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Abstract

In this paper we develop an interbank market with heterogeneous �nancial institutions

that enter into lending agreements on di�erent network structures. Credit relationships

(links) evolves endogenously via a �tness mechanism based on agents performance. By chang-

ing the agent's trust on its neighbor's performance, interbank linkages self-organize them-

selves into very di�erent network architectures, ranging from random to scale-free topologies.

We study which network architecture can make the �nancial system more resilient to random

attacks and how systemic risk spreads over the network. To perturb the system, we generate

a random attack via a liquidity shock. The hit bank is not automatically eliminated, but its

failure is endogenously driven by its incapacity to raise liquidity in the interbank network.

Our analysis shows that a random �nancial network can be more resilient than a scale free

one in case of agents' heterogeneity.

Keywords: Interbank market, dynamic network, network resilience, heterogeneity.
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1 Introduction

Interbank markets allow exchanges among �nancial institutions, facilitating the allocation of the
liquidity surplus to illiquid banks. Notwithstanding, the global �nancial crisis, burst in August
2007, has shown the dark side of interbank connections. After the default of Lehman Brothers
and Bear Sterns, it became incontrovertible that the available tools to respond to the �nancial
crises have not been necessarily adequate as previously thought ((1),(2)). This has explained
the increasing concern of policy makers to �nd new analytical tools able to better identify,
monitor and address the systemic risk and the crisis transmission. Furthermore, many scholars
and practitioners have brought to the fore a crucial question, which motivates our paper, namely
what architecture of the global �nancial system could increase or decrease the emergence of
systemic risk ((3), (4)) and how systemic risk emerges from the interaction and evolves over
time. When things go wrong, in fact, �nancial linkages among highly leveraged banks represent
a propagation channel for shocks and a source of systemic risk. In this respect, our work follows
models where local shocks can also have systemic repercussions ((5),(6),(7)) and, thus, diverges
from the common idea that big crises need big shocks.

The most important strand of research has traditionally focused on three types of �-
nancial distress propagation: (a) self-ful�lling panic, i.e. bank runs ((8),(9),(10),(11)); (b)
the asset price contagion((12),(13)); (c) interlocking credit exposure, i.e. �nancial contagion
((13),(14),(6),(7),(15),(16)).
As recent events have shown, these channels interact and reinforce each other during �nancial
crisis ((17),(18),(19)).
Recent economic models have underlined advances in modeling credit markets as complex sys-
tems by using network theory for studying the resiliency and robustness of di�erent interbank
architectures (see (13),(16),(20),(21),(22)).

Following this approach, in this paper we study a credit network and, in particular, an
interbank system, in an agent-based model. In contrast to the mainstream assumption that
�nancial operators are anonymous players, this paper moves from the empirical evidence that
banks establish "personal" relationships, or links, to negotiate in the interbank market. In our
model, links are "preliminary lending agreements" able to provide liquidity to banks in need.
These �nancial connections might change over time, so modifying the interbank network structure
(topology). The originality of this work respect to previous mentioned models on interbank
networks is in the credit linkages evolution. We implement an endogenous mechanism of links
formation, via a preferential attachment rule ((23)), such that each �nancial institution can enter
into a lending agreement with others with a probability proportional to its pro�t. This method,
based on a �tness parameter given by bankÕs expected pro�t (see (24)), is able to reproduce
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di�erent network structures ranging from the random graph to the power-law one. Moreover, to
better determine the links capacity to carry liquidity to nodes, we model the interbank market
as a '�ow network': a simple directed network with speci�c constraints (lending capacities) on
the maximum liquidity �owing though established links. In particular, the Ford and Fulkerson
theorem (see (25),(26)) allows us to determinate the liquidity �ow between any pair of banks in
the market.
Each time period, we perturb the system with two random liquidity shocks of equal magnitude
but opposite sign and we test the ability of �nancial linkages to act as liquidity conduits between
the illiquid node (i.e agent hit by the negative shock) and the liquidity one (i.e agent hit by the
positive shock). The illiquid bank can try to borrow from �nancial institutions it has previously
entered into agreements with. If lending takes place and the bank manages to scrape together
enough cash to meet with the liquidity shock then it survives, otherwise it goes bankrupt. As the
�nal borrower (sink) and the initial lender (source) may be linked together through a chain of
intermediate nodes, the failure of the borrower bank can bring about a cascade of bankruptcies
among banks. Following physical and economic literature (see for instance (13),(16)), thus, we
induce a random attack via a liquidity shock, but the hit bank is not automatically eliminated:
the bankruptcy is endogenously driven by the node's capacity to rise liquidity in the interbank
network.

This theoretical framework allows us to study which graph proprieties better anticipate
the contagious e�ect and the network topology more robust to attack. Our results suggest that
the scale-free network is more vulnerable to random attacks than the Poisson graph. We �nd
two important explanations for this unexpected result. On the one hand, in accordance with
empirical analysis (see (27),(28), (29), (30)) and theoretical model (see (6)) the failure of one
bank has strong knock-on e�ects on its creditors just in case of heterogeneous agents. Our model
is able to generate a fat tail distribution of banks' wealth and, thus, a strong heterogeneity in
market participants' size when the interbank con�guration moves toward the scale-free network.
On the other hand, the random graph compared with the scale-free one has a tendency to
"condense", forming regions of the graph that are essentially complete communities-subsets of
vertices within which many possible lending paths (edges) exist. In this case, at least one path
between the �nal borrower and the initial lender exists, so decreasing the probability of bank's
failure.

The rest of the paper is organized as follows. In Sec. 2 we describe the model; in Sec. 3
we present the results of the simulations for di�erent network structures. Finally, Sec. 4
concludes.
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2 The Model

The model represents a stylized interbank network describing the dynamic evolution of credit
relationships (links) among �nancial institutions.
In order to meet with exogenous liquidity shocks, banks enter into Potential Lending Agreements
which allow the liquidity exchange among market participants. These contracts are revised
each time period on the basis of banks' expected performance. In particular, we implement an
endogenous '�tness mechanism' able to generate di�erent dynamic network topologies.
To test the network capacity to �ow liquidity and its resilience, we perturb the interbank market
with random attacks. Hit banks (i.e borrowers) try to get funds from �nancial institutions they
have previously entered into lending agreements with. If contacted banks have not enough supply
of liquidity to satisfy the borrowers' request, then they exploit their interbank connections,
asking for money from their linked neighbors. If borrowers are able to ful�ll their needs, they
survive, otherwise they go bankruptcy. As contacted banks, in case of shortage of liquidity, may
enter the interbank market, the failure of borrower banks could lead to failures of many lender
banks. The source of the domino e�ect may be due to direct interactions between lender and
borrower banks, on one side, and to indirect interaction between bankrupt borrowers and their
chain of lending banks, on the other side. Failed nodes are then removed from network and
replace with new ones.

2.1 Banks' �nancial structure

We consider a sequential economy operating in discrete time, which is denoted by t = {0, 1, 2, ...}.
At any time t, the system is populated by a large number N of active banks belonging to the
�nite set Ωt = {i, j, k, ...}. Agents are interconnected by credit relationships represented by the
set Dt, whose elements are ordered pairs of distinct banks. Banks (nodes or vertices) and their
relationships (edges or links) form the �nancial network Gt(Ωt, Dt).

Each bank1 has an Inter-day balance sheet structure de�ned as

ati = sti + eti, (1)

where ati, s
t
i and e

t
i represent, respectively, long term assets, short term debt and equity of bank i

in time t. Given this balance sheet structure, we assume that no liquidity is immediately available

1At the time t = 0, our economy is populated by homogeneous banks randomly linked to each other.
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in the market2. In other words: banks hold illiquid assets and so they can not immediately turn
these into cash in case of needs. The liquidity, thus, is exogenously generated as positive shocks
a�ecting �nancial institutions3.
Similarly, banks' liquidity needs are exogenously generated as negative shocks, which represent
the maturity of the short term debt s of �nancial institutions. To face with it, agents trade in
the "overnight" interbank market. All �nancial positions opened in t must be closed at the end
of the same day. The intra-day budget constraint is given by:

ati + rti = sti + lti + eti, (2)

with rti interbank credit and lti interbank debits in time t.

2.2 Credit Agreements & the network formation mechanism

In order to deal with their liquidity needs, at the beginning of each day t, agents meet in the
market and enter into bilateral potential lending agreements (PLAs) which represent directed
edges (i, j) ∈ Dt. Agreements can be interpreted as credit lines, valid during period t, exploitable
at borrowers request and upon lenders availability of liquidity (Lehman Brothers, Chapter 11
Examiner's Report 2010). The set of all PLAs describes the interbank network topology.
In general local interaction models, agents interact directly with a �nite number of peers in the
population. The set of nodes with whom a node is linked is referred to as its neighborhoods. In
our model the number of out-going links4 is constrained to be d. By keeping a �xed connectivity,
we can easier compare the performance of di�erent market topologies to spread liquidity through
the network. Furthermore, a non-negligible number of neighbors allows us to test the impact of
intermediate nodes to act as liquidity conduits. The role of intermediates is easier to be tested
when direct links are less likely to arise.
We implement a preferential attachment based on a �tness parameter given by lender's expected
pro�t5.

2Our interbank market is a zero-liquidity system, meaning that at the beginning and at the end of each period,
banks hold no liquidity.

3This assumption allows us to de�ne a �ow function in our network and solve the maximum-�ow problem by
using the simple Ford-Fulkerson method. In a forthcoming paper we will extend the analysis allowing banks to
hold liquidity. In that context, thus, we will use a more general de�nition of �ow network and �ow function.

4Out-going links show the number of borrowers each lender can link with. In-coming links show the number
of lenders each borrower can have.

5Expected pro�ts are function of the bank's default probability.
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The bank i expected pro�t for a loan to j is given by

E[Πt
i,j ] = (1− ptj)Rcti,j + ptjαa

t
j − δatj , (3)

where pj is the borrower's default probability, R is the gross interest rate, c is the maximum
amount bank i is willing to lend to j, α is the liquidation cost of assets pledged as collateral
and δ is the lender's opportunity cost of establishing a PLA. The �rst term of Eq. (3) shows the
expected revenue if the borrower repays its obligation, the second term the expected revenue in
case of the borrower's default (in this case borrower's collateral is sold) and the third term is the
opportunity cost of the agreement.
The maximum amount lender i is willing to lend to j is the lending capacity6, cti,j , de�ned as

• cti,j = (1− htj)atj > 0 if (i, j) ∈ Dt,

• cti,j = 0 otherwise,

where atj are the assets pledged by borrower j to lender i as collateral and htj is the borrower
haircut7. The size of the borrower haircut, htj ∈ (0, hmax], is inversely proportional to the agent's
normalized in-degree (dt−1

j ),

htj =
hmax√
dt−1
j + 1

. (4)

We interpret the in-degree as a proxy for borrowers' credit rating. Intuitively, the higher the
number of potential lenders bank j can rely on, the higher its chance to stay liquid (Lehman
Brothers, Chapter 11 Examiner's Report 2010).

The decision to establish a PLA is taken, non-cooperatively, by lenders. The lender i

considers the borrower j pro�table if E[Πt
i,j ] ≥ 0.

By imposing Eq. (3) equal to zero and solving it for ptj , we calculate the threshold probability of

default p̃ti,j ensuring zero expected pro�ts8

p̃tj =
R(1− htj)− δ
R(1− htj)− α

. (5)

6
P

i∈Ωt\{j} c
t
i,j represents the maximum amount of liquidity bank j can rise in the �nancial network. Note

that the lending capacity is calculated as the maximum amount that lenders are willing to lend when borrowers
pledge all their assets to secure the transaction.

7The haircut is a percentage that is subtracted from the market value of an asset that is being used as collateral.
The size of the haircut re�ects the perceived risk associated with holding the asset.

8To ensure a consistent set of probabilities and that ∂E(Π)
∂p

< 0 and ∂ ept

∂h
< 0, we impose 0 < α < δ <

R(1− hmax) < 1.
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Node ept rank(ept) φt

i 0.5 2 2/3
j 0.3 1 1/3
k 0.7 3 1

Table 1: Threshold Probability and Fitness Function

The higher p̃tj , the higher the expected pro�t, the higher the probability that lender i enters into
a PLA with borrower j.
As a measure of agents' attractiveness we de�ne their �tness at time t as a function of their
threshold probability of default (see example in Table 1):

φtj =
(p̃tj)

(p̃tMax)
. (6)

Each agent i starts with d outgoing links (PLAs in lending position) with some random
agents, and possibly with some incoming links (PLAs in borrowing position) from other agents.
Following an approach similar to (31), links are rewired at the beginning of each period, in the
following way: each agent i cuts its outgoing link, with agent k, and forms a new link, with a
randomly chosen agent j, with a probability

Prti =
1

1 + e−γ(φt
j−φt

k)
, (7)

or keep its existing link with probability 1−Prti . The rewind algorithm is designed so that more
pro�table borrowers gain a higher number of incoming links and thus have a higher probability
to draw liquidity from a larger pool of lenders9. Nonetheless the algorithm introduces a certain
amount of randomness, and links with more pro�table borrowers have a non-zero probability to
be cut in favour of links with less pro�table agents. In this way we model imperfect information
and bounded rationality of agents. The randomness also helps unlocking the system from the
situation where all agents link to the same �nancial institution.
The parameter γ ∈ [0,∞] in Eq.(7) is the key element generating di�erent network structures10.
It represents the signal credibility and answers the question how much banks trust on the infor-
mation (expectation) about other agents' performances. For 0 < γ < 1 di�erences in �tness are

9As in (31), this rewiring mechanism is also satisfactory from the conceptual point of view in that it ful�lls the
axiom of Independence of Irrelevant Alternative (IIA). The odds of choosing agent j over agent k depend only on
the characteristics of the two nodes, and are independent of any other third borrower in the market.
10The control parameter γ has a physical meaning of 1/γ where γ is the temperature (i.e. the measure of random

�uctuations in the system). Following this interpretation, the di�erent network topologies can be interpreted as
a phases transition of the model due to the decreasing of the temperature.

7/23



UNIVERSITÀ POLITECNICA

DELLE MARCHE

Simone Lenzua, Gabriele Tedeschib:
Systemic risk on di�erent interbank network topologies

smoothed, unchanged for γ = 1 and ampli�ed for gamma γ > 1.

2.3 Liquidity shocks and interbank lending

Each time period t, two random banks receive a liquidity shock of equal magnitude but opposite
sign. The negative shock arises from the maturity of the bank short-term debt, the positive one
arises from an unexpected �nancial pro�t of the bank and represents a liquidity surplus. The
magnitude of the two shocks is

• ψti = −sti, if bank i ∈ Ωt\{j} has a negative shock,

• ψtj = sti, if bank j ∈ Ωt\{i} has a positive shock,

• ψtk = 0, for all k ∈ Ωt\{i, j}.

The bank hit by the negative shock cannot raise funds by selling its assets, but only exploiting its
PLAs. The interbank network, thus, facilitates the liquidity allocation between the �nal borrower
and the initial lender. Intermediate nodes act as liquidity conduits, receiving and forwarding
funds. The liquidity �owing through each vertex is bounded by the node's incoming and outgoing
e�ective lending capacity11 c̃.

Figure 1: Simple network topology with 4 nodes. On each edge there is its capacity.

In each time period, we are able to determine the maximum liquidity �ow from the source
(initial lender) to the sink (�nal borrower), given the network topology and the set of e�ective
capacities. In accordance with Ford & Fulkerson theorem (see Appendix B ), the maximum
liquidity �ow between source i and sink j equals the capacity of the cut with the minimum
capacity. To clarify, consider the simple network structure in �gure (1). The agent 1 is the
initial lender (hit by the positive shock) and 2 the �nal borrower (hit by the negative shock).

11The E�ective lending capacity tells us how much liquidity each edge is able to carry and pass through.
c̃ti,j = (1− ht

j)ã
t
j,i ≤ cti,j , where ã

t
j,i are the e�ective assets pledged to secure the transaction. c̃i,j can be less then

cti,j either because the lender i does not have cti,j liquidity to provide, or because borrower j requests less than
cti,j .
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Agents 3&4 act as intermediate nodes. On each link we assign the e�ective lending capacity c̃
as represented in the �gure (for instance the e�ective lending capacity between 1 and 3 is equal
to 6). Following the Ford & Fulkerson theorem, we can conclude that, in the network topology
shown in �g. (1), the maximum liquidity �ow from 1 to 2 is equal to 10+5, that is the sum of
the minimum capacity of all paths running from these two nodes.
A bank unable to fully ful�ll its liquidity need before the end of the day defaults12. Bankrupt
agent's assets are liquidated in the claimants' favor. In this case, involved lenders incur a credit
loss equal to (1 − α − htj)ã

t
j , net of the collateral liquidation value. At the beginning of the

next day, failed banks are replaced by newcomers. In line with the empirical literature on entry
((32), (33)), we assume that entrants are on average smaller than incumbents, with the asset
of new banks being a fraction of the average assets of the incumbents. So, entrants' size in
terms of their assets is drawn from a uniform distribution centered around the mode of the size
distribution of incumbent banks.

Banks' assets and equity evolve according to:

ati = at−1
i + εti, (8)

eti = et−1
i + ηti , (9)

with
εti = ηti = (ψti −

∑
j∈Θ̇t

i

c̃ti,j) +
∑
j∈Θ̇t

i−

αãtj +
∑
k∈Θ̇t

i+

c̃ti,j , (10)

where Θt
i is the set of outgoing links of node i, Θ̇t

i ⊆ Θt
i is the subset of outgoing links involved

in the lending chain i → j, i.e. lender i's borrowers, Θ̇t
i+ and Θ̇t

i−, represent respectively the
disjoint subsets of solvent and insolvent borrowers of node i 13.

3 Simulations and results

The model is studied numerically for di�erent values of the parameter γ in Eq 7. In the �rst
part, we focus the analysis on some properties of the network such as the topology and in-degree
distributions. Then, we analyze the e�ect of di�erent network topologies on the dynamic of banks
default cascades.
We consider a network consisting of N = 150 banks over a time span of T = 1000 periods. Each

12Following this simple example, if the negative shock is equal to 16 bank 2 will go bankruptcy since the e�ective
lending capacity of its lenders is 15. If the shock is smaller or equal to 15 the bank survives.
13It can be shown that εti = ηt

i > 0 if the agent is the initial lender, εti = ηt
i ≤ 0 if it is an intermediate node in

the lending chain and εti = ηt
i = 0 if it does not belong to the lending chain.
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bank is initially endowed with the same amount of asset a0=100, of short debt s0=70, of equity
e0=30 and out-going links d = 6. The gross interest rate R = 1, the liquidation cost α = 0.2
and the opportunity cost δ = 0.3. Haircuts are bounded between htmin = 0 and htmax = 0.3.
Simulations are repeated 100 times with di�erent random seeds.

3.1 The network topology

Figure 2: Network con�guration for γ = 0 (left side), γ = 12 (centre) and γ = 40 (right side).

In �gure (2), we plot one shot of the con�guration of the endogenous network for γ = 0,
γ = 12 and γ = 40. The graphs show that, increasing γ, the network becomes more and more
centralized with a small number of attractive borrowers. We can immediately notice how the
network structure depends on the 'signal credibility' γ. This parameter shapes the interbank
network topology by amplifying the signal on banks' attractiveness. To better quantify this
observation, �g. (3) shows the decumulative distribution function, over all simulations, of the
agents' in-degree for di�erent values of γ14. Low values of γ (γ ∈ [0, 2]) characterize random
graphs with a Binomial (or Poisson) in-degree distribution , exponential and scale-free topologies
emerge for intermediate values of the parameter (respectively γ ∈ (2, 4] and γ ∈ (4, 12]), while the
market self-organizes into a pseudo-star for γ > 12. Moreover, in tab. 2 we estimate the average
exponent of the power law function by means of the Maximum Likelihood Method (MLM)
((35)), over 100 simulation. The table 2 shows the smooth transition from a random topology
(low gamma) to a star (high gamma), evolving though exponential (medium-low gamma) and
power law (medium-high gamma) structures. The existence of power law dependencies in bank's
degree distributions is an important stylized fact of interbank markets ((36),(37)).

Intuitively, when γ is high, the agents' behavior is characterized by �herding�, a phenomenon
which occurs in situations with high information externalities, when agentsÕ private information
is swamped by the information derived from directly observing othersÕ actions (see, for instance,
(38),(39)). In this circumstance, few borrowers gain the lion's share of lenders, attracting a high

14A sensitivity analysis on the phase transition has not been performed, however the degree distribution gives
a reasonable approximation of the critical behavior of our network model (see (34)).
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Figure 3: The decumulative distribution function (DDF) of the in-degree (star '*' black line)
and the Poisson, exponential and power law best �t (green dot, red triangle and blue 'x' re-
spectively) for γ=0 (top left side), γ=4 (top right side ), γ= 12 (bottom left side) and γ=40
(bottom right side).

γ Estimated Power Law coe�cient (MLM)
0 2.70
2 2.28
4 2.03
6 1.83
8 1.78
10 1.74
12 1.69
15 1.64
20 1.58
40 1.53

Table 2: Average power law exponent across 100 Monte Carlo simulations for di�erent γ.

percentage of in-coming links (i.e a high number of potential lending agreements) at the expense
of many feebly connected ones.
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3.2 Systemic Failures & Bankruptcy Cascades

An important di�erence distinguishes our 'failure mechanism' from those commonly used in
physical and economic literature (see for instance (40),(16)). All these models generate an exoge-
nous random (or targeted) attack and study the consequences of removing a hit vertex on nodes
connected to it and on the network structure. In line with these studies, we generate a random
attack via a liquidity shock but, di�erently from them, not necessarily the hit node is removed.
The failure depends endogenously from node's capacity to rise liquidity in the interbank market
and, lastly, from the network topology.
As described in Section (2), the bankruptcy occurs when banks do not have enough liquidity to
face the random shock. Two cases of direct failures may occur:

A Illiquid banks, unable to raise any cash (i.e �nancial institutions without connections or
linking with illiquid partners), fail without any domino e�ect in the interbank system.

B Connected illiquid banks, unable to raise enough cash to satisfy their needs, fail with some
possibility of contagion.

Di�erent implications in terms of systemic risk justify the separate treatment of these two sce-
narios. In particular, we want to highlight the distinction between borrowers' direct failures,
generated by the direct attack (cases A & B), and lenders' indirect failures, caused by their
inability to absorb the credit loss from the defaulted borrower15. Figure (4) (left side) shows
the percentage of borrowers' direct defaults for NO cash (case A, blue dotted line) and of bor-
rowers' defaults for insu�cient �ow (case B, green solid line). While bankruptcies for NO cash
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Figure 4: Average percentage of failing borrowers for NO cash (blue dotted line) and average
percentage of Insu�cient �ow failing borrowers (green solid line), over time and the number of
simulations as a function of γ (left side). Average number of infected lenders (blue dotted line)
over time and the number of simulations as a function of γ (right side).

are linearly increasing with γ, defaults for insu�cient �ow raise exponentially when the network

15This second scenarios may occur only in the presence of defaults for insu�cient �ow (case B), when the
defaulted borrower is linked with lenders.
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evolves from a random to an exponential one and reach their maximum with the scale-free graph
at γ equal to 6.
Although the random network is characterized by a low signal credibility, it is more 'e�cient' in
re-allocating liquidity from banks in surplus to banks seeking funds. The increasing strength of
the signal credibility shapes scale-free networks, which are more prone to idiosyncratic liquidity
shocks. In this case, in fact, a small group of highly trusted agents emerges, leaving the others
with very few (or none) potential lenders.

As previously mentioned, defaults for insu�cient �ow (case B) may generate contagious
failures due to the bad debits transmission among intermediate lenders (indirect failures). In
this case, the credit market as a network with interdependent units, is exposed to the risk of
joint failures of a signi�cant fraction of the system which may create a domino e�ect on the
cascade of bankruptcies, as shown in the right panel of �g. (4).
Bankruptcies are strictly connected to the network topologies. The betweenness centrality and
the diameter indices well describe the frequency of default for di�erent γ. The betweenness
(green solid line in the left panel of �g 5) decreases linearly with γ, proving that random
graphs have a higher number of geodesic paths running through nodes than scale-free and star
networks, where many vertices are isolated. A high number of credit paths, passing through
banks, allows an e�cient re-allocation of liquidity, so preventing the default of illiquid �nancial
institutions. Defaults for insu�cient �ow, instead, mainly depend on the number of intermediate
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Figure 5: Average betweenness centrality (green solid line) and average diameter (blue dotted
line), over time and the number of simulations as a function of γ (left side). Average number of
components, over time and the number of simulations as a function of γ (right side).

paths linking the initial lender to the borrower16. The higher the number of steps, the higher
the chance that banks are rationed during intermediate steps. The diameter index (see blue
dotted line in the left panel of �g. 5), which shows the consistently high distance (in number of
edges) between any two vertices in the power law network, is, indeed, a good �t of bankruptcies

16This result is in line with empirical literature on credit market showing that greater functional distance
between banks and borrowers sti�ens �nancing constraints ((41), (42).)
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for insu�cient �ow and it is strongly correlated to them17. Moreover, increasing γ, the network
is more 'fragmented', with many small clusters of banks not connected to each other (see right
side of �g 5). In this circumstance, a borrower hit by the negative shock hardly belongs to
the same cluster where the lender with excess liquidity is. The presence of many disconnected
communities generates a higher possibility of rationing, but a lower probability of contagion, as
shown in the right panel of Fig. (4).

The idiosyncratic default risk depends not only on the interbank network topology, but
also on the agents' characteristic. Figure (6) (left side) displays the average and median
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Figure 6: Average and median capacity c over the number of simulations as a function of γ
(right side). DDF of Bank's size (asset), respectively for γ equal to 0 (black circle), 4 (red
square), 12 (green triangle) and 40 (blue plus) (center). Decile of in-degree distribution of
banks failing for NO-cash (red circle line) and for insu�cient �ow (blue diamond line) over the
number of simulation as a function of γ (right side).

capacity for di�erent γ. The transition from the random graph to the scale-free architecture is
characterized by a sharp decrease of the median capacity, stable at zero for γ ≥ 12. Whereas, in
the random network, agents have more or less the same capacity to conduct liquidity, when the
network topology becomes power law just few big �nancial institutions have a large capacity
and many other nodes lose all the ability to transfer liquidity18. In this interbank structure,
thus, borrowers hit by the liquidity shock have less chances to be connected to those few
lenders able to provide them enough cash not to fail. Furthermore, whereas the median capacity
decreases, the average capacity increases linearly with γ, suggesting a strong heterogeneity in
the participants' size. Indeed, the heterogeneity may be an important source of idiosyncratic
defaults ((6),(43)). The fat tail distribution of the banks' size (�g. 6 center), which shows
that market participants are very heterogeneous in dimension as γ rises, con�rms the positive

17A geodesic path is the shortest path through the network from one vertex to another. Note that there may be
and often is more than one geodesic path between two vertices. The diameter is the length (in number of links)
of the longest geodesic path between any two vertices. The betweenness centrality of node i is the number of
geodesic paths between other vertices that run through i.
18Interestingly, the median decreases rapidly for γ greater than 4. This fast decay corresponds with the peak

of failures for insu�cient �ow (γ=6).
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correlation between heterogeneity and bankruptcies (see (27); (28); (29); (30), for empirical
analysis). The heterogeneity also plays a crucial role in the signing of PLAs: more pro�table
borrowers have higher possibility to enter into agreements with many lenders. However, the
decile of failed banks in-degree distribution (�g.6 right side) shows that borrowers with many
PLA may still fail. In particular, if failures for no-cash are characterized by few connections,
those for insu�cient �ow can also occur when banks are quite interconnected. This result
underlines that, in our model, is not enough to stipulate many PLAs to avoid bankruptcies, but
essential are both the con�guration of the interbank network and the heterogeneity of market
participants.

4 Conclusion

In this paper, we have characterized the evolution over time of a credit network in the most
general terms as a system of interacting banks. By implementing an endogenous mechanism of
links formation, describing credit relationships, we have reproduced di�erent interbank networks
con�gurations ranging from the random to the scale-free one. The crucial question we have
investigated is, how systemic risk emerges from the interaction and which network topology is
more resilient against the random attack of vertices. To address this point we have perturbed
the system with random liquidity shocks. Di�erently from the standard literature, however, the
hit node has been removed only if it did not scrape together enough liquidity in the interbank
network to cope with the shock.
Our �ndings have shown a higher vulnerability of the pawer-law network than of the random
one. We have found motivations of this result in two key points. First, the scale-free network
has self-organized itself into many disconnected clusters (communities), which have led to a
sub-optimal liquidity reallocation among market participants, thereby increasing the default
risk. On the other hand, the presence of many disconnected clusters might suggest that the
scale-free network was less susceptible to domino e�ects. However, we have found that this was
not the case. In fact, despite the agents' homogenous initial conditions, the scale-free network
develops heterogeneous distributions through the interaction of noise and feedback e�ects. As
commonly accepted in the literature, the heterogeneity among market participants has created
a higher exposure of our network in case of attacks. This suggests that topology (rather than
panics or direct knock-on e�ects) might be an important but neglected factor behind observed
episodes of systemic failures. Obviously, this �nding is speci�c to the model, but it o�ers an
interesting further insight into the nature of contagion.
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Appendix A

The Timeline of Events

In this appendix, we brie�y describe the assumptions and procedures we followed to simulate the
model and rules to be iterated period after period. Figure 7 exempli�es the timeline of events .

Figure 7: Stages time-line

In any given time period t, the following decisions take place in sequential order:

• Stage 1: Network Formation: At the beginning of each period agents form (revise) their
network of Potential Lending Agreements via a �tness mechanism based on their past
performance.
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• Stage 2: Liquidity Shocks: Two nodes are randomly selected. One (�nal borrower or sink)
faces a liquidity need and the other (initial lender or source) a liquidity surplus. Liquidity
shocks have equal magnitude but opposite sign. The �nal borrower asks potential lenders
it links with to honor the credit contract previously established. If the consulted banks do
not have liquidity to lend, they ask to the �nancial institutions they are linked to, in order
to satisfy their borrower's request.

• Stage 3: Lending Chain: Give the network topology, this "word-of-mouth" of requests may
either reach the initial lender, or fade way. In the �rst case, a lending chain is activated
and the liquidity �ows (initial lender) → ... → (final borrower) through the network.
The maximum liquidity received by the �nal borrower (maximum �ow) may (or not) fully
satisfy its needs.

• Stage 4: Repayment chain and �nal period network : If the liquidity reaching the �nal
borrower is enough to ful�ll its needs, it repays its obligations with its direct lender(s).
In this case a repayment chain starts, and all pending interbank lending are extinguished.
The initial lender thus uses the excess liquidity to buy new assets and adjusts its balance
sheet (Figure 7, "Final Period Network" branch a). If the liquidity is not enough to fully

satisfy the need of the �nal borrower, it fails. In this case all its assets are uses to repay its
creditors which incur credit losses. Whenever the lender equity is not su�cient to absorb
credit losses, it defaults in turn, potentially a�ecting its lenders �nancial robustness (Figure
7, "Final Period Network" branch b). At the beginning of next period (t + 1) defaulted
banks are replaced by new ones endowed with the modal balance sheet size.

Appendix B

Flow Network and Flow Function

A �ow network is a directed graph in which each edge has a nonnegative capacity (weight) asso-
ciated with it. We distinguish two type of vertices: the source i and the sink j, which represent,
respectively, the sender and the �nal (potential) recipient of a liquidity �ow. Formally:

De�nition 1: Flow Network

Let G = (D,Ω) be a �ow network having Ω nodes and D edges with an implied capacity function
c. Let i and j be, respectively, the source node and the sink of the network. Let Θu (Λu) be the
set of outgoing (incoming) links of any node u ∈ Ω. A �ow in G is a real-valued function
f : D ×D → R, which satis�es the following three properties:

a. ∀u, v ∈ Ω: f(u, v) ≤ c(u, v), (Capacity constraint)
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b. ∀u, v ∈ Ω: f(u, v) = −f(v, u), (Skew symmetry)

c. ∀u ∈ Ω\{i, j}:
∑

Θ(u) f(u, v) =
∑

Λ(u) f(v, u). (Flow conservation)

We call the quantity f(u, v) net �ow from node u to node v. The value of a �ow is de�ned as

|f | =
∑
u∈Ωt

f(i, u), (11)

that is, the total net �ow out of the source.

Proposition 1

Given the source i and the sink j, the set of credit capacities c and the balance sheet constraints
given in Eqs. (1)-(2), when R ≥ 119, then a �ow function f exists and governs the liquidity �ow
G = (D,Ω), for every period t.

Proof

To prove the existence of a �ow function, we need to demonstrate that each constraint, above
de�ned, is respected.

a) Capacity Constraint: Between any given pair of nodes (u, v), the capacity function c de-
termines the maximum amount of money u is willing to lend to v, given the total assets
that v can pledge as collatera. The �ow between these nodes corresponds to the e�ective
lending f(u, v) = c̃ti,j ≤ cti,j .

b Skew Simmetry: For Eq. (1), at the beginning of each period there are no open position
between any (u, v) in our network. Once the pairwise liquidity shock realizes, interbank
lending may take place among banks respecting the intra-day budget constraint in Eq.(2).
If f(u, v) > 0, i.e. interbank lending take place between them, then f(u, v) = ru = lv =
−f(v, u), with r and l respectively interbank credits and debits. Skew symmetry is directly
satis�ed if f(u, v) = 0.

c Flow Conservation: This condition requires that intermediate nodes borrow exactly the
same amount they lend, i.e. there is no liquidity hoarding. We consider three nodes u, v, k ∈
Ω \ i, j, such that cu,k, ck,v > 0. Two cases are possible:
Case 1: cu,k ≤ ck,v. The node k can lend, at most, the quantity it has been able to borrow.
Hence, f(u, k) = c̃u,k = cu,k = c̃k,v = f(k, v).
Case 2: cu,k > ck,v. The node k can hoard an amount of liquidity equal to cu,k−ck,v. IfR > 1,
the k's payo� is (Rck,v−Rcu,k) < 0 with liquidity hoarding or 0 with no liquidity hoarding.

19R is the gross interest rate in Eq.(3)
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Hence, k is worst o� with liquidity hoarding and f(u, k) = c̃u,k = c̃k,v = ck,v = f(k, v). If
R = 1, the k's payo� is equal with or without liquidity hoarding. For the sake of simplicity,
we assume k not to hoard liquidity and f(u, k) = f(k, v).
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