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Abstract

Since the seminal paper by Heckman (1974), the sample selection model has
been an essential tool for applied economists and arguably the most sensitive
to sources of misspecification among the standard microeconometric models
involving limited dependent variables. The need for alternative methods to
get consistent estimates has led to a number of estimation proposals for the
sample selection model under non-normality. There is a marked dichotomy
in the literature that has developed in two conceptually different directions:
the bivariate normality assumption can be either replaced, by using copulae,
or relaxed/removed, relying on semi and nonparametric estimators.

This paper surveys the more recent proposals on the estimation of sam-
ple selection model that deal with distributional misspecification giving the
practitioner a unified framework of both parametric and semi-nonparametric
options.
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Of Butterflies and Caterpillars: Bivari-
ate Normality in the Sample Selection
Model∗

Claudia Pigini

What the caterpillar calls the end, the rest of the world calls
a butterfly. Lao Tzu.

1 Introduction

Since the seminal papers by Gronau (1974) and Heckman (1974), (1976),
(1979), the sample selection model has been an essential tool for applied
economists1 and arguably the most sensitive to sources of misspecification
among the standard microeconometric models involving limited dependent
variables. In particular, both maximum likelihood and the two-step esti-
mators, put forward in Heckman (1974) and Heckman (1976) respectively,
heavily rely on the assumption of bivariate normality. When this assump-
tion fails, the maximum likelihood estimator is inconsistent (Arabmazar and
Schmidt, 1982) and some of the weaker conditions ensuring consistency of
the two-step estimator may also not hold.

Considerable theoretical effort has been put into dealing with non-normality
in the sample selection model. Even recently, some of the research on this
matter has returned to the issue of testing its distributional assumptions.
There are extensions to proposals originally put forward in the 80’s: van der
Klaauw and Koning (2003) derived an LR test from the semiparametric ap-
proach of Gallant and Nychka (1987); Montes-Rojas (2011) runs a Monte
Carlo study for the LM test statistic based on the Edgeworth series expan-
sion that serves as a suitable alternative distribution in Lee (1984); Lucchetti

∗I am grateful to Jack Lucchetti for the useful suggestions and discussions in the process
of writing this paper. I am also grateful to Stefano Staffolani, Alessandro Sembenelli,
Lorenzo Cappellari, Alessandro Sterlacchini, Alessia Lo Turco, Chiara Gigliarano and one
referee for their comments.

1According to Google Scholar at 5-19-2011, the three papers Heckman (1974), (1976)
and (1979) count 20273 citations.

1



and Pigini (2011) also investigate the finite-sample properties of conditional
moment tests for bivariate normality in models with sample selection as sug-
gested in Smith (1985) and (1987). However, there is no comprehensive work
that establishes the superiority in terms of performance of one test statistic
or the other, so there is, to date, no common procedure to test bivariate
normality in the sample selection model.

In any case, when evidence is at odds it is tempting to conclude that there
is a non-normality issue. The need for alternative methods to get consistent
estimates has led, in the last thirty years, to a number of estimation propos-
als for the sample selection model under non-normality. There is a marked
dichotomy in the literature that has developed in two conceptually differ-
ent directions: the bivariate normality assumption can be either replaced or
relaxed/removed.

The first approach consists of replacing the assumption of bivariate nor-
mality with a specific alternative multivariate distribution, therefore remain-
ing within the parametric framework. This way of proceeding leads to the
use of alternative known distributions to model the marginals and the corre-
lation structure. Among others, a fairly recent contribution to this approach
has been made by the introduction of copulae to model sample selectivity.
Of course this implies that the researcher has to select the appropriate dis-
tribution(s) and rewrite, in many cases, the log-likelihood function on a case
by case-wise basis. However, if correct distributional assumptions have been
made 2, these estimators will have all the desirable properties. The second
approach is based on the idea of removing the distributional assumption ei-
ther in part or altogether. This led to a number of contributions proposing
semi or nonparametric estimators mainly of the two-step model with the
aim of removing or generalising the correction of the selectivity bias. This
approach often results in adding non-linear terms to the conditional mean
especially in the main equation which contains the parameters of economic
interest.

But what is really the cause of non-normality? The failure of a distri-
butional assumption may be seen as a specification error due to wrong a
priori conjectures on the specification of the model and not a problem with
the data such model is imposed upon. Perhaps, there are other hypotheses
that are being violated within the model specification as, for instance, the
linearity of the conditional mean or wrong conditioning. Intuitively, omit-
ted non-linear terms would be then included in the disturbances distorting
the characteristics of their distribution. In this spirit is, for example, the
RESET-like normality test of Pagan and Vella (1989) for univariate limited

2provided they can be tested
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dependent variable models, where non-linear terms in the conditional mean
serve as detectors of departures from normality in the error term. In other
words, a linear univariate model with a non-normally distributed error term
can be seen as a model with non-linearities in the conditional mean and a
normally distributed error term. Thus, bivariate non-normality can be seen,
from another perspective, as a consequence of wrong conditioning; in this
sense, the joint distribution of the disturbances in the selection model will
deviate from normality inasmuch as the conditional means are non-linear.
Viewing non-normality as some kind of a “dual” problem basically gives the
practitioner the opportunity of rewriting the model or modifying the spec-
ification for the bivariate normality assumption to hold; whenever possible,
“inducing” bivariate normality ensures the maximum likelihood estimates
are consistent and fully efficient.

Alternatively, the literature offers the practitioner two options: either
replacing the distributional assumption or relying on semi-nonparametric
methods, thus disposing of bivariate normality. The choice of following one
of the various approaches available can be made on the basis of two main
criteria: first the practitioner can compare non-nested models by means of
traditional diagnostics such as a Vuong test (1989) and information criteria,
when the likelihood is available, or relying on cross-validation to choose be-
tween semi or nonparametric models. Secondly, the choice can be driven by
the purpose of the estimates: if the main interest is on the structural param-
eters, the practitioner may find more appropriate to change the stochastic
structure of the model in order to get consistent estimates of the behavioural
specification; alternatively, he can lean towards a more flexible specification,
through semiparametric methods, whenever the aim of the model is forecast
and statistical accuracy is crucial.

The aim of this paper is to survey the more recent proposals on the
estimation of sample selection model that deal with distributional misspeci-
fication giving the practitioner a unified framework of both parametric and
semi-nonparametric options. We add to previous surveys (Vella (1998), Pa-
gan and Ullah (1999)) very recent approaches, as, for example, the use of
copulae to overcome the non-normality problem.

The paper is organised as follows: section 2 briefly describes the sample
selection model and its estimation by both two-step and maximum likelihood
under correct specification; section 3 reviews those approaches that replace
the assumption on the underlying distribution of the error terms; section 4
reviews semi-nonparametric proposals; section 5 contains an example using
data from Mroz (1987) of some of the previous methods. Section 6 concludes.
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2 The sample selection model

The problem of selectivity bias first arose as an empirical matter in Heckman
(1974) and Gronau (1974) when estimating the wage distribution of working
women conditional on facing the decision of entering the labour market. In
Heckman (1974) we find the first maximum likelihood estimator while in
Heckman (1976) the two-step estimator was first introduced.

2.1 “Why are the data missing?” 3

Since the seminal paper by Heckman (1979), that clarifies and extends the
work of Heckman (1976), selection bias has been referred to as a specification
error caused by the presence of non-random missing data. Such misspecifica-
tion results in the inconsistency of least squares estimates of the behavioural
parameters of interest. Suppose you have an iid sample of n cross-sectional
observations and you want to estimate the parameters of the following system
of two simultaneous equations

Y1i = X ′1iβ1 + U1i (1)

Y2i = X ′2iβ2 + U2i (2)

where X1i and X2i are full-ranked sets of regressors with respectively k1 and
k2 explanatory variables. Error terms have zero mean and cross-equation
non-zero covariance. When data on response variables are available for all
observations, consistent estimates of β1 and β2 can be trivially obtained by
ordinary least squares.

Suppose now that Y1 is censored, which means we have all the information
only for a subsample of p observations while Y1 is missing for the remaining
n− p observations. The bias in the estimation of β1 arises when it is Y2 that
describes the mechanism determining which observations are selected into
the subsample of complete data. In other words, for the p observations to be
considered non-randomly selected, “we must know why the data are miss-
ing” (Heckman, 1976). A number of examples fall into this framework. As
mentioned above, the most celebrated one is the distribution of the observed
wage faced by working women who are, however, a subset of a larger sample
of females (non-randomly) deciding whether or not to participate into the
labour market (see Heckman (1974) and Gronau (1974)). Other examples
are listed in Heckman (1979) such as wages of trainees, migrants and union
members.

3Heckman (1979)
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Following Heckman’s notation, for equation (1), the population regression
function would be

E [Y1i|X ′1iβ1] = X ′1iβ1 for i = 1...n (3)

while the regression function of the selected sample would depend on a se-
lection rule, rule that put those p observations in the subsample in the first
place. Let us define (conventionally) this rule as follows: Y1i is observed only
if Y2i ≥ 0, where zero is a normalised threshold, and define a dummy variable
di that is equal to 1 if Y2i ≥ 0 and zero otherwise. So now we can write the
regression function for the selected subsample as

E [Y1i|X ′1iβ1, di = 1] = X ′1iβ1 + E [U1i|di = 1] for i = 1...p. (4)

As pointed out in Manski (1989), in absence of selectivity bias, equation (3)
equals equation (4):

E [Y1i|X ′1iβ1, di = 1] = E [Y1i|X ′1iβ1, di = 0] = E [Y1i|X ′1iβ1] (5)

Using the definition of di we can rewrite equation (4) as

E [Y1i|X ′1iβ1, U2i ≥ −X ′2iβ2] = X ′1iβ1 + E [U1i|U2i ≥ −X ′2iβ2] (6)

Equation (6) openly shows why the selectivity bias arises. It is clear that if
we were to use ordinary least squares to estimate the parameters of equation
(1), we would be omitting the conditional mean of U1i on the right hand-
side of equation (6) that is non-zero and a function of X2i, so the estimates
would be inconsistent. An endogeneity problem also appears as disturbances
are correlated with regressors since U1i depends on X2i. In particular, the
distribution of the latent variable, let’s say Y ∗1i, does not depend on U2i.
However Y1i does. Following the example of the labour force participation, we
may separate the observed wage Y1i for the selected subsample of p working
women and the latent wage Y ∗1i that we dot not observe for those n−p women
as it does not exceed their reservation wage. Clearly, the distribution of the
observed wage Y1i depends on the decision of entering the labour market
which, following the above normalisation, occurs whenever Y2i ≥ 0.

The maximum likelihood and two-step estimators currently used for mod-
els with sample selection bias were purposed respectively in Heckman (1974)
and in Heckman (1976) (1979). The following sections briefly review these
estimators.
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2.2 Maximum likelihood estimator

The maximum likelihood estimator for the sample selection model, also
known as Type II Tobit model (Amemiya, 1984), is based on the idea of
estimating the parameters of the joint distribution of Y1i, Y2i for the whole
sample instead of focusing on the conditional mean of Y1i for the selected
one.

The key assumption for the maximum likelihood estimation is the joint
normality of the disturbances (U1i, U2i):

(
U1i

U2i

)
∼ N

((
0
0

)
;

(
σ2 ρσ
ρσ 1

))
where σ2 is the variance of U1i and ρ the correlation coefficient between the
two error terms.

The log-likelihood function for model (1)-(2) can be written as

∑
di=1

ln

∫ +∞

−Z2i

ϕ2(Z1i, U2i)dU2i +
∑
di=0

ln

∫ +∞

−∞

∫ −Z2i

−∞
ϕ2(U1i, U2i)dU1idU2i (7)

where ϕ2 is the bivariate standard normal density function, Z1i =
Y1i−X′

1iβ1
σ

and Z2i = X ′2iβ2. To ease the notation, we parametrise the bivariate nor-
mal density by using hyperbolic functions so that instead of the correlation
coefficient ρ we will be using α = atanh(ρ) and the related cα = cosh(α)
and sα = sinh(α). With this quantities and solving the integrals, (7) can be
rewritten as

` =
∑
di=1

(
ln [Φ(cαZ2i + sαZ1i)]− 0.5Z2

1i − T
)

+
∑
di=0

ln [1− Φ(Z2i)] (8)

where Φ is the univariate standard normal distribution function, cα = 1√
1−ρ2

,

sα = ρcα and T = lnσ
√

2π. The k1 + k2 + 2 vector θ̂′ = (β̂1

′
, β̂2

′
, σ̂, α̂)

that maximises (8) is a consistent, fully efficient and asymptotically normal
estimator of the parameters of model (1)-(2). The usual rules of identification
apply.

Despite its desirable properties, non-normality of the error terms causes
the maximum likelihood estimator to be inconsistent (see, for example, Man-
ski (1989) and Vella (1998)). This is, in general, a shortcoming of limited
dependent variable models that heavily rely on distributional assumptions
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for estimation (Smith, 1989). In particular, for the Tobit and sample selec-
tion models, the consequences of distributional misspecification have been
investigated by Arabmazar and Schmidt (1982).

2.3 Two-step estimator

While the maximum likelihood estimator of model (1)-(2) is most efficient,
in the 70’s it was common sense to worry about finding methods that were
not as expensive and extremely time consuming as was maximum likelihood
estimation at the time. As reported in Heckman (1976), it cost 700$ to es-
timate the sample selection model by maximum likelihood, while only 15$
using the two-step procedure. It was mostly its manageability, in terms of
costs and implementation, that gave Heckman’s two-step estimator for the
sample selection (1976 1979) such popularity. As mentioned in section 2.2,
there is also the matter of finding an estimator that would offer robustness
under a weaker specification of the distributional structure. Olsen (1980) and
Newey (1999a) even proved that for the two-step estimator to be consistent,
weaker assumptions are needed, namely the linearity of the selection correc-
tion term. Also, as argued in Vella (1998), the choice of an estimator that
is “only” consistent over a maximum likelihood one, results in an acceptable
efficiency loss if more robustness to distributional misspecification is gained.

In reviewing the two-step estimator, we follow, however, Heckman’s origi-
nal setting, assuming that the error terms of model (1)-(2) are jointly normal.
The two-step estimator is based on the idea of estimating the conditional
mean E [U1i|U2i ≥ −Z2i] that appears in equation (6).

Assuming that the covariance structure of the disturbances is the one used
for maximum likelihood estimation, a known result of bivariate normality is

E [U1i|U2i ≥ −Z2i] = ρσλi (9)

where

λi =
ϕ (Z2i)

1− Φ (Z2i)

is the inverse Mill’s ratio which is monotone decreasing in the probability of
being selected into the subsample. Using λi, equation (1) may be corrected
for the bias selectivity as follows:

Y1i = X ′1iβ1 + γλi + Vi (10)

di = X ′2iβ2 + U2i. (11)
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In practice, the first step consists of estimating a probit model for the selec-
tion equation (11 maximising

` =
∑
di=1

ln [Φ (Z2i)] +
∑
di=0

ln [1− Φ (Z2i)] . (12)

This allows to give a consistent estimate λi by taking the probit generalised
residuals (Gourieroux, Monfort, Renault, and Trognon, 1987) only for the
selected sample. The second step is the least square estimation of

Y1i = X ′1iβ1 + γλ̂i + Vi. (13)

Despite the ease of implementation, this estimator does have some short-
comings. Other than the loss of efficiency, the disturbances are heteroscedas-
tic by construction. Moreover, the estimator of the covariance matrix is
downward biased (see Heckman (1976)). Identification of this model basi-
cally relies on the inverse Mill’s ratio being sufficiently non-linear in Z2i.
For a more detailed discussion on the matter see Manski (1989) and Puhani
(2000).

As mentioned earlier in this section, the consequences of distributional
misspecification have been found to be less severe than for the maximum
likelihood estimator. Newey (1999a) proved that as long as E [U1i|U2i ≥ −Z2i]
is linear in the bias correction term λi and such correction term is non-
linear in Z2i (conditions that are met when bivariate normality is the correct
specification), the two-step estimator is consistent.

However, with the advancements of numerical optimisation techniques, it
has become easier and easier to estimate this model by maximum likelihood
which ensures that estimates are consistent and most efficient. That is, if
the underlying distribution is correctly specified.

3 Parametric estimators

In the previous sections, we have recalled that while the distributional mis-
specification in the sample selection model leads to the inconsistency of the
maximum likelihood estimates consequences are not so severe for the two-
step estimator. However, falling back on the latter still brings the efficiency
loss and having to deal with an inconsistent covariance matrix estimator.
For these reasons, since the early 80’s, the literature has agreed upon the
need of finding alternative estimators for the sample selection model when
the assumption of bivariate normality is violated. As introduced in section
1, dealing with non-normality brought to a number of research works that
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correct such misspecification either generalising the conditional mean spec-
ification or working on the assumption of the bivariate distribution of the
disturbances.

This section surveys the main estimation proposals that replace the bi-
variate normality with an alternative distribution. Some approaches proceed
in a two-step manner thus intervening on both the distributional assumption
for the selection equation and on the functional form of the bias correction
term while the re-specification of the bivariate stochastic structure of the
disturbances in the sample selection model implies that the log-likelihood
has to be rewritten for any given choice of specific alternative distributions
of the disturbances.

In this section, we first briefly review the proposals of Olsen (1980) and
Lee (1982) who a two-step estimation under alternative distributions of the
selection equation error term. Then we turn to the copula approach. It first
appeared in Lee (1983), although it reached wide popularity only in the next
decade, with the contributions by Prieger (2002) and Smith (2003).

3.1 Two-step estimators under alternative assumptions

The literature that developed two-step estimators for the sample selection
model under non-normality has mainly relied on semiparametric estimators.
There are, however, two contributions from the early 80’s using a two-step
parametric estimator under specific alternative distributions of the selection
equation error term: Olsen (1980) and Lee (1982).

As a matter of fact, Newey (1999a) proved the two-step estimator to be
consistent under assumptions that are less restrictive than bivariate normal-
ity, namely the normal distribution of the selection equation error term U2i

and the linearity of the conditional expectation of U1i on U2i shown in (9) of
section 2.3. Under these conditions, alternative distributions may be imposed
on U2i, in order to estimate the selection equation with maximum likelihood,
as long as the conditional expectation remains of linear form.

Instead of assuming normality of the distribution of U2i, Olsen (1980)
proposes a two-step estimator in which U2i is uniformly distributed. Clearly
the term correcting the selectivity bias is no longer the inverse Mill’s ratio.
The last term in equation (4) becomes:

E [U1i|di = 1] = ρσ
√

3 (Z2i − 1) (14)

which is a transformation of the residuals of a linear probability model for
the selection equation taken only for the sub-sample. Being the correc-
tion a linear transformation of the index function of the selection equation,

9



stronger exclusion restrictions are required for identification. According to
Vella (1998), the resulting estimates of this specification are similar to those
obtained form the two-step estimation under bivariate normality.

The strategy adopted by Lee (1982) is transforming a general distribution
into a standard normal by means of the quantile function. He relaxes the
assumption that U2i is normally distributed but follows a specific alternative
distribution F2. Since linearity of E [U1i|U2i] cannot be generalised to any
distribution, he needs to assume it. Therefore (14) becomes

E [U1i|di = 1] = ρσ
ϕ (J2(U2i))

F2(U2i)
(15)

where J2 (U2) = Φ−1F2 (U2) is called a normalising transformation. However
flexible, the consistency of this estimator requires that both F2 is correctly
specified and that the conditional expectation is linear.

3.2 Copulae

Another way to deal with the misspecification on the underlying distribution
in the sample selection model, is to substitute the assumption of bivariate
normality with a specific alternative bivariate distribution function. Accord-
ing to Smith (2003), this way was not much pursued due to computational
difficulties that can be overcome, however, when the joint distribution is
specified as a copula. This statistical tool is mostly used in financial econo-
metrics often to model the tail dependence in risk management problems.
In this section, we review the recent applications of the copula approach to
sample selection modelling, giving minimum theoretical elements on bivari-
ate copulae that we borrow from Smith (2003) and Bhat and Eluru (2009),
in order to ease the exposition. For a detailed review of the copula approach
in econometrics, see Trivedi and Zimmer (2007). Throughout this section,
we will follow the notation of Smith (2003).

3.2.1 A few elements of Copula theory

A copula is basically a function that takes as arguments pre-specified uni-
variate marginal distribution functions and produces their multivariate dis-
tribution. The foundations of copulae lie on Sklar’s theorem (1959) which
shows that given two marginal distribution functions F1(x1) and F2(x2) of
X1 and X2 respectively, and their joint distribution function F (x1, x2), then
there exist a function C, the copula, such that

F (x1, x2) = C (F1(x1), F2(x2)) . (16)

10



The copula represents the joint distribution function of two random variables
in terms of their distinct marginals separating them from the their depen-
dence structure. Standard properties of bivariate copulae are C(u, v) = 0 if
u = v = 0, C(1, v) = v and C(u, 1) = u where u, v ∈ [0, 1]. Three examples
of simple copulae are

Π = uv (17)

W =
u+ v − 1 + |u+ v − 1|

2
= max(u+ v − 1, 0) (18)

M =
u+ v − |u− v|

2
= min(u, v) (19)

where (17) is called the Product copula which is equivalent to F (x1, x2) =
F1(x1)F2(x2) and models stochastic independence of X1 and X2. Expressions
(18) and (19) are, respectively, the lower and the upper Fréchet-Hoeffding
bounds (see Kwerel (1988)) which have the property of containing any bi-
variate copula:

W (u, v) ≤ C(u, v) ≤M(u, v) (20)

As customary in these kind of settings, the dependence structure of the bi-
variate distribution is separately parametrised by a scalar θ whose possi-
ble values indexes a member of the family of copulae represented by the
notation Cθ(u, v). For instance, families of bivariate copulae employed in
modelling sample selection are Gaussian, Farlie-Gumbel-Morgenstern (FGM
henceforth) and Archimedean. The ability that a family of copulae has to
represent the degree of dependence between X1 and X2 is measured by the
extent to which it is able to cover the closed interval delimited by the Fréchet-
Hoeffding bounds which are approached by C as θ reaches its extreme values.
As an example, in the Gaussian family C−1(u, v) = W and C1(u, v) = M
as θ ∈ [−1, 1]. Furthermore, a family of copulae is comprehensive when is
able to fully parametrise the range of dependence between W and M in-
cluding also Π as a special or limiting case. For families of copulae that are
not comprehensive4 other measures of concordance(discordance) are needed
to properly examine their coverage. Most traditional is Pearson’s product-
moment correlation coefficient ρ which measures linear dependence between
X1 and X2. However, some of its characteristics, such as the lack of invari-
ance with respect to the margins and the fact that ρ = 0 does not imply

4one example is the FGM family of copulae which covers Π but not the Fréchet-
Hoeffding bounds
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independence of X1 and X2, are not desirable in the context of copula mod-
elling. Such limitations led to the use of other measures such as Kendall’s
τ and Spearman’s ρ5. Among their properties, they do not depend on the
marginal distribution functions but only on the copula, are bounded between
[−1, 1] and they take value −1 in W , 1 in M and 0 in Π.

3.2.2 Modelling sample selection with copulae

As argued in Smith (2003), a sample selection model where the the joint
distribution of the disturbances is built by means of a copula, can be seen
as a generalised model that includes the original specification (1)-(2) under
the assumption of bivariate normality as a special case. This is because the
choices of the marginal distributions and the copula to employ are two en-
tirely separate steps based solely on the analyst’s preferences. The literature
provides several examples of modelling sample selection using copulae.

A first generalisation of the normal model appeared in Lee (1983) who
used a Gaussian copula to model the bivariate distribution of the error terms.
Lee’s model construction is based on the idea that given two arbitrary know
non-normal marginals for U1 and U2 in (1)-(2), namely F1(U1) F2(U2), we
can obtain two normally distributed error terms J1 (U1) and J2 (U2) applying
the standard normal quantile function as follows:

J1 (U1) = Φ−1 (F1 (U1)) (21)

J2 (U2) = Φ−1 (F2 (U2)) . (22)

After the inversion, the joint distribution of J1 and J2 is specified as a bi-
variate normal F (U1, U2) = Φ2 (J1(U1), J2(U2); ρ) which is equivalent to a
Gaussian copula

Cθ(u, v) = Φ2(Φ−1(u),Φ−1(v); θ) where θ ∈ [−1, 1]. (23)

Therefore, the log-likelihood function for Lee’s model is

` =
∑
di=1

[
ln Φ

(
cαΦ−1(v) + sαΦ−1(u)

)
+ ln f1 − lnσ

]
+
∑
di=0

ln v (24)

where u = F1(U1i), v = F2(U2i) and f1 is the density function of U1. Lee’s
approach was the first attempt to allow some flexibility to the marginal dis-
tributions of the error while maintaining the fully parametrised context of

5see the aforementioned references for further details
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maximum likelihood estimation. At that time, however, no applications fol-
lowed and bivariate normality remained the standard distributional assump-
tion. Later, the increasing use of copulae included this approach as a special
case of a wider range of choices withing the copula modelling.

The FGM (Farlie - Gumbel - Morgenstern) copula was first used in Prieger
(2002) to jointly model health care usage and spells of hospitalisation in
presence of self-selection. Prieger’s specification of the marginals involves the
normal distribution of the selection equation error term for the whole sample
and the Gamma distribution for the sub-sample of hospitalised individuals.
The FGM family of copulae is specified as

Cθ(u, v) = uv(1 + θ(1− u)(1− v)) where θ ∈ [−1, 1]. (25)

In general, the log-likelihood for FGM model is

` =
∑
di=1

ln [(1− v)(1− θv(1− 2u))f1] +
∑
di=0

ln v (26)

Basing model selection on Vuong tests (Vuong, 1989) and traditional informa-
tion criteria, such as BIC and AIC, Prieger concludes that the FGM model
provides a better fit of the data than both the original and Lee’s model.
Despite the very handy analytic form of the FGM copula, it has some limi-
tations. For instance, the FGM is not a comprehensive copula and can only
capture weak dependence between the marginal distributions (figure (1b) in
Bhat and Eluru (2009) is enlightening) as both Spearman’s ρ and Kendall’s
τ are further bounded6.

To overcome such limitations and take advantage of a manageable an-
alytical form, Smith (2003) introduces the class of Archimedean copulae to
sample selection modelling. Archimedean copulae are functions characterised
by a so-called generator denoted by ϕ : [0, 1] → [0,∞) with ϕ(1) = 0. The
generator is an additive, continuous, convex and decreasing function:

ϕ′(t) < 0, ϕ′′(t) > 0 for 0 < t ≤ 1

A bivariate Archimedean copula is generated by ϕ as follows:

ϕ(Cθ(u, v)) = ϕ(u) + ϕ(u) (27)

As pointed out in Smith (2003), a peculiarity of this structure is the re-
duction of the arguments’ dimension: a bivariate copula function takes two
arguments while the generator function takes single one. This is a feature of

6Spearman’s ρ ∈
[
− 1

3 ,
1
3

]
and Kendall’s τ ∈

[
− 2

9 ,
2
9

]
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the Archimedean class of copulae that considerably eases their applications
especially when it comes to log-likelihood and score computation. In addi-
tion, if ϕ(0) =∞ than the inverse ϕ−1 exists, so that bivariate Archimedean
copulae can be built as:

Cθ(u, v) = ϕ−1 (ϕ(u) + ϕ(v)) (28)

The Archimedean class of copulae is large enough to accommodate a wide
range of distributional shapes. In addition, this family includes both com-
prehensive and non-comprehensive copulae and accommodates a wide range
of dependencies. Some of the copulae that belong to this family are listed in
table 1.

Table 1: Examples of bivariate Archimedean copulae

Name Cθ(u, v) Generator ϕ(t) Range of θ

AHM uv
(1−θ(1−u)(1−v)) log 1−θ(1−t)

t [−1, 1]

Clayton
[
u−θ + v−θ − 1

]−1/θ
(t−θ − 1)/θ (0,∞)

Frank − 1
θ ln

(
1 + (e−θu−1)(e−θv−1)

e−θ−1

)
−log e

θt−1
eθ−1 (−∞,+∞)

Gumbel exp
[
−
(
(− lnu)θ + (− ln v)θ

)1/θ]
(−logt)θ [1,+∞)

Joe 1−
(
(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ

)1/θ −log(1− (1− t)θ) [1,+∞)

In general, the log-likelihood function of an Archimedean copula for the
sample selection model is

` =
∑
di=1

ln

(
1− ϕ′(u)

ϕ′(Cθ)

)
f1 +

∑
di=0

ln v (29)

Smith provides applications of the copula approach to both the labour supply
case (using data from the 1987 Michigan Panel Study of Income Dynamics)
and re-proposing the estimation of the model for health care usage and spells
of hospitalisation in Prieger (2002). In both cases, estimations are carried
out using the original normal model (1)-(2), Lee’s model, Prieger’s FGM
and Archimedean copulae. In modelling labour supply, he specifies normal
marginals, while for the hospitalisation spells he follows the normal-gamma
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marginal specification in Prieger (2002). Basing model selection on the final
values of the log-likelihood functions, Smith concludes that the FGM copula
seems to better fit the data on labour supply while in modelling time spent in
hospitals, some of the Archimedean copulae and Prieger’s FGM outperform
both the original and Lee’s models.

The three classes of copulae listed above, namely the Gaussian, the FGM
and the Archimedean families, have become a well established framework
for copula modelling of sample selectivity. One example is in Genius and
Strazzera (2008). The paper contains an interesting comparison between the
estimation of a copula structure and the semi-parametric two-step estima-
tion using the female labour force participation data in Martins (2001)7. The
authors specify a tν distribution for the wage equation and logistic marginal
for the selection equation. The joint distribution is specified as a Joe copula.
The results are similar to those obtained with the semi-parametric two-step
estimation in Martins (2001), while the AIC information criterion and the
Vuong test suggest that the Joe model provides a better fit than the standard
bivariate normal. Bhat and Eluru (2009) model the effect self-selection from
residential neighbourhood choice on travel behaviour. A number of copu-
lae among those described above are estimated revealing that the best fit
to the data is offered by the Frank copula on the basis of the BIC informa-
tion criterion. More importantly, results underline that, differently from the
normal model, the copulae are able to detect the presence of self-selection,
implying that misleading conclusions can by drawn when the assumptions
on the dependency structure are inappropriate. Finally, Eberth and Smith
(2010) exploit the copula approach to model the sample selection that arises
from the decision to participate in to sport activities and their duration. The
authors specify the marginals as a normal distribution for the selection equa-
tion and gamma for the duration of sport activities. Those are then bound
together by a Frank copula. The estimates of the Frank model are com-
pared with those obtained under the assumption of independence confirming
the presence of a selectivity bias as the dependence structure appears to be
statistically significant.

3.2.3 Remarks on the Copula approach

The literature on copulae applied to sample selection modelling suggests some
considerations. The mentioned authors offer a number of remarks we feel the
need to organise.

The next section of this paper is entirely devoted to semi and non para-

7This paper will be reviewed in detail in the next section.
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metric approaches. However, it is necessary, for the sake of argument, to
report the discussions of copula authors on the choice of one approach or the
other. In favour of copulae, Bhat and Eluru (2009) argue that the semi and
non parametric approaches imply the estimation of a large number of param-
eters, the resulting estimates are inefficient relatively to fully parametrised
models, may not allow diagnostics and are limited when it comes to including
a large set of covariates. Also, all authors agree upon the computational sim-
plicity of the copula approach that allows the practitioner to exploit familiar
tools such as maximum likelihood without requiring simulation methods or
numerical integration. As pointed out in Smith (2003) maximum likelihood
allows for simultaneous estimation of all the parameters of the model, the
analytical score is not difficult to compute and such method, if the usual
regularity of conditions are met, ensures consistent, efficient and asymptoti-
cally normal estimators. In addition, the practitioner has the possibility of a
piece-wise model specification, as marginal distributions are not constrained
to belong to the same family of the bivariate copula distribution. Moreover,
Genius and Strazzera (2008) argue that copula modelling allows for direct
estimation of the dependence structure in the sample selection model while
semi and non parametric methods do not.

As always, however, there are pros and cons. There is a series of well
known drawbacks when estimating models specified by copulae. As remarked
in Smith (2003), in these models Hessian computation is troublesome, so the
optimisation falls back on BFGS or, alternatively, on numerical approxima-
tions of the log-likelihood second derivatives in order to use the Newton-
Rapshon algorithm. This reflects on the estimation of the parameters covari-
ance matrix as well. As a result, the OPG estimator must be used which is
known to have disappointing properties in small samples. Also convergence
in these models is not always easily achieved as the log-likelihood may, in
some cases, turn out to be not concave or present multiple maxima.

Another crucial point stands on the correct specification of these models.
Maximum likelihood estimators have all the desirable properties provided
the (alternative) distributional assumptions are correct. Smith (2003) ar-
gues that it seems plausible that if the maximum likelihood estimator of the
sample selection model under the null hypothesis of bivariate normality is in-
consistent when the distribution is misspecified, the same result would arise
when the null hypothesis of a specific non-normal distribution is incorrect.
We add that testing the distributional assumptions is not straightforward.
One could think of an Information Matrix test for general correct specifica-
tion. For one thing, this procedure involves the analytical Hessian matrix and
the problems described above would arise. Moreover, even if the test statis-
tic’s computation is managed, results are unreliable (Lucchetti and Pigini,
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2011). To date, all that can be done is a posteriori model selection. Since
copulae are non-nested, one could base his decisions on the traditional in-
formation criteria (AIC, BIC) or Vuong selection tests. As a result, there is
never a best way to fit one’s data but only a winner of a pair-wise comparison.
Every copula author stresses that, in this context, the choice of a particular
model is made on a case-wise basis relating to a given empirical problem and,
as we saw, it involves a priori decisions not only on the joint distributions
and dependence structures, but on the marginals as well. Hence, the choice
of a particular model specification relies solely on the researcher’s insight of
the empirical problem under examination.

When the practitioner faces a non-normality problem in the sample se-
lection model, the option offered by the copula approach is worth pursuing
whenever the accuracy of structural parameters estimates is the priority.
Well motivated conjectures on the stochastic structure of the phenomenon
may lead to specifications better fitting the data than the traditional sam-
ple selection model. Moreover, replacing the assumptions on the bivariate
distribution, as it happens with copulae, allows the specification of the con-
ditional mean to remain intact, which is crucial to the interpretability of a
model from a behavioural point of view.

4 Semiparametric estimators

As mentioned in section 1, a key point of this paper is to join different liter-
ature threads that dealt with the failure of the normality assumption in the
sample selection model. As we saw, the copula approach allows to substitute
such assumption with a specific bivariate stochastic structure leading to the
familiar maximum likelihood estimator.

On the contrary, there is a great number of contributions that has gone
in the direction of removing distributional assumptions altogether. Since the
late 80’s, semiparametric methods have been proposed as an alternative ap-
proach to the estimation of the sample selection model. This is, however, only
one among the numerous applications of semi and nonparametric economet-
rics. According to Racine (2008), the first published paper on nonparametric
methods dates back to Rosenblatt (1956), while theoretical contributions to
this research thread started to proliferate in the 60’s. But what does semi-
parametric mean? Let us start with the definition given by Powell (1994):

Semiparametric modelling is, as its name suggests, a hybrid of
the parametric and nonparametric approaches to construction,
fitting and validation of statistical models.
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The key feature of nonparametric methods is not requiring the specification
of some functional forms that might, instead, play an important role in fully
parametric models. As a matter of fact, nonparametric methods come in
handy whenever the parametric specification of a certain model turns out to
be inappropriate and there is no way to assess whether a specific alternative
might be better suited. Following Racine (2008), when we use parametric
methods we are implicitly assuming that there is a pre-determined data gen-
erating process of which a possible realization is the data we are working
on. We then use these data to approximate the parameters of the dgp. On
the contrary, nonparametric methods let the data determining their joint
distribution and a possible appropriate model without any a priori conjec-
tures. The term semiparametric stands for the application of a nonpara-
metric method to approximate some unknown function with, however, some
parametric restrictions on the quantities of interest or on the argument the
unknown function takes.

An extensive review of the estimation proposals for the sample selection
model is given in both Vella (1998) and in chapter 8 of Pagan and Ullah
(1999). In this section, we first briefly review the semiparametric maximum
likelihood of Gallant and Nychka (1987) as it has already been analysed in
detail in Vella (1998) and Pagan and Ullah (1999); we then turn to semipara-
metric approaches to the estimation of the two-step sample selection model
with the aim of explaining the options available to the practitioner without
giving extensive and complete theory.

4.1 Semiparametric maximum likelihood

A way to overcome non-normality in the sample selection model, is to approx-
imate the joint density function of the disturbances. The semi-parametric
method of Gallant and Nychka (1987) consists of specifying the bivariate
density function of the error terms by means of a Hermite series expansions
that include the bivariate normal density as a special case. Following a re-
cent application of this method by van der Klaauw and Koning (2003), the
density approximation can be written as

b (U1i, U2i) = ϕ2 (U1i, U2i)
K∑
k=0

J∑
j=0

πk,jU
k
1iU

j
2i (30)

where ϕ2 is the bivariate standard normal density function, πk,j are additional
parameters of the bivariate density and π00 is normalised to one. Using
b (U1i, U2i) instead of the bivariate normal density, equation (7) becomes
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∑
di=1

ln

∫ +∞

−Z2i

b (Z1i, U2i) dU2i +
∑
di=0

ln

∫ +∞

−∞

∫ −Z2i

−∞
b (U1i, U2i) dU1idU2i. (31)

Let us define

S (U1i, U2i) =
K∑
k=0

J∑
j=0

πk,jU
k
1iU

j
2i − 1

so that the log-likelihood function for observation i can be written as

` =
∑
di=1

(
ln

[
Φ(cαZ2i + sαZ1i) +

∫ +∞

−Z2i

S (U1i, U2i)ϕ2 (U1i, U2i) dU2i

]
− 0.5Z2

1i − T
)

+

∑
di=0

ln

[
1− Φ(Z2i) +

∫ +∞

−∞

∫ −Z2i

−∞
S (U1i, U2i)ϕ2 (U1i, U2i) dU1idU2i

]
.

The estimates of β1 and β2 are consistent as long as the number of approx-
imating terms increases with the sample size. Melenberg and Van Soest
(1993) provide an application of this method to estimate the wage equation
of Dutch women conditional on labour force participation. They find that
the approximation of Gallant and Nychka (1987) succeeds in detecting the
distributional misspecification. van der Klaauw and Koning (2003) exploit
this flexible density as an alternative distributional hypothesis to test for
bivariate normality. Since b (U1i, U2i) contains the bivariate normal density
as a special case, they test the joint significance of the πkjs (except π00) by
means of an LR test statistic.

4.2 Semiparametric two-step estimators

With the exception of the semiparametric maximum likelihood of Gallant
and Nychka (1987), over the last thirty years the contributions to the semi-
parametric estimation of the sample selection model relied mostly on the
two-step procedure. In this context, the focus of semiparametric methods
is on the estimation of the parameters of the main equation relaxing the
assumption of bivariate normality. As mentioned in section 4, while some
parametric restrictions are maintained, the distributional assumption on U2i

and the linearity in (4) are removed.
First of all, equation (11) can no longer be estimated by maximum like-

lihood. Basically, univariate normality of U2i assumed in section 2.3 implied
that
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E [di = 1|X2i] = Φ (Z2i) . (32)

If we remove the distributional assumption, the conditional mean of di on
X2i becomes

E [di = 1|X2i] = F (Z2i) (33)

where F () is an unknown function. Secondly, to consistently estimate β1 in
(10), we had to add the inverse Mill’s ratio λi to the linear specification of
the main equation. The inverse Mill’s ratio had a specific functional form
and entered linearly the main equation. When distributional assumptions
are removed, the conditional expectation of U1i on di is no longer the inverse
Mill’s ratio and equation (4) becomes

E [U1i|di = 1] = g (Z2i) (34)

where g() is again some unknown function. The use of nonparametric meth-
ods allows, in this case, for some way to approximate that function in order
to still obtain an estimate of our behavioural parameters β1 in (10). In semi-
parametric models for sample selection, the arguments of both F () and g()
are often subject to parametric restrictions. In most cases, it is required that
the index function of the selection equation is linear in β2

8. This assumption
is the so-called index restriction (see Vella (1998)).

In the next sections we will list some semiparametric methods for the
sample selection model that may serve as feasible options to the practitioner
to overcome the non-normality issue. We will first see alternative estimators
for the selection equation and then turn to the main equation and to the
selectivity bias correction. We must stress that this paper gives by no means
a comprehensive theoretical framework for nonparametric methods nor this
is its intent. For extensive reviews on nonparametric and semiparametric
econometrics the reader is referred to Powell (1994), Pagan and Ullah (1999),
Li and Racine (2007) and Racine (2008). The aim is to give the practitioner
a guided tour of the options available while giving only very few theoretical
elements necessary to a smooth reading. The rest of this section contains
some elements on Kernel estimation theory that will ease the exposition of
the estimation proposals for the sample selection model.

Kernel density estimator

A standard tool of nonparametric methods is the Kernel density estimator
that was first put forward by Rosenblatt (1956). We give a brief review of this

8Therefore, we will keep the previous notation Z2i = X ′2iβ2 for the index function.
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estimator following Racine (2008) and leaving out its asymptotic properties.
For an intuitive description, think of a nonparametric density approximation
by means of an histogram. Given a random variable X, an histogram esti-
mation of the unknown density is built as the relative frequency of the xi
that lie in a bin, centred in x0, b = [x0 − h/2;x0 + h/2] where h is the width
of b:

f̂i =
1

nh

n∑
i=1

I (xi ∈ b) (35)

Though very straightforward, the histogram is not a particularly efficient
tool. It is, for one thing, discontinuous. In principle, Kernel density esti-
mation uses the same mechanism as the histogram. The indicator function
I is basically replaced by a smoothing function K() which, along with some
other desirable properties, ensures continuity of the estimated density:

f̂h(x) =
1

nh

n∑
i=1

K

(
xi − x
h

)
(36)

is called the Rosenblatt-Parzen estimator (Rosenblatt (1956) and Parzen
(1962)). K() is a non-negative symmetric function with∫ +∞

−∞
K(t)dt = 1

∫ +∞

−∞
tK(t)dt = 0

∫ +∞

−∞
t2K(t)dt <∞

A Kernel exhibiting these properties is called a second-order Kernel. Among
common types of Kernel density estimators, a simple example is the Gaussian
Kernel

K(t) = ϕ(t) = (2π)−1/2exp

[
−1

2
t2
]

It is well known that Kernel estimators are biased in finite samples. Such
bias can be reduced using higher order Kernels although they may take neg-
ative values (Parzen, 1962). An example of higher order Kernel is the third-
order Gaussian Kernel K3(t) = 0.5(3 − t2)ϕ(t). Conditions for consistency
of Kernel estimators are that h → 0 for n → +∞ ; on the other hand, the
variance of the Kernel estimator V → 0 for nh→ +∞. Both the bias and the
variance depend on h, in a positive and negative manner respectively. There
is, therefore, a trade-off between the estimator being unbiased or efficient
that depend on the choice of h which affects the Kernel estimator’s finite-
sample properties. There are well established criteria to choose optimally
the bandwidth h (see the above mentioned references for a detailed exposi-
tion) aimed to contain bias and variance at the same time. For instance, for
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the second-order Gaussian Kernel the optimal bandwidth is h = 1.06σ̂n−1/2

where σ̂ is the sample standard deviation.
A well known shortcoming of Kernel density estimators is the so-called

“curse-of-dimensionality” problem which occurs when we want to estimate
the joint density of more continuous variables. The problem arises as the
convergence properties of the estimator worsens as the number of continuous
variables increases. Silverman (1986) shows that with more than a few vari-
ables, the curse of dimensionality makes the kernel estimator not as useful
as in the univariate case. Racine (2008) argues that, despite its flaws, the
nonparametric estimators are consistent even under misspecification of the
underlying model and turn out to be, therefore, more useful than parametric
estimators. One the contrary, the latter outperform nonparametric estima-
tors in terms of efficiency, but may lose consistency under misspecification.

4.2.1 Selection equation as a single index model

As we are trying to estimate the parameters of the sample selection model in
a two-step manner, we first need to focus on the selection equation. Following
Pagan and Ullah (1999), let us write

di = F (Z2i) + U2i. (37)

When we make the traditional normality assumption U2i ∼ N (0, 1), F () is
the standard normal distribution function and, under correct specification,
β̂2 obtained by maximum likelihood is consistent and fully efficient. However,
when we want to avoid any kind of imposition of a specific distribution on
U2i, we must turn to semiparametric methods in order to let F () to be of an
unknown form, however monotone, and find some approximation9. Most of
the estimation proposals reviewed later in this section, maintain the index
restriction Z2i = X ′2iβ2 such that the index function for each observation is
a scalar. Under this assumption, (37) is called a single index model.

A central issue of semiparametric estimation of single index models is
identification, namely the intercept cannot be estimated and slope coefficients
can be determined up to a scale factor. Since F () is unknown, it absorbs any
constant term that we may add to Z2i. Moreover, we could rescale F (Z2i)
by any constant that Pr(di = 1) and Pr(di = 0) would remain the same.
Therefore, if we treat the selection equation as a single index model, we only
have k2−2 estimable parameters, as we must leave out the intercept term and
a slope coefficient needs to be normalised. As in Pagan and Ullah (1999),

9Semiparametric estimation of binary choice models is treated extensively in Pagan
and Ullah (1999) chapter 7.
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let us define a vector θ of estimable parameters and decompose our index
function Z2i as

Z2i = X ′2iβ2 = γ + β2
2

(
X2

2i +X3
2iθ1 + ...+Xk2

2i θk2−2

)
= γ + β2

2

(
X̄ ′2iθ

)
where γ is the intercept term, β2

2 is the coefficient taken to be the scale factor
and X̄2i is a matrix containing the regressors Xj

2i, for j = 1...k2, excluding
the intercept term. With this specification, identification is achieved if the
following conditions are met. First of all, for θq to exist, with q = 1...k2 − 2,
β2

2 must be non-zero. This becomes clear if we write θq as θq = βq+2
2 /β2

2
10.

Secondly, X2
2i must be a continuous variable. Let us consider the case where

we normalise β2
2 to unity. Then X2

2i cannot be rescaled without changing β2
2

and consequently θ. This uniquely identifies the value of the index function.
If we were to use a dummy variable as X2

2i, we would have that the value of
the index function does not change to order-invariant transformations.

Now that we have set the conditions for identification of the single index
model, we turn to the estimation of the unknown objects in the selection
equation, F () and θ. Proposals for a consistent semiparametric estimation of
binary choice models are numerous and differentiated on the base of objective
functions and approximations of F (). Some popular estimators have been
put forward by Manski (1975), Cosslett (1983), Ruud (1986), Gallant and
Nychka (1987), Cavanagh and Sherman (1998), Powell, Stock, and Stoker
(1989), Horowitz (1992), Gabler, Laisney, and Lechner (1993), Ichimura
(1993), Klein and Spady (1993), Gozalo and Linton (1994), Froelich (2006).
Among the others, Klein and Spady’s estimator has been the most analysed
and used in empirical applications, presents some theoretical advantages and
it is included in all the software packages that perform nonparametric esti-
mation.

In Klein and Spady (1993), the estimator θ̂ of the estimable parameters
of the single index model maximises the traditional log-likelihood function
for binary choice models

`i = di ln
(
F̂i
(
X̄ ′2iθ

))
+ (1− di) ln

(
1− F̂i

(
X̄ ′2iθ

))
(38)

where F̂ () is the leave-one-out nonparametric kernel estimator of the condi-
tional mean E

[
di|X̄2i

]
written as

10We add that β2
2 should preferably be positive for ease of interpretation although it is

not necessary for identification.
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F̂i
(
X̄ ′2iθ

)
=

∑n
j=1 diK

(
X̄′

2jθ−X̄′
2iθ

h

)
∑n

j=1 K
(
X̄′

2jθ−X̄′
2iθ

h

) for j 6= i (39)

This is basically the Nadaraya-Watson (Nadaraya (1964a), Nadaraya (1964b)
and Watson (1964)) estimator for the regression model, where the form of
conditional mean of the dependent variable on the regressors is unknown.
Klein and Spady’s estimator, along with Ichimura’s, has arguably been the
most employed tool for the estimation of discrete choice models without
distributional assumptions. Among nonparametric estimators, Klein and
Spady’s is most efficient and therefore often present in empirical applica-
tions. For details on its asymptotic distribution and efficiency bounds, see
Pagan and Ullah (1999) and, of course, Klein and Spady (1993)

Once we have estimated θ semiparametrically, we need to compute the
quantities that will enter the main equation to correct the selection bias
instead of the inverse Mill’s ratio. We will see in detail in the next section
that semiparametric approaches to sample selection use either the estimated
index function Ẑ2i or the propensity score Pi = Pr [di = 1|X2i].

4.2.2 Main equation as a partially linear model

Once the quantities that serve as bias correction have been determined by
the semiparametric estimation of the selection equation, we turn to the main
equation to estimate the parameters of interest from a behavioural point of
view. As we saw in section 4.2, a consequence of removing the bivariate
normality assumption is that we can no longer write the bias correction as
the inverse Mill’s ratio so that

Y1i = X ′1iβ1 + g(X2i, β2) + vi (40)

where the function g() is now left undetermined. Depending on estimation
proposals, the argument taken by g() can either be the estimated index func-

tion Ẑ2i or the propensity score Pi = Pr [di = 1|X2i], that is the estimated
probability of being selected into the subsample. Equation (40) is a special
case of what in semiparametric econometrics is known as a “partially lin-
ear” model. The are mainly two differences between the traditional partially
linear model and (40). Firstly, in may cases equation (40) is subject to the
index restriction we have seen in 4.2, namely the argument taken by g()
must be linear in the parameters so that we often write g (Z2i) which is not
necessarily required in partially linear models. Secondly, there are different
identification requirements. The specification of a partially linear model is
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such that the assumption of a linear conditional expectation of Y1i on the
regressors is partly relaxed. A part of the model remains linear in a subset
of regressors, X1i, while the other is allowed to take any form. As g() is
unknown (and possibly linear), X1i and X2i are chosen to be disjoint sets of
regressors to ensure the identification of β2. This condition creates no prob-
lem if we look at the partially linear model as a generalisation of the fully
linear one. However, in sample selection models it is reasonable to think that
variables determining the presence in the subsample may also directly affect
the outcome Y1i and hence taken to be a part of X1i. In this sense, comply-
ing with identification requirements by using two completely different sets of
regressors poses a limit to the desired specification. In any case, strong exclu-
sion restrictions on the regressors are needed to achieve identification. Such
restrictions are not required in the parametric model since g() is the inverse
Mill’s ratio which is a known nonlinear function of Z2i. As pointed out in
Pagan and Ullah (1999), the precision of the estimates of β1 depends on the
extra elements contained in X2i. Also, as well as for the single index model,
an intercept term can not be consistently estimated as it gets absorbed into
the unknown function g(). A few pointers on how to estimate the intercept
term in this model are given later in this section. Methods for the estimation
of partially linear models are described in detail in chapter 5 of Pagan and
Ullah (1999) and Racine (2008). The semiparametric literature on sample
selection offers several methods to consistently estimate the parameters of
interest β1 while dealing with the unknown form of g().

One of the earliest proposals can be found in Powell (1987) and later
reviewed in Powell (1994) which is based on differencing across observations
in (40) in order to eliminate the selection bias. This strategy is similar to
the one adopted by Robinson (1988) for the estimation of the partially linear
model. We will often refer to this estimator as “difference” estimator as it
resembles the within group estimator for panel data. The idea is, for the
selected subsample, to take two observations i and j

Y1i = X ′1iβ1 + g (Z2i) + vi

Y1j = X ′1jβ1 + g (Z2j) + vj

and compute their difference

Y1i − Y1j = (X1i −X1j)
′ β1 + g (Z2i)− g (Z2j) + vi − vj

Then a pairwise comparison is performed on the value of the index function.
For those observations for which Z2i − Z2j ' 0 and so g (Z2i)− g (Z2j) ' 0,
β1 can be estimated by a least square regression of Y1i − Y1j on X1i − X1j

since the selection bias has been eliminated by differencing. In practice,
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there are weights being applied that are higher for those pairs of observation
that exhibit a small difference in the values of their index function. Thus,
after some parametric estimation of β2 in the selection equation, Powell’s
estimator may be written as a weighted least squares estimator

β̂1 =

(
n∑
i=1

n∑
j=1j 6=i

wij (X1i −X1j) (X1i −X1j)
′

)−1

n∑
i=1

n∑
j=1j 6=i

wij (X1i −X1j) (Y1i − Y1j)

where wij are weights obtained by

wij = K

(
Ẑ2i − Ẑ2j

hw

)

which is a kernel estimation, Ẑ2i is equal to X ′2iβ̂2 and hw is the chosen
bandwidth for the weights computation. Powell’s strategy has the practical
advantage of not having to approximate g() and allows for identification of all
elements in β1 including the intercept term. However, since the elimination of
the selection bias is based on a pairwise comparison of the scalars Z2i and Z2j,
the index restriction on the selection equation is necessary. This assumption
is then relaxed in Ahn and Powell (1993) by using a nonparametric estimation

of the propensity score P̂i instead of Ẑ2i to compute the weights. The authors
choose the Kernel estimator

P̂i =

∑n
j=1j 6=i diK

(
X2i−X2j

h

)
∑n

j=1j 6=iK
(
X2i−X2j

h

) (41)

and, therefore, the weights become

wij = K

(
P̂i − P̂j
hw

)

Other estimators are based on the approximation of the unknown function
g() rather than elimination of the selection bias. One example was proposed
by Cosslett (1991). Maintaining the index restriction he divides the range of

Ẑ2i into K intervals and defines K dummy variables Dij with j = 1...k that
take value one when the index function for observation i falls into interval j
and zero otherwise. He then estimates β1 by ordinary least squares
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Y1i = X ′1iβ1 +
K∑
j=1

αjDij + vi (42)

The number of dummy variables employed should increase with the sample
size. Cosslett (1991) proved the estimator is consistent but not asymptoti-
cally normal. However, Pagan and Ullah (1999) point out that it should still
be used for some preliminary analysis due to its simple computation.

Another estimator can be found in Heckman and Robb (1985) where the
authors suggest relaxing the assumption on the inverse Mill’s ratio being of
a known form. The first step consists of a parametric estimation of β2; Then
they use the estimated propensity score P̂i = Pr (di = 1|X2i) to correct the
selectivity bias in equation (40):

Y1i = X ′1iβ1 + ĝ(P̂i) + vi (43)

where ĝ() is the approximation of the unknown form of the selection bias
correction in terms of a Fourier series expansion as in Gallant (1981).

Although the above mentioned proposals are all feasible options to over-
come the non-normality issue, probably the most popular semiparametric
estimator for the sample selection model is Newey’s two-step series estima-
tor. It was first put forward by Newey (1988) and then re-proposed in Newey
(1999b) and Newey (2009).

The parameters of the selection equation that are needed to compute
the index function can be estimated semiparametrically by using one of the
methods we mentioned in the previous section. As a fact, Newey (1988) even
allows estimation of the selection equation by a linear probability model.
However, in Newey (1999b) and (2009) the use of Klein and Spady’s estimator
is recommended as it exhibits the best performance in terms of efficiency. As
mentioned in section 4.2.1, estimating the selection equation with Klein and
Spady’s method does not allow identification of the intercept term and one of
the parameter must be normalised to one. After estimation, one can compute
the index function, with the estimated subset of parameter, as linear, X̄ ′2iθ̂,
or by means of another function that must, however, be known. Following
Newey’s notation, we indicate this generic function as ν(X̄2i, θ̂) = ν̂i. Since

θ̂ does not contain an intercept and the elements are scaled because of the
normalisation, Newey suggests some re-proportioning of the index function
running a probit estimation on the on the model

di = γ0 + γ1ν̂i + ηi
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where ηi ∼ N(0, 1). The index function that will correct the selection bias is

then computed as Z̃2i = γ̃0 + γ̃1ν̂i. The second step is then the least squares
estimation of the equation

Y1i = X ′1iβ1 + ĝ (hi) + vi (44)

where g() is unknown and hi is some known transformation of Z̃2i. Newey

suggests some possibilities: hi = Z̃2i; hi = 2Φ(Z̃2i) − 1; hi = φ(Z̃2i)/Φ(Z̃2i).
ĝ (hi) is the approximation of the unknown function g() by means of a power
series in hi of k terms. That is ĝ (hi) =

∑k
j=1 αjh

j
i . An alternative to power

series for the approximation of g() is the use of splines which may help avoid
problems caused by the presence of outliers and singularities in hi.

Das, Newey, and Vella (2003) further relax the semiparametric specifi-
cation of the sample selection model generalising the estimator of Newey
(1988). They suggest estimating nonparametrically both equations and then

using the propensity score P̂i = Pr [di = 1|X2i] to correct the selectivity bias
in place of the estimated index function. Differently from the partially lin-
ear model (40), Das, Newey, and Vella (2003) allow also the main equation
to contain an unknown function of some covariates of behavioural interest
in X1i. For exposition purposes, let us partition the vector of covariates of
the main equation as X1i = [Wi, Qi] for which E[Y1i|Qi] = λ(Qi) where λ()
is an unknown function that needs to be approximated. They give the ex-
ample of a sample selection model for wages and labour force participation
where Qi is the education taken to be endogenous. Their extension allows for
the endogenous variable to enter the main equation non-linearly. The main
equation (1) becomes

Y1i = W ′
iδ + λ (Qi) + U1i (45)

The parametric restriction W ′
iδ helps avoid the curse of dimensionality prob-

lem when estimating (45) semiparametrically. Differently from Newey (1988),
the term plugged in (45) to correct the selection bias is an unknown func-
tion of the probability of being selected. They assume that E[U1i|di =
1, X1i, X2i] = g (Pi) where Pi = Pr [di = 1|X2i] is the propensity score which
means that the bias correction term depends only on the probability of se-
lection where g() is again an unknown function. Hence, the main equation
(45) can be rewritten as

Y1i = W ′
iδ + λ (Qi) + g (Pi) + vi (46)

As λ() and g() are unknown functions, the model would require strong exclu-
sion restrictions, namely X1i and X2i should be two disjoint sets of regressors
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since Pi and therefore g(Pi) depend on X2i, Pi(X2i). Assuming that g(), λ()
and P are smooth functions and that the distributions are continuous, they
allow λ() to be identified up to a constant (similarly to what happens in
Klein and Spady). Also, the intercept term cannot be estimated.

The two-step estimation of (46) employs power series for the nonparamet-
ric estimation of both the selection and the main equation. The first step
consists of a linear probability model where the explanatory variables are
the regressors X2i plus their powers and interactions. To write in a synthetic
way a power series for a row vector of regressors, let us define the operator

pk (Xi) = [X ′i ⊗ pk−1 (Xi)]+ where p1 = X ′i.

The operator pk indicates the by-row Kronecker or horizontal direct prod-
uct where the symbol [ ]+ basically eliminates duplicate elements from the
Kronecker product 11. The selection equation can now be written as

di = pk (X2i) γ + νi (47)

After estimation by means of a linear probability model, the fitted propensity
score for the selected sample P̂i = Pr [di = 1|X2i] needs to be computed as
P̂i = pk (X2i) γ̂ Approximating λ() and g() (46) again by means of power
series, the second step consists of a least square estimation of

Y1i = W ′
iδ + pk (Qi) π +

S∑
s=1

αsh
s
i + vi (48)

where hi is a function of P̂i; As in Newey (1988), Das, Newey, and Vella

(2003) use the identity hi = P̂i or hi = φ
(
P̂i

)
/Φ
(
P̂i

)
with the leading term

reproducing the original parametric specification.
As we saw, a common characteristic of the estimators that are based on

approximation of unknown functions in the main equation is the impossibility
of estimating the intercept term due to identification issues. We now turn to
how to estimate the intercept as it is the last step in chronological order when
we estimate semiparametric models of this kind. Estimators of the intercept
have been proposed by Heckman (1990), Andrews and Schafgans (1996) and
(1998).

Let us call the intercept term of the main equation (40) β0. The estimator
proposed by Heckman (1990) is

11For instance, if we had a two-dimensional vector of regressors Xi = Xmi, Xni, the
operator pk with k = 2 (for simplicity) would produce p2 =

[
X2
mi, XmiXni, X

2
ni

]
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β̂0 =

∑n
i=1

(
Y1i −X ′1iβ̂1

)
diI
(
Ẑ2i > w

)
∑n

i=1 diI
(
Ẑ2i > w

) (49)

where we consider X1i not including an intercept term and w is a smoothing
parameter. Andrews and Schafgans (1996) and (1998) substitute I with a
smoothing function as follows:

β̂0 =

∑n
i=1

(
Y1i −X ′1iβ̂1

)
diS

(
Ẑ2i − νn

)
∑n

i=1 diS
(
Ẑ2i − νn

) (50)

where νn is a smoothing parameter increasing in the sample size. S is a non-
decreasing functions as, for instance, the function indicated in Pagan and
Ullah (1999):

S(x) = 0 for x ≤ 0

S(x) = e−x/(νn−x) for 0 < x < b

S(x) = 1 for x ≥ b

The literature offers some application of semiparametric estimation of
sample selection models mostly for comparison purposes. Newey, Powell, and
Walker (1990) replicate the estimation of female annual work hours selected
by labour force participation with endogenous wage rate first shown in Mroz
(1987). They re-propose the two-stage least squares and Heckman’s two-
step estimation comparing them with Powell (1987) “difference” estimator
and Newey’s two-step series. For the selection equation, the hypothesis of
normality of the error term cannot be rejected based on the comparison
between the probit model and the semiparametric estimation of Ichimura
(1993) and Klein and Spady (1993). The selection equation is therefore
estimated by means of the traditional probit model. Estimated parameters
are then used to compute the index function. hi inverse Mill’s ratio times

the powers of the index function: hi =
[
φ
(
Ẑ21

)
/Φ
(
Ẑ2i

)]
Ẑj

2i with j =

0, 1. A formal test is derived for non-nested models by means of quadratic
forms of the differences in the estimated coefficient on the inverse asymptotic
covariance matrix of the differences. Results show that both semiparametric
estimation do not differ strongly from the parametric one.

The comparison is extended in Ahn and Powell (1993) who show alongside
the previous estimates the results of the “difference” estimator with their
nonparametric selection equation. The results of this last estimation are
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somewhat closer to the two-stage least squares rather than to two-step or
semiparametric estimation.

Martins (2001) analyses data on wage and labour force participation for
married women in Portugal. The choice of using Newey’s two step series
estimator is driven by the inadequacy of the probit model for the selec-
tion equation within the two-step estimation. Non-normality is assessed by
means of Horowitz and Härdle (1994)’s specification test. Following Newey
(1988), Martins estimates the selection equation with the estimator proposed
in Klein and Spady (1993) using a fourth-order Kernel. She then computes

the estimated single index Ẑ2i which enters the main equation by the un-
known function g(). Such function is then approximated by the power se-

ries ĝi

(
Ẑ2i

)
= α1Ẑ2i + α2Ẑ

2
2i. The constant term for the main equation is

estimated as in Andrews and Schafgans (1998). Results show that the com-
pared models, parametric two-step and Newey’s estimator, differ greatly in
the value of the education coefficients and in the effect of the husband’s wage
on the participation decision. Martins finds out that policy implications are
quite sensitive to estimation methods since the semiparametric model reveals
a substantially different behaviour in participation decisions.

Finally, Hussinger (2008) studies the effect of public R&D subsidies on
firms private R&D investment in the German manufacturing sector. The
selection equation determines whether the subsidy is received and, if so, the
amount of funding. Therefore, the first step is estimated by either parametric
probit or Tobit models. For the second step estimation, Hussinger compares
the parametric two-step, the estimator in Cosslett (1991), Newey’s two-step
series estimator and the “difference”-like estimator in Robinson (1988) 12. He
uses 21 dummy variables to implement Cosslett’s estimator and a power se-

ries in the estimated index function hji with j = 0, 1, where hi = 2Φ
(
Ẑ2i

)
−1,

for Newey’s second step. The estimation of the intercept for Newey’s and
Robinson’s models is carried out by means of both Heckman (1990) and An-
drews and Schafgans (1998). His results show that the estimated coefficients
are robust throughout the different approaches concluding that a possible
misspecified distribution is sometimes not crucial in empirical applications.

4.2.3 Remarks on the semiparametric approach

The strongest point of the semiparametric approach applied to the sam-
ple selection model is the property of maintaining consistency of these esti-
mators even disposing, in part or altogether, of distributional assumptions.

12It is a traditional semiparametric estimator of partially linear models similar to the
estimator proposed in Powell (1987)

31



Some simple versions of these methods are also rather easy to implement
(for instance, a linear probability model for the selection equation as in Das,
Newey, and Vella (2003) and a power series approximation for the bias correc-
tion). Moreover, the simple structure of the two-step estimation maintained
in the applications of semiparametric methods facilitates the generalisation
of these approaches to cases, for instance, of endogeneity as in Das, Newey,
and Vella (2003) and to more elaborate censoring schemes (see Pagan and
Ullah (1999)).

However, these estimators do have some shortcomings and therefore need
to be handled with some caution.

First of all, as for the traditional two-step estimator recalled in section 2.3,
the bias of the covariance matrix estimator remains and so does the problem
of correcting it. As we also mentioned in section 4.2, it is well known that
semiparametric methods that rely on kernel estimators are prone to suffer
from the “curse-of-dimensionality” problem which is likely to occur whenever
more than a few continuous variables are included in the specification. More-
over, semiparametric estimators are, in general, less efficient than parametric
ones.

Aside from statistical problems, there are other considerations that need
to be made. We have seen, for instance, that with semiparametric methods
we can remove bivariate normality. However, there are often other assump-
tions that need to be made that are almost as restrictive as a distributional
assumption such as the index restriction and the monotonicity of the link
function F in the selection equation (see sections 4.2.1 and 4.2.2). Also,
there are many other constraining conditions imposed on these models for
the purpose of identification therefore posing a limit to the desired specifica-
tion. Moreover, semiparametric methods, with the exception of Gallant and
Nychka (1987), will estimate in a two-step manner a bivariate model whose
dependence structure, which we could be interested in, is neither estimated
directly nor easy to extract.

The practitioner who wants to estimate a sample selection model using
semiparametric methods may also encounter some technical difficulties. To
date, packages implementing more complex semiparametric procedures (such
as Klein and Spady (1993)) have become quite standard in software13. How-
ever, the available versions are rather CPU-intensive and the set of options
the software provides, such as the choice of the bandwidth or the order and
type of kernels, is sometimes quite limited. In cases where this kind of alter-
native options are more appropriate (for instance, to ensure convergence by

13for instance, the snp and sml packages in Stata (De Luca, 2008) and the np package
in R (Hayfield and Racine, 2008).
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means of higher order kernels or simply for replicability purposes), the user
should re-write the entire code to implement the estimation. In addition,
convergence problems are likely to occur when using more elaborate models
such as a specification containing many discrete variables (country dummies,
categorical variables for example education, time dummies for cross-sectional
waves, geographical provenance of individuals to name a few) that are quite
common when dealing with micro-data.

Finally, when applying semiparametric methods, there may be some “in-
terpretation” issues. We have seen in section 4.2.2 that some of these esti-
mators use unknown functional forms for the selection bias correction which
implies that non-linear and interaction terms are plugged into the main equa-
tion in order to approximate such functions by series expansions. While this
approach is of rather simple computation, it often results in changing the
original specification of behavioural interest.

When facing a non-normality problem in the sample selection model, the
semiparametric literature offers the practitioner a number of alternatives to
maintain consistency even when the distribution is misspecified. On the one
hand, in those cases where the practitioner is interested in more general
results, such as the signs and the significance of the effects of the covariates,
even some simple version of semiparametric methods presented offer a rather
manageable solution to the misspecification problem. On the other hand,
there is a trade off between the flexibility of the functional forms adopted,
in order to keep the assumptions to a minimum, and both the computation
effort and the readability of the estimation output.

5 Butterflies and Caterpillars

The literature reviewed in this chapter contains a wide range of both theoreti-
cal and empirical contributions on how to deal with the failure of the bivariate
normality assumption in the sample selection model. In simple terms, one
may see the numerous estimation proposals as divided into two large groups
of parametric and semiparametric estimators. The first one, including two-
step parametric estimators and copulae, offers, in practice, the possibility of
replacing bivariate normality with an alternative stochastic structure. The
second relaxes either the bivariate normality assumption adopting a flexible
bivariate density function, which is the case of Gallant and Nychka (1987),
or more often removes it completely as with the semiparametric two-step
estimators.

Within each of these groups, model selection is based on standard tech-
niques. As the copula approach remains in the familiar maximum likelihood
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framework, the model selection uses the traditional comparison methods for
non-nested models based on the log-likelihood, such as information crite-
ria and Vuong test (Vuong, 1989). When using semiparametric techniques,
model selection is instead carried out by means of the cross-validation method
(for extensive theory see Pagan and Ullah (1999)). It is, however, not clear
how to choose between the two alternatives. To the best of our knowledge, the
available criteria are not commonly used to decide whichever is best between
the parametric alternatives with substituted probabilistic structure and semi-
parametric methods with the distributional assumption removed. However,
the considerations made on both proposals suggest other, even though only
subjective, criteria the practitioner can rely on to choose whether to employ
parametric or semiparametric estimation options. We have seen that such
“criteria” are mostly based on the purpose of the estimation. When there
are well motivated conjectures on the stochastic structure of the phenomenon
under examination, the copula approach may lead to specifications better fit-
ting the data. If the alternative distribution is correctly specified14, this way
of proceeding models the departures from normality within the stochastic
part of the model and therefore maintains the specification of the condi-
tional mean intact, which is crucial to the interpretability of a model from a
behavioural point of view and for the computation of quantities, such as elas-
ticities, instrumental to policy conclusions. This process may become non-
trivial when semiparametric methods are used as they often employ flexible
functional forms that are not easy to re-conduct to a behavioural framework.
However, in those cases where the purpose of the estimation is to draw more
general policy conclusions without the need for a solid behavioural structure,
semiparametric methods unburden the practitioner of the distributional as-
sumption ensuring, at the same time, consistency without the need for further
diagnosis on the stochastic part of the model.

However sophisticated, the computation of these methods is rather time
consuming and they are often expensive to implement in software. So before
investing in the use of these approaches, it might be worth exploring if the
non-normality problem can be fixed while remaining within the traditional
estimation of the sample selection model.

The idea of somehow “inducing” bivariate normality is suggested by
viewing the problem from another perspective: as heteroskedasticity, non-
normality may be seen as a specification error due the poor fitting of the
chosen model and not a problem with the data the model is imposed upon.
From this point of view, bivariate non-normality may just be the consequence

14testing the distributional assumption in these cases would not be trivial.
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of the violation of other hypotheses15 within the model specification as, for
instance, sub-sampling or the linearity of the conditional mean. This way of
approaching the failure of the bivariate normality assumption justifies the at-
tempt of rewriting the model or modifying the specification for the bivariate
normality assumption to hold.

In the univariate probit model, seeing non-normality as a specification
error is straightforward. Assume we have the following probit model

Y ∗i = X ′iβ + υ

where we observe Yi following I (Y ∗i > 0) and where υ is non-normal. The
probability of Yi = 1 is given by

Pr(Yi = 1|Xi) = F (X ′iβ) (51)

where F is the distribution function of υ. Using the standard normal quantile
function, equation (51) may be rewritten as

Pr(Yi = 1|Xi) = Φ [h(X ′iβ)]

where h() is called the normalising transformation

h = Φ−1 [F(X ′iβ)]

that can be approximated by means of a series expansion. In this spirit,
Pagan and Vella (1989) proposed the RESET-like normality test for a uni-
variate model. The test basically consists in adding the terms of this series
expansion to the conditional mean specification as

Y ∗i = X ′iβ + γ0(X ′iβ̂)2 + γ1(X ′iβ̂)3 + ε (52)

with ε ∼ N(0, 1) and then testing the hypothesis γ0 = γ1 = 0. We may see
the non-linear terms inserted in (52) as corrections of the departures from
normality or, conversely, the distribution of the disturbances will deviate from
normality inasmuch as the conditional mean is non-linear. In this sense, a
linear univariate model with a non-normal distribution can be seen as a model
with a normally distributed error term and non-linearities in the conditional
mean.

This argument does not apply to the bivariate case since the normalising
transformation is not invertible. Still, there may be cases in which corrections
to the model specification, in order to “induce” bivariate normality, are worth
trying such as the insertion of non-linear terms, transformations of the data

15Hence the Lao Tzu citation
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Table 2: Model specification, Greene (2002)

Main equation (1)
Y1i WW wife’s average hourly earnings in 1975 dollars

CONST intercept
AX wife’s actual years of previous labour market experience

X1i AX2 square of AX
WE wife’s educational attainment in years
CIT = 1 if the wife lives in a large city

Selection equation (2)
I (Y2i > 0) LFP = 1 if the wife worked in 1975

CONST intercept
WA wife’s age

X2i FAMINC family income in 1975 dollars
KIDS = 1 if the wife has children below the age of 19
WE wife’s educational attainment in years

or sub-sampling if, for instance, we are in presence of structural breaks. One
of these cases is the example presented next.

We estimate a sample selection model using the popular example of wage
equation and labour force participation on the dataset from Mroz (1987)
composed of 753 married women in 1975 between the age of 30 and 60 of
which 428 are working. For both the wage equation and the labour force
participation, we use the specification in Greene (2002) summarised in table
2.

The estimation results are displayed in table 3. The first two columns
contain the traditional maximum likelihood and two-step estimator recalled
in sections 2.2 and 2.3 respectively. The third column contains the semi-
parametric two step series estimator first proposed in Newey (1988) and
reviewed in section 4.2.2. As argued in Newey (1999b) and Newey (2009),
any consistent estimator can be used for the selection equation. The uni-
variate normality test16 does not reject the hypothesis of U2i being normally
distributed so we keep the probit estimation of the selection equation. To
estimate semiparametrically the parameters of the main equation (44), we
follow Newey, Powell, and Walker (1990) using the series approximation

16the test is performed as in Chesher and Irish (1987) and Skeels and Vella (1999).
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hi =
[
φ
(
Ẑ21

)
/Φ
(
Ẑ2i

)]
Ẑj

2i with j = 0, 1. The fourth column reports the

result of a Gaussian copula estimation as in Lee (1983) recalled in section
3.2.2. The marginal distribution of the selection equation error term F2 is
taken to be normal while we assume that U1i is distributed as a Student’s tν .
The degrees of freedom ν are estimated by maximum likelihood along with
the other parameters. Finally, we try a data transformation taking as the de-
pendent variable for the main equation ln(WW) instead of WW and estimate
the traditional sample selection model by maximum likelihood as in section
2.2. The lower part of table 3 contains the results of the bivariate normality
test proposed in Lucchetti and Pigini (2011). The null hypothesis of bivari-
ate normality is highly rejected by both versions of the test statistic 17 when
the original specification proposed by Greene (2002) is maintained. However,
the values of the test statistics drastically decrease when we take ln(WW)
instead of WW as the dependent variable of the wage equation and the test
statistic based on the selected moment conditions does not even reject the
hull hypothesis of bivariate normality. As mentioned earlier in this section,
non-normality can be seen as e consequence of a poor modelling choice. The
results presented in table 3 show that in this case modifying the specification
solves the non-normality problem. Notice also that the estimation by both
two-step and maximum likelihood of the original specification reveals the in-
consistency problem with non-normality: both the traditional estimators fail
to capture the presence of the selectivity bias which is instead confirmed by
the semiparametric estimator, consistent under non-normality, and the max-
imum likelihood estimator under correct specification of the distributional
assumption.

Thus, the non-normality problem in the sample selection model justifies
the need for some alternative estimation options in order to avoid severe
misspecification. Moreover, there are cases where a transformation as simple
as ln(WW) or some other re-specifications, that correct the non-normality
problem, are possible without the need for alternative parametric of semi-
parametric estimators. This solution is therefore preferable since maximum
likelihood estimator is consistent under correct specification and most effi-
cient. Moreover, we are able to remain within the traditional and familiar
framework of the sample selection model and maximum likelihood estima-
tion.

17The test statistics based on four and the two selected moment conditions have decent
finite sample properties while the other versions highly over-reject the null hypothesis of
bivariate normality.
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6 Final remarks

This chapter reviews some of the proposals on the estimation of the sam-
ple selection model when the bivariate normality assumption does not hold.
Alternative estimation options come from both the parametric and the semi-
parametric literature. The first has most recently focused on the application
of copulae to the sample selection model. This approach basically allows
for the replacement of the probabilistic structure of the model and relies on
maximum likelihood estimation. The proposed semiparametric methods aim
instead to maintain consistent estimates while disposing of the distributional
assumption. With the exception of the semiparametric maximum likelihood
estimator of Gallant and Nychka (1987), the semiparametric literature on
the sample selection model proposes a number of two-step estimators.

Still, both these two groups of estimators have some well known flaws and
are often based on assumptions as arbitrary as bivariate normality. Moreover,
the practitioner may find they are non-trivial to implement in software and
there are no objective criteria to choose between parametric and semipara-
metric estimators when dealing with non-normality in the sample selection
model. On this matter, the considerations made throughout this chapter
suggest that the choice of the alternative estimation options could also rely
on the estimation purpose.

In conclusion, when facing a non-normality problem in the sample selec-
tion model, alternative estimators are needed to avoid severe misspecification
as it happens in the example proposed in section 5. However, such specifi-
cation errors may be the consequence of a poor modelling choice and not of
non-normality itself. On the contrary, non-normality may be seen as a con-
sequence of a misspecified model and not a problem with the data. In this
perspective, whenever possible, attempts to re-specify the model may elimi-
nate the problem causing the distributional misspecification while remaining
in the familiar parametric sample selection model.
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(1987): “Testing the Normality Assumption in Multivariate Simul-
taneous Limited Dependent Variable Models,” Journal of Econometrics,
34(1-2), 105–123.

(1989): “On the Use of Distributional Mis-Specification Checks in
Limited Dependent Variable Models,” The Economic Journal, Vol. 99, No.
395, Supplement: Conference Papers, 178–192.

Trivedi, P. K., and D. M. Zimmer (2007): Copula modeling: an intro-
duction for practitioners, Foundations and Trends in Econometrics. Now
Publishers.

van der Klaauw, B., and R. H. Koning (2003): “Testing the Normality
Assumption in the Sample Selection Model with an Application to Travel
Demand,” Journal of Business & Economic Statistics, 21(1), 31–42.

Vella, F. (1998): “Estimating Models with Sample Selection Bias: A Sur-
vey,” Journal of Human Resources, 33(1), 127–169.

Vuong, Q. H. (1989): “Likelihood Ratio Tests for Model Selection and
Non-nested Hypotheses,” Econometrica, 57(2), 307–333.

Watson, G. S. (1964): “Smooth regression analysis,” Sankhya, A(26), 359–
372.

44



T
ab

le
3:

S
am

p
le

se
le

ct
io

n
m

o
d
el

fo
r

w
ag

es
an

d
la

b
or

fo
rc

e
p
ar

ti
ci

p
at

io
n

u
si

n
g

G
re

en
’s

S
p

ec
ifi

ca
ti

on
on

th
e

d
at

as
et

fr
om

M
ro

z
(1

98
7)

M
L

E
T

w
o-

st
ep

N
ew

ey
(1

98
9)

L
ee

(1
98

3)
ln

(W
W

)
M

ai
n

eq
u
at

io
n

C
O

N
S
T

-1
.9

63
(1

.2
0)

-0
.9

71
(2

.0
6)

-3
.8

33
(3

.0
2)

(a
)

-4
.5

00
(0

.6
5)

**
*

0.
55

6(
0.

25
)*

*
A

X
0.

02
8

(0
.0

6)
0.

02
1(

0.
06

)
0.

19
4(

0.
04

)*
**

0.
11

6(
0.

03
)*

**
0.

02
3(

0.
01

)*
A

X
2

-0
.0

00
(0

.0
0)

0.
00

0(
0.

00
)

-0
.0

03
(0

.0
0)

**
-0

.0
02

(0
.0

0)
**

-0
.0

00
(0

.0
0)

W
E

0.
45

7
(0

.0
7)

**
*

0.
41

7(
0.

10
)*

**
0.

38
5(

0.
04

)*
**

0.
46

0
(0

.0
5)

**
*

0.
06

5(
0.

02
)*

**
C

IT
0.

44
6(

0.
32

)
0.

44
4(

0.
32

)
0.

09
1(

0.
23

)
-0

.0
37

(0
.1

7)
0.

05
6(

0.
06

)

S
el

ec
ti

on
eq

u
at

io
n

C
O

N
S
T

-4
.1

20
(1

.4
0)

**
*

-4
.1

57
(1

.4
0)

**
*

-4
.1

57
(1

.4
0)

**
*

-2
.0

79
(1

.0
1)

**
-2

.9
99

(1
.2

0)
**

W
A

0.
18

4
(0

.0
6)

**
*

0.
18

5(
0.

07
)*

**
0.

18
5(

0.
07

)*
**

0.
04

4
(0

.0
5)

0.
12

1(
0.

06
)*

*
W

A
2

-0
.0

02
(0

.0
0)

**
*

-0
.0

02
(0

.0
0)

**
*

-0
.0

02
(0

.0
0)

**
*

-0
.0

01
(0

.0
0)

-0
.0

02
(0

.0
0)

**
F
A

M
IN

C
0.

00
0

(0
.0

0)
0.

00
0(

0.
00

0)
0.

00
0(

0.
00

0)
-0

.0
00

(0
.0

0)
**

0.
00

0(
0.

00
)*

**
K

ID
S

-0
.4

51
(0

.1
3)

**
*

-0
.4

49
(0

.1
3)

**
*

-0
.4

49
(0

.1
3)

**
*

-0
.1

86
(0

.1
0)

*
-0

.2
85

(0
.1

1)
**

*
W

E
0.

09
5(

0.
02

)*
**

0.
09

8(
0.

02
)*

**
0.

09
8(

0.
02

)*
**

0.
14

9
(0

.0
2)

**
*

0.
07

6(
0.

02
)*

**

λ
-0

.4
10

(0
.5

2)
-1

.0
98

(1
.2

7)
-5

.2
3(

0.
71

)*
**

-
-0

.6
86

(0
.0

6)
**

*
λ

1
-

-
-3

.8
5(

0.
92

)*
**

-
-

σ
3.

11
3.

20
2.

08
(0

.1
1)

**
*

0.
83

ρ
-0

.1
3

-0
.3

4
0.

93
-0

.8
2

α
-0

.1
3

-0
.3

6
1.

67
8

(0
.1

8)
**

*
df

-
-

-
2.

6(
0.

71
)*

**

L
og

-l
ik

el
ih

o
o
d

-1
58

1.
26

-
-

-1
41

5.
10

-9
11

.6
7

U
n
iv

ar
ia

te
n
or

m
al

it
y

te
st

C
h
i-

sq
u
ar

e(
2)

3.
06

3.
06

B
iv

ar
ia

te
n
or

m
al

it
y

te
st

F
ou

rt
h

m
.c

.,
C

h
i-

sq
u
ar

e(
3)

22
4.

62
**

*
7.

29
*

S
el

ec
te

d
m

.c
.,

C
h
i-

sq
u
ar

e(
2)

10
9.

43
**

*
4.

13

(a
)

In
te

rc
ep

t
te

rm
an

d
st

an
d

ar
d

er
ro

r
ar

e
co

m
p

u
te

d
a
s

in
A

n
d

re
w

s
a
n

d
S

ch
a
fg

a
n

s
(1

9
9
8
).
v

=
√
n

a
n

d
b

=
0.

1
a
s

in
M

a
rt

in
s

(2
0
0
1
)

45


