lean towards k = 4. In
the case of the IRT parametrization, the same pattern is even clearer: with
n = 500 and J = 5 the Hausman test selects a model with k = 2 in the
majority of cases, while selection criteria tend to select models with a higher
k (Table 14). For greater values of n and J selection criteria, with exception
of BIC, select 4 or even 5 support points, while the proposed test favors a
more parsimonious specification of the number of classes.

The major implication of these results is that, when the random effects are
a continuous random variable, a situation that is likely to occur with real da-
ta, the Hausman test selects a model that produces a consistent estimator of
γ regardless of the misspecification in the distribution of the random effects.
In addition, compared to standard model selection criteria, the proposed test
chooses a more parsimonious specification of the number of support points
especially for large values of J , which usually leads to a clearer interpreta-
tion of the results, especially when the aim is data classification or when the
interest in on the regression parameters.

The last part of our Monte Carlo study investigates the power properties
of the test when the hypothesis of independence between the random effects
and the regression covariates is violated. The correlation is controlled by
means of the parameter τ which varies between 0 and 0.8 (Section 7). The
simulation results are displayed in Figure 1 for finite-mixture models for
longitudinal binary data and in Figure 2 for the Rasch model. In both cases,
we limit the analyses to sample sizes of n = 100, 200. With τ = 0, the
proposed test maintains its size properties in both models. The power of the
test increases with the correlation τ and in the sample size, while increasing
number of occasions J seems to only slightly affect the rejection rates.
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Tabella 7: Hausman-type specification test: number of selections of k classes
and empirical size, k0 = 3 symmetric zero mean, binary data

n = 500 J = 5

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.

1 298 0.631 445 0.511 748 0.233 0 70 1 113 0 0 1 10
2 574 0.100 484 0.052 229 0.013 901 927 953 885 905 379 958 974
3 22 0.103 10 0.057 4 0.018 99 3 46 2 95 510 41 16
4 4 0.104 7 0.059 3 0.020 0 0 0 0 0 71 0 0
5 20 0.105 10 0.059 4 0.020 0 0 0 0 0 29 0 0
6 52 0.107 32 0.059 9 0.021 0 0 0 0 0 11 0 0

n = 500 J = 10

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.

1 1 0.991 9 0.978 77 0.916 0 0 0 0 0 0 0 0
2 809 0.123 900 0.055 899 0.013 541 952 699 974 552 45 703 823
3 76 0.101 38 0.049 8 0.012 456 48 299 26 445 744 295 177
4 10 0.101 3 0.049 4 0.012 3 0 2 0 3 143 2 0
5 13 0.108 11 0.052 5 0.016 0 0 0 0 0 50 0 0
6 51 0.114 25 0.055 3 0.017 0 0 0 0 0 18 0 0

n = 1000 J = 5

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.

1 42 0.908 138 0.822 379 0.603 0 0 0 0 0 0 0 0
2 821 0.108 787 0.060 596 0.012 812 997 902 998 817 250 953 979
3 37 0.097 14 0.060 6 0.018 187 3 98 2 182 598 47 21
4 2 0.100 1 0.061 1 0.019 1 0 0 0 1 69 0 0
5 12 0.099 7 0.062 9 0.020 0 0 0 0 0 48 0 0
6 49 0.104 35 0.064 6 0.023 0 0 0 0 0 35 0 0

n = 1000 J = 10

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.

1 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
2 754 0.181 876 0.096 961 0.024 286 873 444 914 290 9 559 692
3 135 0.099 68 0.052 24 0.011 706 127 554 86 702 688 441 308
4 9 0.101 4 0.052 3 0.013 8 0 2 0 8 202 0 0
5 8 0.106 2 0.054 1 0.014 0 0 0 0 0 64 0 0
6 50 0.110 24 0.054 10 0.016 0 0 0 0 0 37 0 0

The random effects αi ∈
[
−
√

3/2, 0,
√

3/2
]

with probabilities 0.25, 0.50, and 0.25 respectively.

The test statistic T2
d→ χ2

1. The number of replications is 1000.
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Tabella 8: Hausman-type specification test: number of selections of k classes
and empirical size, k0 = 3 symmetric zero mean, binary data, IRT model

n = 500 J = 5

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.

1 565 0.392 727 0.241 926 0.049 8 193 29 281 9 0 30 65
2 315 0.094 204 0.045 43 0.013 929 806 943 719 936 491 943 925
3 4 0.111 5 0.060 3 0.026 63 1 28 0 55 404 27 10
4 2 0.114 4 0.063 2 0.028 0 0 0 0 0 63 0 0
5 19 0.119 14 0.066 13 0.031 0 0 0 0 0 27 0 0
6 25 0.120 18 0.065 7 0.031 0 0 0 0 0 15 0 0

n = 500 J = 10

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.

1 147 0.839 290 0.700 597 0.396 0 0 0 0 0 0 0 0
2 735 0.083 649 0.038 391 0.003 668 986 815 994 692 164 818 913
3 11 0.100 10 0.047 2 0.009 331 14 184 6 307 667 181 86
4 3 0.105 2 0.049 2 0.010 1 0 1 0 1 113 1 1
5 12 0.105 7 0.051 3 0.010 0 0 0 0 0 42 0 0
6 25 0.109 16 0.054 3 0.012 0 0 0 0 0 14 0 0

n = 1000 J = 5

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.

1 185 0.799 312 0.667 627 0.356 0 7 1 14 0 0 1 5
2 691 0.099 615 0.051 352 0.012 851 990 931 986 856 315 958 975
3 16 0.105 12 0.058 1 0.019 146 3 68 0 142 509 41 20
4 1 0.108 2 0.059 0 0.020 3 0 0 0 2 104 0 0
5 5 0.110 7 0.063 8 0.021 0 0 0 0 0 46 0 0
6 23 0.114 19 0.068 4 0.026 0 0 0 0 0 26 0 0

n = 1000 J = 10

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.

1 1 0.999 1 0.998 21 0.978 0 0 0 0 0 0 0 0
2 887 0.086 935 0.038 960 0.010 422 947 613 965 435 41 710 807
3 18 0.090 11 0.046 2 0.012 568 53 385 35 555 695 290 193
4 3 0.092 4 0.050 3 0.015 10 0 2 0 10 192 0 0
5 3 0.095 4 0.053 1 0.018 0 0 0 0 0 53 0 0
6 17 0.093 17 0.053 5 0.017 0 0 0 0 0 19 0 0

The random effects αi ∈
[
−
√

3/2, 0,
√

3/2
]

with probabilities 0.25, 0.50, and 0.25 respectively.

The test statistic T2
d→ χ2

J−1. The number of replications is 1000.
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Tabella 9: Hausman-type specification test: number of selections of k classes
and empirical size, k0 = 3 symmetric unit mean, binary data

n = 500 J = 5

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.

1 304 0.625 483 0.489 793 0.203 2 76 6 113 2 0 6 18
2 587 0.071 470 0.036 196 0.008 900 923 955 886 909 401 956 968
3 14 0.090 9 0.036 1 0.009 95 1 38 1 87 494 37 14
4 6 0.094 2 0.038 1 0.009 3 0 1 0 2 65 1 0
5 30 0.096 7 0.040 1 0.011 0 0 0 0 0 28 0 0
6 36 0.095 19 0.038 4 0.009 0 0 0 0 0 12 0 0

n = 500 J = 10

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.

1 3 0.991 12 0.977 102 0.890 0 0 0 0 0 0 0 0
2 808 0.127 882 0.076 878 0.009 570 965 748 983 579 74 755 869
3 77 0.106 50 0.054 9 0.009 429 35 251 17 420 721 244 130
4 6 0.107 3 0.054 2 0.010 1 0 1 0 1 147 1 1
5 6 0.108 5 0.054 7 0.010 0 0 0 0 0 42 0 0
6 53 0.112 27 0.057 1 0.013 0 0 0 0 0 16 0 0

n = 1000 J = 5

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.

1 53 0.893 150 0.814 421 0.564 0 0 0 0 0 0 0 0
2 819 0.102 779 0.054 560 0.010 840 999 913 1000 841 240 958 979
3 21 0.106 16 0.053 5 0.014 160 1 87 0 159 585 42 21
4 4 0.103 3 0.054 0 0.014 0 0 0 0 0 80 0 0
5 17 0.103 14 0.051 5 0.016 0 0 0 0 0 52 0 0
6 45 0.105 22 0.056 8 0.018 0 0 0 0 0 43 0 0

n = 1000 J = 10

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.

1 0 1.000 0 1.000 0 0.999 0 0 0 0 0 0 0 0
2 802 0.145 887 0.079 973 0.017 284 876 450 922 288 13 554 700
3 101 0.090 61 0.047 14 0.010 698 124 547 78 697 664 444 300
4 5 0.092 3 0.049 0 0.012 18 0 3 0 15 222 2 0
5 7 0.093 5 0.050 4 0.014 0 0 0 0 0 65 0 0
6 45 0.092 28 0.049 6 0.013 0 0 0 0 0 36 0 0

The random effects αi ∈
[
1−

√
3/2, 1, 1 +

√
3/2

]
with probabilities 0.25, 0.50, and 0.25

respectively. The test statistic T2
d→ χ2

1. The number of replications is 1000.
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Tabella 10: Hausman-type specification test: number of selections of k classes
and empirical size, k0 = 3 symmetric unit mean, binary data, IRT model

n = 500 J = 5

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.

1 572 0.391 743 0.229 942 0.039 7 202 26 307 7 0 28 70
2 322 0.081 196 0.049 36 0.010 924 796 940 693 934 483 939 915
3 1 0.100 5 0.053 2 0.019 69 2 34 0 59 420 33 15
4 2 0.104 4 0.055 1 0.020 0 0 0 0 0 58 0 0
5 22 0.106 7 0.057 9 0.022 0 0 0 0 0 25 0 0
6 16 0.106 17 0.056 7 0.022 0 0 0 0 0 14 0 0

n = 500 J = 10

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.

1 73 0.921 155 0.839 436 0.560 0 0 0 0 0 0 0 0
2 821 0.078 796 0.031 551 0.004 645 967 789 988 674 127 794 892
3 8 0.089 2 0.043 3 0.007 352 33 210 12 324 718 205 108
4 4 0.093 3 0.045 2 0.010 3 0 1 0 2 119 1 0
5 9 0.097 6 0.046 2 0.011 0 0 0 0 0 27 0 0
6 22 0.095 12 0.045 4 0.011 0 0 0 0 0 9 0 0

n = 1000 J = 5

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.

1 132 0.852 255 0.729 563 0.427 0 6 0 8 0 0 0 1
2 756 0.083 688 0.041 419 0.007 862 992 929 991 866 309 958 981
3 7 0.101 6 0.049 1 0.015 137 2 71 1 134 517 42 18
4 1 0.104 1 0.050 2 0.017 1 0 0 0 0 99 0 0
5 9 0.105 9 0.050 4 0.017 0 0 0 0 0 54 0 0
6 28 0.106 13 0.053 6 0.020 0 0 0 0 0 21 0 0

n = 1000 J = 10

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.

1 0 1.000 1 0.998 8 0.992 0 0 0 0 0 0 0 0
2 876 0.092 928 0.043 971 0.009 382 929 556 959 398 25 686 789
3 34 0.085 15 0.050 8 0.008 609 71 442 41 593 690 314 211
4 5 0.088 5 0.053 5 0.010 8 0 2 0 8 214 0 0
5 2 0.088 2 0.053 0 0.012 1 0 0 0 1 54 0 0
6 20 0.092 20 0.058 2 0.017 0 0 0 0 0 17 0 0

The random effects αi ∈
[
1−

√
3/2, 1, 1 +

√
3/2

]
with probabilities 0.25, 0.50, and 0.25

respectively. The test statistic T2
d→ χ2

J−1. The number of replications is 1000.
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Tabella 11: Hausman-type specification test: number of selections of k classes
and empirical size, k0 = 3 asymmetric, binary data

n = 500 J = 5

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.

1 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
2 2 0.993 4 0.992 9 0.987 0 0 0 0 0 0 0 0
3 731 0.094 792 0.047 839 0.013 958 1000 984 1000 961 458 985 993
4 144 0.144 131 0.103 121 0.071 39 0 15 0 36 111 14 6
5 42 0.153 30 0.108 18 0.072 3 0 1 0 3 205 1 1
6 20 0.146 9 0.100 2 0.055 0 0 0 0 0 226 0 0

n = 500 J = 10

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.

1 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
2 0 1.000 1 0.999 1 0.999 0 0 0 0 0 0 0 0
3 719 0.120 793 0.049 847 0.011 972 999 995 1000 976 451 995 998
4 137 0.150 129 0.098 131 0.061 22 1 5 0 18 113 5 2
5 43 0.169 29 0.110 9 0.060 6 0 0 0 6 224 0 0
6 17 0.171 14 0.108 4 0.061 0 0 0 0 0 212 0 0

n = 1000 J = 5

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.

1 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
2 1 0.998 4 0.996 11 0.987 0 0 0 0 0 0 0 0
3 769 0.096 826 0.057 886 0.014 979 1000 992 1000 980 413 998 1000
4 86 0.145 97 0.087 80 0.044 21 0 8 0 20 111 2 0
5 36 0.159 17 0.099 7 0.048 0 0 0 0 0 212 0 0
6 33 0.158 11 0.101 3 0.051 0 0 0 0 0 264 0 0

n = 1000 J = 10

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.

1 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
2 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
3 728 0.106 786 0.061 851 0.011 970 1000 994 1000 973 365 998 1000
4 144 0.163 137 0.112 133 0.059 23 0 5 0 21 100 2 0
5 22 0.161 14 0.117 4 0.059 5 0 1 0 4 271 0 0
6 29 0.153 19 0.108 5 0.055 2 0 0 0 2 264 0 0

The random effects αi ∈ [−5, 0, 25] with probabilities 0.33, 0.50, and 0.17 respectively. The

test statistic T2
d→ χ2

1. The number of replications is 1000.
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Tabella 12: Hausman-type specification test: number of selections of k classes
and empirical size, k0 = 3 asymmetric, binary data, IRT model

n = 500 J = 5

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.

1 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
2 0 1.000 1 0.999 10 0.982 0 0 0 0 0 0 0 0
3 593 0.102 636 0.066 673 0.018 959 999 984 1000 963 579 984 991
4 258 0.184 266 0.149 263 0.107 35 1 16 0 34 145 16 9
5 48 0.201 36 0.149 37 0.106 5 0 0 0 3 134 0 0
6 10 0.261 4 0.214 7 0.175 1 0 0 0 0 142 0 0

n = 500 J = 10

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.

1 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
2 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
3 703 0.108 752 0.063 795 0.020 975 1000 992 1000 979 585 992 999
4 158 0.180 165 0.132 169 0.091 24 0 8 0 21 151 8 1
5 20 0.183 15 0.130 12 0.087 1 0 0 0 0 115 0 0
6 12 0.191 6 0.136 4 0.087 0 0 0 0 0 149 0 0

n = 1000 J = 5

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.

1 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
2 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
3 662 0.114 711 0.058 754 0.016 979 1000 991 1000 980 520 996 997
4 196 0.179 201 0.126 208 0.086 20 0 9 0 19 131 4 3
5 25 0.169 27 0.118 17 0.076 1 0 0 0 1 144 0 0
6 13 0.239 7 0.190 6 0.142 0 0 0 0 0 205 0 0

n = 1000 J = 10

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.

1 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
2 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
3 756 0.103 797 0.052 846 0.018 974 1000 990 1000 975 525 998 999
4 120 0.159 124 0.110 125 0.072 24 0 10 0 23 150 2 1
5 13 0.160 19 0.118 11 0.067 2 0 0 0 2 118 0 0
6 12 0.156 10 0.112 0 0.062 0 0 0 0 0 207 0 0

The random effects αi ∈ [−5, 0, 25] with probabilities 0.33, 0.50, and 0.17 respectively. The

test statistic T2
d→ χ2

J−1. The number of replications is 1000.
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Tabella 13: Hausman-type specification test: number of selections of k classes
and empirical size, continuous random effects, binary data

n = 500 J = 5

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.

1 0 1.000 0 1.000 2 0.995 0 0 0 0 0 0 0 0
2 415 0.467 597 0.328 841 0.115 5 152 17 223 5 0 17 45
3 398 0.101 297 0.048 122 0.010 627 815 764 757 635 124 774 831
4 59 0.130 40 0.069 19 0.022 355 33 216 20 347 550 206 124
5 64 0.145 35 0.087 11 0.036 13 0 3 0 13 249 3 0
6 40 0.145 20 0.085 5 0.033 0 0 0 0 0 77 0 0

n = 500 J = 10

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.

1 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
2 4 0.987 18 0.967 143 0.850 0 0 0 0 0 0 0 0
3 572 0.352 703 0.233 772 0.071 21 295 66 391 26 0 67 129
4 298 0.103 219 0.047 75 0.008 593 663 710 582 608 134 713 740
5 70 0.095 36 0.053 7 0.014 360 42 211 27 343 543 207 128
6 25 0.096 13 0.056 0 0.015 26 0 13 0 23 323 13 3

n = 1000 J = 5

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.

1 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
2 156 0.786 292 0.671 603 0.379 0 4 0 11 0 0 0 1
3 636 0.145 603 0.065 362 0.012 257 859 426 896 266 12 550 690
4 106 0.089 51 0.043 22 0.010 687 137 557 93 681 444 442 306
5 56 0.100 32 0.058 9 0.023 53 0 17 0 52 377 8 3
6 22 0.104 10 0.064 2 0.027 3 0 0 0 1 167 0 0

n = 1000 J = 10

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.

1 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
2 0 1.000 0 1.000 2 0.998 0 0 0 0 0 0 0 0
3 265 0.673 447 0.527 720 0.269 0 37 1 70 0 0 2 7
4 547 0.154 465 0.072 258 0.018 221 784 378 808 228 23 501 612
5 125 0.091 61 0.039 15 0.007 647 176 563 119 646 415 462 366
6 31 0.100 16 0.041 2 0.012 132 3 58 3 126 562 35 15

The random effects are αi ∼ N(0, 3). The test statistic T2
d→ χ2

1. The number of

replications is 1000.

39



Tabella 14: Hausman-type specification test: number of selections of k classes
and empirical size, continuous random effect, binary data, IRT model

n = 500 J = 5

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.

1 0 1.000 0 1.000 9 0.991 0 0 0 0 0 0 0 0
2 730 0.194 831 0.100 931 0.009 33 328 86 420 38 0 87 151
3 137 0.085 81 0.044 26 0.005 699 654 783 570 714 201 788 782
4 22 0.111 19 0.073 10 0.028 260 18 131 10 241 551 125 67
5 31 0.119 26 0.080 19 0.035 7 0 0 0 6 189 0 0
6 33 0.132 24 0.091 5 0.046 1 0 0 0 1 59 0 0

n = 500 J = 10

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.

1 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
2 299 0.677 471 0.511 777 0.215 0 0 0 1 0 0 0 0
3 561 0.091 466 0.037 212 0.004 55 468 124 554 61 2 129 228
4 59 0.068 29 0.031 7 0.004 680 517 734 437 694 221 736 704
5 26 0.087 9 0.040 0 0.010 245 15 140 8 231 547 133 68
6 17 0.092 13 0.044 2 0.011 20 0 2 0 14 230 2 0

n = 1000 J = 5

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.

1 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
2 460 0.497 635 0.324 875 0.093 1 38 3 61 1 0 5 11
3 407 0.088 292 0.034 92 0.006 449 892 606 891 457 47 714 820
4 32 0.095 17 0.050 13 0.019 523 70 383 48 517 515 277 168
5 23 0.109 25 0.063 15 0.030 26 0 8 0 24 317 4 1
6 25 0.116 15 0.070 4 0.036 1 0 0 0 1 121 0 0

n = 1000 J = 10

Hausman test AIC BIC AIC3 CAIC HT-AIC AICc BIC∗ CAIC∗

10% 5% 1%
k sel. e. s. sel. e. s. sel. e. s.

1 0 1.000 0 1.000 0 1.000 0 0 0 0 0 0 0 0
2 6 0.992 20 0.980 120 0.880 0 0 0 0 0 0 0 0
3 756 0.192 846 0.110 848 0.028 0 90 4 146 0 0 14 20
4 142 0.072 80 0.034 26 0.006 408 838 584 810 424 38 684 764
5 34 0.084 20 0.048 2 0.004 532 72 392 44 518 526 292 212
6 20 0.092 8 0.056 0 0.008 60 0 20 0 58 436 10 4

The random effects are αi ∼ N(0, 3). The test statistic T2
d→ χ2

J−1. The number of

replications is 1000.
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Figura 1: Hausman-type specification test for endogeneity: longitudinal data
scenario
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Figura 2: Hausman-type specification test for endogeneity: Rasch model
scenario
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