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A simple and effective misspecification
test for the double-hurdle model

Riccardo Lucchetti, Claudia Pigini

1 Introduction and motivation

The double-hurdle model is a commonly used model for dealing with double
censoring. This model is well suited for analysing situations where a sample
selection effect occurs and a corner zero solution is possible in the optimi-
sation process by the individual. As such, it has been used in countless
applications, such as labour market studies, in which the dependent vari-
able is the number of hours worked (the classic reference here is Blundell,
Ham, and Meghir (1987)), migrant remittances (Bettin, Lucchetti, and Zaz-
zaro, 2012) or demand analysis for certain types of goods such as tobacco or
alcohol, from Jones (1989) onward.

In the literature, the earliest reference is Cragg (1971); later, the model
was extended to what is called the “dependent” model, which can be de-
scribed by the equations

y∗i = β′Xi + εi (1)

s∗i = γ′Zi + ui (2)

yi =

{
y∗i if y∗i > 0 and s∗i > 0
0 otherwise

(3)(
εi
ui

)
∼ N

[
0,

(
σ2 ρσ
ρσ 1

)]
(4)

Where yi is the dependent variable of interest, which is subject to a censoring
rule similar to Heckman’s sample selection model via the latent variable s∗i ,
plus a Tobit-like constraint.

Estimation is typically carried out by Maximum Likelihood (ML), which
is nowadays routine, especially since analytical expressions for the score vec-
tor and the Hessian matrix are readily derived. Clearly, the distributional
assumption in equation (4) is crucial. Unfortunately, this assumption is
rarely tested in practice. In fact, there is no standard way to carry out such
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a test; this is quite surprising, as it can be easily shown that distributional
misspecification leads to inconsistency of the ML estimator.1

Put differently, a QMLE strategy (White, 1982) is inapplicable here. Even
more importantly, alternative approaches robust to non-normality have not
emerged in the literature, like they have for other closely related models,
such as Heckman’s sample selection model (see for example Das, Newey, and
Vella, 2003).

2 Our Proposed Test

The test we propose builds on a conditional-moment approach originally pro-
posed by Smith (1987), supplemented with a bootstrap correction to improve
its poor finite-sample properties, as suggested by Horowitz (1994). A similar
strategy was recently proposed by Lucchetti and Pigini (2013), who focused
on testing the bivariate normality assumption in the bivariate probit and
sample selection models.

This test uses the fact that, under correct specification, the Information
Matrix equality implies that the score variance plus the expected Hessian
should be zero. This result provides a set of moment conditions that can
be empirically tested. The Information Matrix test is therefore a test for
E(Ci) = 0, where

Ci = vech

[
∂2`i
∂θ∂θ′

+GiG
′
i

]
, (5)

`i is the log-likelihood for the i-th observation (i = 1, . . . , n), θ is the k-vector
of parameters and Gi ≡ ∂`i

∂θ
; all quantities are evaluated at the “true” vector

θ = θ0. In what follows, we will adopt the notational convention to indicate
individual elements of the vector Ci by superscripting the two elements of
the vector θ with respect to which the derivatives are taken: for example,
Cβ,σ
i indicates ∂2`i

∂β∂σ
+ ∂`i

∂β
· ∂`i
∂σ

.
The asymptotic version of the test is calculated via an Outer Product of

the Gradient (OPG) regression (see Davidson and MacKinnon (2001)): the
test statistic equals nR2 of the regression of a vector of ones on a matrix
M , with typical row M ′

i = [G′i, C
′
i]. Under the null, the test statistic has an

asymptotic χ2 distribution with degrees of freedom given by df = rank(M)−
k.

1Arabmazar and Schmidt (1982) prove the inconsistency of the Tobit estimator when
disturbances are non-normal. The authors argue that the same considerations apply to
more generals models with limited dependent variables, such as sample selection models.
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Since the asymptotic version of the test is known2 to suffer from very
severe size bias in finite samples, a standard bootstrap correction is adopted:
given the ML estimate θ̂, the test statistic T is calculated. Then, a number B
of artificial data sets is generated, using θ̂ as parameters and the test on the
simulated data (Tb, for b = 1 . . . B) is computed. The bootstrapped critical
values are then recovered from the empirical quantiles of Tb.

3

2.1 Computational aspects

The number of available moment conditions may be, in general, smaller than
k(k+ 1)/2; this is because some may be collinear with elements of the score,
so that the column rank of the matrix M is not full. For the double-hurdle
model, this occurs under conditions that closely parallel those identified in
Lucchetti and Pigini (2013) for Heckman’s sample selection model.

The upper bound of df is k(k + 1)/2 − 1, since at least Cρ,ρ
i is always

dropped in the OPG regression regardless of the model specification: this
happens in the most favourable case of a model without intercepts where the
sets of regressors Xi and Zi are non overlapping and Cρ,ρ

i can be written as
a linear combination of Cγ,σ

i , Cγ,ρ
i , Cσ,ρ

i , and Gρ
i . In other (more common)

cases, the number of df varies with different model setups.
Whatever the overall number of available moment conditions, however,

the number of moment conditions to use in practice is open to choice. Such
choice must be based on a mix of different considerations: small sample
performance, ease of computation and scope of the alternative hypothesis.

We therefore focus on two variants: first, a test which includes all moment
conditions (henceforth “All moments”, or AM test), which can be considered
an asymptotically optimal portmanteau specification test versus general mis-
specification, including non-normality, non-linearity, heteroskedasticity and
other forms of incorrect specification.

Next, we consider a reduced version of the test using only third and fourth
moments of the joint distribution (henceforth “Third and fourth moments”,
or TF test). The rationale is that, strictly speaking, this is interpretable
as a normality test; however, other forms of misspecification, such as het-
eroskedasticity, omitted variables or non-linearity, would probably induce
non-normality as a side effect, so it may be advantageous to consider a test
based on a smaller set of moment conditions whose finite sample performance
may be better. A similar choice appears to be rather effective in Lucchetti
and Pigini (2013). Hence, for the TF test, we select from Ci only those

2See for example Cribari-Neto (1997) and references therein.
3Other approaches are possible; see Davidson and MacKinnon (2007).

3



columns containing third and fourth moment conditions to be included in
the OPG regression. In the double-hurdle model, third moment conditions
are in Cβ,σ

i , Cβ,ρ
i , Cγ,σ

i , Cγ,ρ
i and fourth moment conditions are in Cσ,σ

i , Cσ,ρ
i

and Cρ,ρ
i .

3 Monte Carlo study

Before going into the details of our Monte Carlo experiment, a word of warn-
ing is necessary. Numerical optimisation of the double-hurdle log-likelihood
may be difficult in some cases for two reasons: first, as is well known among
practitioners, the log-likelihood may be bimodal, especially in smaller sam-
ples;4 moreover, the maximal value of ρ may, in finite samples, lie arbi-
trarily close to unity, where the log-likelihood is non-differentiable and the
whole scheme breaks down. Therefore, we discard all cases in which |ρ̂| >
tanh(5) ' 0.99991. This happened especially often in the power analysis
(unsurprisingly) when n = 256, but was a relatively rare occurrence with
larger samples. The problem disappeared altogether for n > 1024. For this
reason, we omit reporting the results we obtained for n = 256. We do not
consider this a crucial omission: samples as small as 256 observations are
nowadays rather uncommon. Besides, failure to obtain convergence of the
numerical ML procedure should give by itself a qualitative indication of pos-
sible specification problems.

3.1 Experiment setup

We study the finite-sample properties of the proposed test in both the AM
and the TF versions. We design each scenario in order to analyse how its
performance relates to sample size, correlation coefficient, degree of censoring
in the dependent variable and departures from normality. For each scenario,
we run 1000 Monte Carlo and 400 bootstrap replications.

For the size analysis, we run Monte Carlo experiments considering values
of ρ in the grid (−0.5, 0, 0.5) and sample sizes of 512, 1024, 2048, and 4096
observations.5 In each experiment, the explanatory variables for equation
(1) are a constant term and x while the explanatory variables for equation
(2) are a constant and z; x and z are independent standard normal random

4In order to circumvent this problem, Bettin, Lucchetti, and Zazzaro (2012) propose a
grid search procedure, which we do not use here to maximise speed.

5We also ran a few experiments with more extreme values of ρ; these, however, are
not reported because the number of non-convergent estimates was rather problematic;
nevertheless, the results are qualitatively similar to those reported.
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variables. This makes the number of available moment conditions 15 for the
AM test and 9 for the TF test.

The conditional mean parameters are β = γ = [c, 1]. The constant term
c is computed so that, for a given value of ρ, a desired percentage of non–
censored observations is returned after generating the data.6 The standard
deviation σ in (4) is set to 1.

For the power analysis, we study the consequences of distributional mis-
specification in the main and in the selection equation error terms separately.
In both cases, we hold one error term normally distributed and generate the
other as either a standardised student-t6 or a standardised χ2

2. This choice
is made so to compare the normal distribution to a markedly asymmetric al-
ternative and a symmetric (but heavily leptokurtic) one and have an idea of
the relative impact of deviation from normality in both directions. The joint
distribution is then derived through a Gaussian copula. We use the same
grid for the correlation coefficient, covariates and standard deviation as for
the size analysis and we run our experiment for sample sizes of 512, 1024 and
2048. The procedure for getting the desired value of non-censored observa-
tions becomes overly complex when distributions are not normal. Therefore,
we set c as above (in all experiments, the actual observed proportion of cen-
sored cases p was very close to the desired one).

3.2 Size

Table 1 displays the results of the size analysis. Both the AM and the TF
versions of the test exhibit good size properties, even though the TF version
seems to be slightly less reliable in large samples.

The first experiment outcome we mention is important, but unsurprising,
as it merely confirms a well-known result, uniformly agreed upon by the
whole literature: the asymptotic version of the test exhibits a severe size
bias as it over-rejects the null hypothesis far too often: the empirical size of
the AM test is above 80% for a nominal size of 5% with 4096 observations
in all the scenarios considered; in the same cases, the size bias of the TF
test is more contained but far from its nominal value (around 20%).7 Hence,
bootstrapping critical values is absolutely mandatory.

As can be seen in Table 1, the empirical size of the test approaches the
nominal one as the sample size grows, which is also largely expected. A much

6In practice, we solve numerically for c the equation p = Φ2

(
c√
2
, c√

2
, ρ
1+σ2

)
, where p

is the desired percentage of non–censored observations and Φ2() is the bivariate standard
normal CDF.

7Results are not presented here in table form for brevity but are available upon request.
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more interesting result is one the closely parallels the findings in Lucchetti
and Pigini (2013) for the sample selection model: the performance of the
test worsens as the degree of censoring increases. This suggests that the size
of the test is partly affected by the information loss due to censoring: for
instance, there is a slight tendency to under-rejection with 75% of censored
observations and ρ = 0, which is the most unfavourable case in terms of the
quantity of information the test has at its disposal.

3.3 Power against non-normality

Tables 2 and 3 display the results of the power analysis that considers distri-
butional misspecifications in the main and in the selection equation, respec-
tively.

From Table 2, it clearly emerges that the TF version of the test has better
power properties than the AM version: while the former is built only on the
normality assumption, the latter version tests for all assumptions of correct
specification that, except for normality, are not violated in the scenarios
considered8. On the other hand, as discussed above, non-normality may be
in turn a mere side effect of other forms of misspecification.

The results in Table 3 show instead that both tests have rather poor
power properties when departures from normality are present only in the
selection equation: the binary nature of the dependent variable affects mainly
the proportion of observed data which, however, depends on the number of
censored observations.

In general, the power properties of the test depend on the intensity of
the departures from normality: the number of rejections is generally higher
when the asymmetric alternative is considered. Moreover, there is a clear
effect of the degree of censoring on power, which increases as the amount of
information lost due to censoring decreases.

4 Conclusions

Testing for misspecification in the double hurdle model is an important task,
that can be carried out very effectively by a conditional moment test.

Since the routine estimation technique is maximum likelihood, the rel-
evant moment conditions can be chosen from those stemming from the In-
formation Matrix equality. However, a bootstrap correction is absolutely

8This fact does not appear in Lucchetti and Pigini (2013), where power properties in
the sample selection are good in general. Again, in the case of the sample selection model,
much more information is available to the test than in the case of the double hurdle model.
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Table 2: Power at 95%: Misspecification of the Main Equation

AM

n = 512 n = 1024 n = 2048
Cens. \ ρ -0.5 0 0.5 -0.5 0 0.5 -0.5 0 0.5

χ2
2 23% 0.980 0.986 0.984 0.999 0.998 0.970 1.000 1.000 0.997
χ2
2 77% 0.018 0.015 0.023 0.081 0.039 0.063 0.191 0.095 0.110
t6 24% 0.023 0.024 0.041 0.066 0.033 0.069 0.077 0.050 0.049
t6 75% 0.022 0.022 0.034 0.048 0.033 0.056 0.058 0.052 0.082

TF

n = 512 n = 1024 n = 2048
Cens. \ ρ -0.5 0 0.5 -0.5 0 0.5 -0.5 0 0.5

χ2
2 23% 1.000 0.998 0.996 1.000 1.000 1.000 1.000 1.000 1.000
χ2
2 77% 0.073 0.024 0.029 0.508 0.377 0.363 0.998 0.993 0.993
t6 24% 0.035 0.041 0.057 0.090 0.150 0.187 0.322 0.550 0.584
t6 75% 0.031 0.039 0.060 0.031 0.065 0.137 0.061 0.226 0.478

Table 3: Power at 95%: Misspecification of the Selection Equation

AM

n = 512 n = 1024 n = 2048
Cens. \ ρ -0.5 0 0.5 -0.5 0 0.5 -0.5 0 0.5

χ2
2 23% 0.050 0.074 0.099 0.018 0.021 0.018 0.001 0.000 0.005
χ2
2 77% 0.019 0.011 0.018 0.010 0.001 0.008 0.007 0.001 0.007
t6 24% 0.020 0.022 0.040 0.032 0.030 0.047 0.055 0.047 0.056
t6 75% 0.037 0.031 0.040 0.043 0.025 0.028 0.046 0.036 0.038

TF

n = 512 n = 1024 n = 2048
Cens. \ ρ -0.5 0 0.5 -0.5 0 0.5 -0.5 0 0.5

χ2
2 23% 0.074 0.071 0.089 0.070 0.070 0.085 0.122 0.084 0.095
χ2
2 77% 0.045 0.040 0.035 0.057 0.043 0.052 0.102 0.092 0.087
t6 24% 0.040 0.032 0.039 0.037 0.035 0.031 0.060 0.045 0.035
t6 75% 0.038 0.046 0.048 0.049 0.039 0.038 0.054 0.071 0.050
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indispensable. Moreover, the choice of the actual moment conditions to use
in practice may be an issue.

In this article, we propose two versions of a misspecification test based
on the above principles and show, through comprehensive Monte Carlo sim-
ulations, that our proposed tests have good size properties even for relatively
small samples.

Their power when the normality assumption is violated is also, on the
whole, satisfactory in finite samples and increasing in the sample size; how-
ever, it must be noted that it heavily depends on the degree of censoring
and of departure from normality. Moreover, power appears to be much lower
when the selection equation is affected.
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