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Leveraged Network-Based Financial Accelerator

Luca Riccetti, Alberto Russo, Mauro Gallegati∗

Abstract

In this paper we build on the network-based financial accelerator model of Delli Gatti et al. (2010),

modelling the firms’ financial structure following the “dynamic trade-off theory”, instead of the

“pecking order theory”. Moreover, we allow for multiperiodal debt structure and consider multiple

bank-firm links based on a myopic preferred-partner choice. In case of default, we also consider

the loss given default rate (LGDR). We find many results: (i) if leverage increases, the economy

is riskier; (ii) a higher leverage pro-cyclicality has a destabilizing effect; (iii) a pro-cyclical leverage

weakens the monetary policy effect; (iv) a Central Bank that wants to increase the interest rate,

should previously check if the banking system is well capitalized; (v) policy maker has to develop

the laws about bankruptcies to reduce the LGDR and improve the stability of banks.
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1 Introduction

The financial accelerator (Bernanke and Gertler, 1989, 1990; Bernanke et al., 1999) is a

positive feedback mechanism that can enlarge business fluctuations. Negative aggregate or

idiosyncratic shocks on firms’ output make banks less willing to loan funds, hence firms might

reduce their investment and this leads again to a lower output in a vicious circle. However,

models of the financial accelerator available so far are generally limited, in our opinion, because

of the Representative Agent assumption. The aggregate mainstream view of the financial

accelerator abstracts from the complex nexus of credit relationships among heterogeneous

borrowers and lenders that characterizes modern financially sophisticated economies. This

causes one of the main problems with the current monitoring systems: they are based on the

idea that micro and macro behavior should coincide. Then, crises are expected to require

aggregate shocks, while in reality small local shocks can also trigger large systemic effects.

Delli Gatti et al. (2010) introduced the “Network-based financial accelerator”: the presence

of a credit network may produce an avalanche of firms’ bankruptcies, then even a small shock

can generate a large crisis. Indeed, bankruptcies deteriorate banks’ financial condition leading

to higher interest rates to all borrowers (Stiglitz and Greenwald, 2003, p.145), thus increasing

the weakness of the whole non-financial sector and the number of bankruptcies, in another

vicious circle that can make banks go bankrupt too.

We want to enrich the “Network-based financial accelerator” with the standard financial

accelerator mechanism, modelling the leverage cycle, because changes in leverage over the

business cycle are an important amplification mechanism of shocks. Indeed, many papers

recently try to understand the leverage process both for firms and banks: Adrian and Shin

(2008, 2009, 2010), Brunnermeier and Pedersen (2009), Flannery (1994), Fostel and Geana-

koplos (2008), Greenlaw, Hatzius, Kashyap and Shin (2008), He, Khang and Krishnamurthy

(2010), Kalemli-Ozcan et al. (2011). The leverage level is a component of a more general

discussion on firm and bank capital structure, such as in Booth et al. (2001), Diamond and

Rajan (2000), Gropp and Heider (2010), Lemmon, Roberts and Zender (2008), Rajan and

Zingales (1995). In the economic literature there are many theories on capital structure, but,

according to Flannery and Rangan (2006), three are the most important:

• “pecking order”, hypotesized by Donaldson (1961) and revived by Myers and Majluf

(1984), based on information asymmetry. It implies that investments are financed first

with internally generated funds, then with debt if internal funds are not enough, and

equity is used as a last resort;

• “trade-off”, firstly observed in a paper concerning asset substitution (Jensen and Meck-

ling, 1976), and in a work on underinvestment (Myers, 1977). It is based on the trade-off

between the costs and benefits of debt and implies that firms select target debt-equity

ratios;
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• “market timing” of Baker and Wurgler (2002), founded on behavioral hypotheses. It

implies that firms issue shares when the firm’s market-to-book ratio is high.

The empirical literature found at first contrasting evidence to support these theories. Then,

a refined version of the trade-off theory was proposed: the “dynamic trade-off theory”. In

this theory firms actively pursue target debt ratios even though market frictions temper the

speed of adjustment. In other words, firms have long-run leverage targets, but they do not

immediately reach them, instead they adjust to them during some periods. Dynamic trade-off

seems to be able to overcome some puzzles related to the other theories, explaining the stylized

facts emerged from the empirical analysis and numerous papers conclude that it dominates

alternative hypotheses: Hovakimian, Opler, and Titman (2001), Mehotra, Mikkelsen, and

Partch (2003), Frank and Goyal (2008), Flannery and Rangan (2006). Moreover, Graham

and Harvey (2001) conduct a survey where they evidence that 81% of firms affirm to consider

a target debt ratio or range when making their debt decisions.

To model in a reliable way the leverage cycle we apply the dynamic trade-off theory.

Indeed, in this paper we build on the agent based model of Delli Gatti et al. (2010), avoiding

the trade-credit relationship and substituting the pecking order theory with the the dynamic

trade-off theory for firms’ financial structure. Therefore, we hypothesize that firms have a

target leverage. This theory implies that a growing firm will increase its capital increasing also

its debt exposure, thus creating in good periods the basis for the subsequent crisis. Moreover,

we allow for multiperiodal debt structure and consider multiple bank-firm links based on a

myopic preferred-partner choice. In case of default, we also consider the recovery rate (RR)

or loss given default rate (LGDR = 1-RR) that is the second most important component of

the credit risk models after the estimate of the probability of default (PD).

Our analysis is confined to the investigation of business fluctuations in the short-run given

that we do not consider neither the factors at the root of economic growth in the long period

(technological innovations, labour productivity, population growth, and so on) nor inflation

dynamics in the medium run (due to the interaction between firms’ price-setting and workers’

wage dynamics or the change of money supply, and so on). Nevertheless, we analyze the role

of the central bank in stabilizing the business cycles, in particular to prevent financial crisis

due to bankruptcy cascades.

The paper is organized as follows. In the next Section we present the general characteristics

of our economy. Then, firms’ behavior is analyzed in Section 3, while Section 4 considers the

banking sector. Simulation results and sensitivity analysis to changes in the parameter values

are presented in section 5. Section 6 reports the sensitivy analysis on the parameter that

controls the leverage pro-cyclicality. In Section 7 we propose some analysis on the monetary

policy effectiveness and Section 8 concludes.
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2 Environment

Our economy is populated by households (final consumers and labor suppliers), firms and

banks. Firms - indexed by i=1,2,...,I - produce consumption goods. Banks, indexed by

z=1,2,...,Z, extend credit to firms.

We consider two markets: consumption goods and credit market. We will focus on the

last market, making simplifying assumptions for the first one. Moreover, we do not explicitly

model the labor market1.

On the market for consumption goods there are consumers and firms. Prices are exogen-

ously determined: following Greenwald and Stiglitz (1993), we assume that on the market for

consumption goods, prices are governed by a random process. We suppose that consumers buy

all the output that firms produce and sell at a firm-specific stochastic price (fluctuating around

a common average). Consider that this simplifying assumption makes us unable to analyze

inflation or deflation dynamics. This implies that in our monetary policy experiments we

cannot investigate the usual trade-off between inflation and output growth. However, prices

on good market have the important role of determining profits, which in turn affect the accu-

mulation of net worth and financial fragility. Our analysis is confined to business cycle issues

given that there are not growth-enhancing factors as population growth, labor productivity

evolution, technological progress, and so on.

Credit market is the other market we consider, where the main actors of the model, that

is firms and banks, interact. The net worth of firms is the “engine” of fluctuations for the

economy: we assume that the scale of production of firms is constrained only by their net

worth, then it turns out to be the main driver of fluctuations. A shock to a firm affects

the credit relationship between the firm and the bank: if the shock is large enough, the firm

may be unable to fulfill debt commitments and may go bankrupt. In a networked economy,

the bankruptcy of a firm may bring “bad debt” - i.e. non-performing loans - that affects

the net worth of banks, which can also go bankrupt or, if they manage to survive, they will

react to the deterioration of their net worth increasing the interest rate to all their borrowers.

Hence, borrowers may incur additional difficulties in servicing debt. The fact that a relatively

small shock may be amplified by the credit network, was labeled “network-based financial

accelerator” in Delli Gatti et al. (2010).

The endogenous evolution of credit interlinkages affects the extent of bankruptcies’ diffusion:

the bankruptcy of a highly connected agent increases the probability of bankruptcy diffusion

across the network. The structure of the network of credit relationships evolves endogenously

due to a decentralized mechanism of interaction: in every period each firm looks for the bank

with the lowest interest rate. Thus, prices on the credit market (that is, interest rates) have

1The lack of this market does not change the theoretical framework compared to a model where the labor

market is present, workers obtain a fixed slice of aggregate income and entrepreneurs set a mark-up on the

labor cost.
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two important roles: (i) to influence profits, which affect the accumulation of net worth and

financial fragility, (ii) to shape the evolving topology of the credit network.

3 Firms

3.1 Capital structure

The core assumption of the model, following Delli Gatti et al. (2010), is that the scale of

activity of the ith firm at time t - i.e. the level of production Yit - is an increasing concave

function of its net worth Ait. Indeed, we hypothesize that the production function (called

“financially constrained output function”) is2:

Yi,t = φKβ
i,t (1)

where φ > 1 and 0 < β < 1 are uniform parameters across firms and Ki,t is the total capital

of the i firm at time t, composed by net worth and debt (see eq.6). However, Yi,t is a function

of Ai,t because we follow the dynamic trade-off theory for the capital structure of firms, then

we hypothesize that the amount of debt B∗

i,t is a function of the net worth, given the leverage

target:

B∗

i,t = Ai,tleveragei,t
3. (2)

The leverage level is set by firms following an adaptive behavioral rule according to which the

current leverage level is equal to the previous level modified by a random percentage increase

(decrease) when the expected price is larger (smaller) than the interest rate on bank loans

(corrected for taking into account the firms’ net worth); thus, it is a positive function of the

expected mark-up on sales, and a negative function of the interest rate paid and of the net

worth:

Leveragei,t = f(pmi,t, ri,t) (3)

where pm is a modified exponential smoothing of recent observed firm-specific prices.4 This

level changes among firms and over time given the evolution of pmi,t and ri,t. The specific

form of the leverage setting adaptive rule is the following:

Leveragei,t = Leveragei,t−1(1± adj · random) (4)

where adj is a parameter that sets the maximum leverage change between the two periods

and is multiplied by a random number drawn by a uniform distribution between 0 and 1. The

2The concavity of the financially constrained output function captures the idea that there are ”decreasing

returns” to financial robustness. Moreover, following Greenwald and Stiglitz (1993), this function can be

thought as the solution of an optimization problem of firms’ expected profits net of expected bankruptcy

costs. For a detailed discussion see Delli Gatti et al. (2010, pp. 1630-1631).
3Obviously we are implicitly defining the leverage as debt/net worth.
4See equation 10 below for the specification of the firm-specific price.
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adjustment increases the previous leverage if pmi,t > ri,t, where pm is a function of pi,t−1,

pi,t−2, pi,t−3, and Ai,t/maxAt
5. Instead, if pmi,t < ri,t, the adjustment decreases the previous

leverage6.

In this way, a firm that has some reinvested profits, increasing Ai,t, will also ask banks new

debt funds to reach the desired level of leverage: the debt is built during the growth periods.

We could also hypothesize that this mechanism is driven by the bank side: banks are willing

to lend money to profitable firms and firms use the available money; the reverse is true when

firms have losses: banks constraint the amount of credit and firms are forced to reduce their

debt exposure. Therefore, we assume that firms are averse to the risk of bankruptcy (see

eq.1), while banks finance firms without (credit) constraints, just for modeling purpose, given

that the final outcome is the same.

To make the model more realistic, we hypothesize that debt lasts for two periods. To do

it, every period each firm asks banks an amount of credit equal to the difference between the

debt B∗ and the debt made in the previous period (that will expire in the following one):

Bi,t = max(B∗

i,t −Bi,t−1, 0) (5)

Thus:

Ki,t = Ai,t + Bi,t + Bi,t−1 (6)

If a firm suffers high losses that, reducing the net worth, make the debt implied by the target

leverage smaller than the previous debt, the firm does not ask for a new debt.

In this way we address four problems. First, we consider that firms prefer multiperiodal

debt. Second, it is possible for firms to have two banks to obtain credit (in practice big firms

often have syndicated loans or multiple banks). Third, as implied by the dynamic trade-off

theory, firms that suffer high losses may present a real debt higher than that implied by the

current target because now the target is lower than the previous period debt; this rigidity may

cause financial problems to firms. Fourth, we add another factor able to spread the financial

instability in the network.

5The correction for the relative net worth is made to consider the presence of decreasing return of scale.

We also check the influence of this assumption on the system behavior applying the following more complex

optimization rule, by deriving the profit equation with respect to the leverage:

LeverageTarget = [(ri,t/(pi,t−1 · β · φ))1/(β−1)]/Ai,t − 1

hypothesizing adaptive expectations about firm specific prices (or expectations given by an exponential

smoothing of the last observed prices, with a large weight on the most recent one). Then, according to

eq.4, the leverage goes up when its previous period value is below the optimal target and decreases in the

opposite case. Equation 3 is a simplified form of the optimal leverage equation written above. Anyway, we

obtain similar results with both specifications. The two cases have in common the hypothesis of non-fully

rational firms: they are not able to forecast the real expected price, and they use an adaptive expectation

about pi,t.
6In simulations the leverage level cannot be set below 1%.

7



3.2 Firm-bank interaction

In every period every firm asks for a debt that lasts two periods and whose amount is de-

termined as explained in the previous sections. Thus, in every period firms usually have two

debts, one of which is expiring and has to be renewed. Initially, the credit network, i.e. the

links among firms and banks, is random. Afterwards, in every period each borrower observes

the interest rates of a number BNK of randomly selected banks. We assume, as done in Delli

Gatti et al. (2010), that the firm changes bank with a propensity ps of switching to the new

lender, that is decreasing (in a non-linear way) with the difference between rold (the previous

bank’s interest rate) and rnew (the interest rate set by the observed potential new bank), only

if it finds another bank that charges an interest rate lower than the actual. In symbols:

ps = 1− e(rnew−rold)/rnew if rnew < rold (7)

This procedure to choose the partner is activated in every period, but the partner is changed

less frequently. In this way, we model the sticky connection between a borrower and its banks,

due to the (asymmetric) information on the firm owned by the bank.

However, the topology of the network is in a process of continuous evolution due to the

changing interest rate charged by the banks. Indeed, banks characterized by more robust

financial conditions can charge lower prices and therefore attract more new partners7. As

a consequence, their profits go up and their financial conditions improve, making room for

even lower interest rates in the future and attracting more new partners. This self-reinforcing

mechanism gives rise to an endogenous evolution of the credit network, that will be charac-

terized by a right-skew distribution for node degree: there will be nodes characterized by a

relatively high number of links (“hubs”) and nodes with a small number of connections.

The partner’s selection mechanism could have interesting effects on the whole system: when

a negative shock hits a node - for instance a firm goes bankrupt - the lenders of the bankrupt

firm react by raising the interest rate charged to all the other borrowers, as we will see in the

section dedicated to banks. This interest rate hike may induce the borrowers to switch to

lenders who offer more favorable conditions, with two possible effects: on the one hand mit-

igating the spreading of the shock to other firms, i.e. slowing down the financial accelerator

(that is, the network effect mitigates financial instability); on the other hand, further weak-

ening the bank that suffers for the bankruptcy (that is, the network effect amplifies financial

instability).

7See Delli Gatti et al. (2010, pp. 1632-3) for references on the relationship between banks’ financial

soundness and interest rate setting.
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3.3 Profits

Profits (Pri,t) are a key component of the model for two reasons:

• they determine firms’ net worth Ai,t in the following way:

Ai,t+1 = Ai,t + Pri,t (8)

• they are used to set the target leverage as already seen in section 3.1.

Profits are computed with the following formula:

Pri,t = pi,tYi,t −Rbi,tBi,t −Rbi,t−1Bi,t−1 (9)

where Yi,t is the output, Rbi,t is the interest rate paid on the last loan (Bi,t), Rbi,t−1 is the

interest rate paid on the loan received the previous period (Bi,t−1) and pi,t is the stochastic

gain on a unit of output, that contains the stochastic price net of the expenses for producing

the output itself (excluding financial costs). In practice pi,t is composed by two parts

pi,t = α + randomi,t (10)

where α is the expected gross profit (that is net of financial costs), and randomi,t is the

random component for each firm in each period. We assume that the random part is a

variable distributed as a Normal with zero mean and finite variance (varp). The rationale is

the same explained in Delli Gatti et al. (2010): given the predetermined supply, the relative

price is an increasing function of the demand disturbance. A high realization of pi,t can be

thought of as a regime of “high demand” which drives up the relative price of the commodity

in question. On the other hand in a regime of “low demand”, the realization of pi,t turns out

to be low and may push the firm to the bankruptcy.

3.4 Bankruptcy

At the end of each period, the net worth of the i firm is defined, as already seen, by Ai,t+1 =

Ai,t + Pri,t. The firm goes bankrupt if Ai,t+1 < 0, i.e. if it incurs a loss (negative profit) and

the loss is big enough to deplete net worth: Pri,t < −Ai,t. When a firm goes bankrupt, we

hypothesize that a new firm enters in the market with a very small random net worth.

4 Banks

4.1 Interest rate setting

As already seen in sections 3.1, firms require credit from banks. Moreover, each bank sets a

different interest rate on loans and these differences imply that firms sometimes change banks
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to obtain a lower interest rate, following the mechanism explained in section 3.2.

We hypothesize that the zth bank adopts the following rule in setting the interest rate on

loans to the ith borrower:

Rbdi,t = rCBt + f1(Az,t) + f2(leveragei,t, Ai,t) (11)

Thus the interest rate is composed by three parts:

1. the policy rate set by the central bank: rCBt;

2. a term that decreases with the financial soundness of the bank (proxied by the zth bank’s

networth Az,t). If the bank is financially in good shape, it will be eager to extend credit

at more favorable terms to increase its market share. We follow Delli Gatti et al. (2010)

setting this term as follows: f1(Az,t) = γ · A−γ
z,t ;

3. a term that incorporates a risk premium increasing with borrower’s leverage:

f2(leveragei,t, Ai,t) = γ(leveragei,t/(1 +Ai,t/A
max
t ), where Amax

t is the net worth of the

largest firm. The presence of this endogenous premium in the interest rate is a channel

of the network-based financial accelerator.

4.2 Profits

Banks’ net worth Az,t evolves in the following way:

Az,t+1 = Az,t + Prz,t (12)

Where Prz,t is bank z profit at time t, given by:

Prz,t =
∑

Rbi,tBi,t +
∑

Rbi,t−1Bi,t−1 − rCBtDz,t − c · Az,t − badz,t; (13)

where Rbi,t is the interest rate paid on Bi,t (if firm i has not gone bankrupt), rCBt is the Cent-

ral Bank official interest rate, Dz,t is the amount of z banks’ deposits, c is a cost proportional

to bank’s size and badz,t is the z banks’s bad debt. In particular:

• deposits Dz,t are computed as the sum of all the lent credit, less the amount of the net

worth;

• bad debt badz,t is computed as the sum of all the credit lent to firms gone in default in

period t, multiplied by the loss given default rate (LGDR), that is 1 less the recovery rate

(RR); RR is computed as the ratio between the asset and the debt of the bankrupted

firm and decreased by a fixed amount for the legal expenditure LE. In this way we insert

both the two most important components of the credit risk models: the probability of

default (PD) and the loss given default rate (LGDR).
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5 Simulations

We analyze our economy by means of computer simulations. We assume that this economy

is composed by 500 firms and 50 banks over a time span of 1000 periods. Figures and

statistics are about the last 800 periods, given that the first periods are needed to initialize

the simulations and sometimes follow unreliable patterns. At the beginning of the simulation,

we set the net worth of each firm and bank to 10. We hypothesize that, when a firm or

bank goes bankrupt, it is replaced by a new one with net worth equal to a random number

included between 0 and 2; in this way the entrant is small relative to the size of the incumbent

firms/banks. We begin with a baseline model considering the parameter values reported in

Table 1. In this section we report the simulation of the baseline model; section 5.1 and

Table 1: Parameter setting of the baseline model.

Parameter Value Meaning

φ 3 see production function eq.1

β 0.7 see production function eq.1

α 10% expected gross profit, see eq.10

varp 0.4 profit variance, see eq.10

adj 10% maximum percentage of leverage change allowed to firms in a time period

rCB 2% central bank monetary policy rate, see eq.11

γ 2% risk premium parameter, see eq.11

c 10% bank operational costs, see eq.13

LE 10% legal expenditure in case of firm bankruptcy, that increases the loss given default

BNK 5 number of banks observed by each firm, every period

5.2 presents a robustness check and a sensitivity analysis, respectively. Section 7 analyzes

some monetary policy experiments. However, we do not perform a validation exercise, given

that we have sketched many characteristics of the economic system and we have neglected

some others such as the labor market, even if we chose parameter values to reproduce some

empirical regularities in the simulated data already explained by Delli Gatti et al. (2010).

Indeed, even if all firms start from the same conditions, they become rapidly heterogeneous

and a right-skew distribution of firms’ size emerges. This feature also emerges for banks,

which concurrently present a right-skew distribution of the number of borrower firms (the

degree distribution of the credit network). The mechanism is simple: weaker firms grow less

with less debt (or they could even go bankrupt), thus their banks grow less. Smaller and less

profitable banks set higher interest rates and:

• lose some customers, further reducing their own growth;

• decrease the growth of their residual borrowers, which face higher interest rates.

On the other hand, financially robust banks increase their market share. Therefore, both

the corporate and the banking sector become polarized and the degree distribution becomes
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asymmetric.

Our model extends the analysis of the network-based financial accelerator proposed by

Delli Gatti et al (2010) by considering the effect of the dynamic trade-off theory and the

endogenous evolution of the firms’ leverage. Indeed, a firm that makes negative profit, lowers

its activity, reducing both the amount of internal and external funds. Here we hypothesize

that the firm asks for less credit, but this characteristic could be theoretically coupled with

the unavailability of banks to loan funds to a firm with negative profit. Hence the firm

reduces its investment, leading again to a lower output. Moreover, a firm could even be

unable to pay its debt to banks and goes bankrupt. Its banks record a non performing loan

that reduces their net worth. If banks are not financially robust, they could also go bankrupt.

Instead, if the loan is relatively small compared to the banks’ net worth, they survive the

loss; however, even in this case, banks increase the interest rates to other borrowers to cover

the loss; the increased interest rates reduce the firms’ profits, starting again the standard

financial accelerator or, if other firms go bankrupt, enlarging the network-based mechanism.

In both cases, with or without bank defaults, the initial shock spreads across the financial

network, with the possibility to create an avalanche of bankruptcies, which amplifies business

fluctuations. Therefore, the network makes possible that an idiosyncratic shock creates an

extended/global crisis, without the need of a systemic shock.

In other words, simulations shown in Figure 1 tell the following story: when a firm makes high

profit, it increases its net worth. Thus, the firm wants (and has the possibility because banks

evaluate it profitable) to obtain further funds from banks to enlarge its leverage. Moreover, it

may have a higher target leverage: it is profitable to obtain more credit to invest in an activity

with a high gain, higher than the lower cost of the credit. In good times there are the seeds of

the subsequent crisis, with a possible high debt bubble. Then, in this case the pro-cyclicality

of credit clearly emerges, given that during a first phase the increase of leverage (i.e., the debt

grows more than proportionally than the net worth) boosts firms’ growth until the system

reaches a critical point of financial fragility and the cycle is reversed through deleveraging.

This feature results clearly from Figure 2: during an expansion the production growth allows

to further expand the economy through increasing the leverage (negative lags in the Figure

show positive correlation between firms net worth and subsequent leverage); the increase of

leverage, in turn, enlarges the production (first positive lags in the Figure), but after a while

the rise of financial fragility eventually leads to a recessionary phase (negative values of cross

correlations’ positive lags). Indeed, when the leverage is high, this may boost production

along an expansion, but the economy may also become more fragile and volatile, and then:

• a negative real shock for the firm can easily create a large loss when the debt is high,

because there are high interests to be paid without a corresponding gain. According to

what said above about the influence of the leverage on net worth (and then production),

the cross-correlation function between leverage and bad debt ratio (the sum of all the

debts that is not repaid by the firms defaulted in the period divided by the overall
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outstanding credit) highlights the mechanism of financial fragility (Figure 3): during

the expansionary phase of the cycle, the decrease of firm defaults reduces the bad

debt ratio and the accumulation of capital proceeds; this allows firms to borrow more

(negative cross-correlations of negative lags in Figure 3) both because they are more

capitalized and because banks are financially sounder. But, after some periods the

increased leverage results in a “too-high” financial fragility and an increase of default

(and bad debt) follows (positive cross-correlations between leverage and subsequent bad

debt ratio). Thus, with the variable leverage, the standard financial accelerator is even

increased and we can call it “leveraged financial accelerator”;

• the increased number of firms’ bankruptcies starts the “network-based accelerator”; the

correlation between firm and bank defaults is clearly significant: in the same period

firms and banks’ defaults are positively related, with a correlation coefficient equal to

15%. Now, the reduced bank capitalization due to the increased previous bad debt,

tightens the credit supply and makes the interest rates higher for the other firms that

increase the number of their defaults: this is shown by the autocorrelation function of

firm defaults that shows significant positive values for some lags (see fig.4)8.

Figure 1 shows that, in our simulations, financial fragility creates quite strong bankruptcies

avalanches with the number of defaulted banks in the same period that is in mean equal

to 1.28 but varies from a minimum of 0 to a maximum of 5 (the 10% of the banks in the

economy); moreover, bankruptcies tend to cluster in subsequent periods; the distribution of

bank defaults presents positive skewness (more than 0.7) and high kurtosis (6.15). However,

this propagation could be dampened (or increased) considering the interbank market9, that

we want to introduce in further extensions of the present model.

Analyzing firm bankruptcies, we observe that they vary from a minimum of 55 (11% of

overall firms) to a maximum of 105 (21%), with a mean of 77.86 and a distribution with a

high kurtosis of 5.9.

8We can see it also in the not reported cross-correlation function between firm bankruptcies and bad debt

ratio: a higher bad debt ratio increases the following periods’ bankruptcies and, by definition, bankruptcies

increase the same period bad debt.
9There is an increasing literature branch that is studying the ability of the interbank market in reducing

the systemic/contagion risk, since the seminal paper of Allen and Gale (2001), with works such as Acharya

(2009), Allen et al. (2010); Brock et al. (2009), Castiglionesi and Navarro (2010), Gai and Kapadia (2010),

Haldane and May (2011), Ibragimov et al. (2011), Ibragimov and Walden (2007), Nier et al. (2007), Shin

(2008, 2009), Stiglitz (2010), Wagner (2009) and so on. Many of these papers highlight that an increasing

connectivity of the interbank network implies a more severe trade-off between the stabilizing effect of risk

diversification and the destabilizing effect of bankruptcy cascades.
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Figure 1: Baseline model: simulation results
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Figure 2: Cross-correlation between firms’ leverage and net worth
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Figure 3: Cross-correlation between firms’ leverage and bad debt
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Figure 4: Autocorrelation of firm defaults
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5.1 Robustness check

We implement a simple Monte Carlo experiment, repeating the simulation 100 times with

different seeds of the random numbers, to check the robustness of our findings.

All features are confirmed (see Table 2 and compare it with Tables in the appendix). For

example, we report the two cross-correlation functions between leverage and net worth or bad

debt ratio, two of the most important characteristics emerging from simulations. Figures 5

and 6 confirm the cyclical behavior of leverage. Indeed, we detect a strong positive correlation

between net worth and the subsequent leverage (that is negative lags in Figure 5) in all the 100

simulations, while we find a negative correlation between leverage and the following net worth

(positive lags in Figure 5) in 91 cases out of 100. Moreover, we observe a strong evidence

of negative correlation between bad debt ratio and the subsequent leverage (negative lags in

Figure 6) in all simulations, while a positive correlation between leverage and the following

bad debt (positive lags in Figure 6) emerges in 97 cases out of 100.

Table 2: Mean, minimum and maximum of relevant statistics across 100 simulations

mean min max

Growth std % 3.30 3.09 3.54

Leverage mean 2.09 2.05 2.14

Leverage maximum 2.57 2.41 2.87

Bad debt ratio mean % 1.10 1.05 1.15

Bad debt ratio max % 4.33 3.07 6.74

Bank Defaults mean % 3.14 2.30 4.18

Bank Defaults max % 12.48 8 20

5.2 Sensitivity analysis

In this section we discuss the effects of model parameters’ changes (keeping all the other vari-

ables fixed at the level set in Table 1) in terms of the following output variables: the volatility

of the aggregate production’s growth rate, average and maximum value of overall leverage in

the economy, average and maximum value of bad debt ratio10, average and maximum number

of bank defaults. In this way we check the sensitivity of our findings to the hypotheses on the

parameter setting and we can observe some interesting results.

α (see Table 5). We change the mean gain from 2% to 20% with steps of 2%. The higher

the average profit for firms the more stable the economic system is. Indeed, the number of firm

defaults decreases (when α is 2%, 121.9 firms go bankrupt in mean every period, while when

it is 20% the number of mean defaults is 35.5) and, because of the reduction of the bad debt

ratio, the overall banking system is less fragile (more capitalized) and bank defaults decrease

(from 36.87% to 0), with a lower and lower correlation between firm and bank defaults. The

10This index is strictly related to the average and maximum number of firm defaults.
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Figure 5: Mean cross correlation between firms’ leverage and net worth
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Figure 6: Mean cross correlation between firms’ leverage and bad debt

−25 −20 −15 −10 −5 0 5 10 15 20 25
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Lag

M
ea

n 
C

ro
ss

 C
or

re
la

tio
n 

ac
ro

ss
 M

C
 s

im
ul

at
io

ns

17



larger capital accumulation implies a higher level of aggregate production, further enlarged by

a higher debt level, also tied to the higher leverage level, due to higher expected profits. The

increased stability emerges even if the system has a higher leverage, thus, a stronger economy

can support a limited increase of leverage.

varp (see Table 6). We change the variance of the Normal random shock from 0.24 to

0.60 with steps of 0.04. We find that an increasing gain volatility implies a more volatile

economy, with a growing number of firm bankruptcies (from a mean of almost 24.3 with varp

0.24, to a mean of 121.2 when varp is 0.60) and of the bad debt ratio. Then, an increase

of bank defaults follows (there are almost no defaults with variance 0.24, while 27.81% of

banks go bankrupt in mean every period when variance is 0.60) with a higher and higher

correlation between firm and bank defaults. The effect of bankruptcy cascades is also very

evident: when varp is equal to 0.6, there are periods in which the number of firm defaults

reaches the 150 units and periods in which the number of bank defaults reaches the number

of 26 (more than a half of the banks in the system). Moreover, leverage increases (because

the biggest firms, that have very high profits, enlarge their production with higher leverage

too) and it further enlarges the financial fragility and the accelerator mechanism, as shown

by the cross-correlation between leverage and bad debt that is not statistically significant for

low values of varp.

adj see Section 6.

φ (see Table 8). A higher value of this parameter implies a higher volatility of aggregate

production. It is worth to note that this is related to a higher level of the aggregate production

itself. Then, a trade-off between production level and its volatility emerges. The leverage

shows a slight increase of its mean and a larger rise of volatility/maximum. A similar pattern

is followed by the bad debt ratio and, consequently, we observe an increase of bank defaults.

β (see Table 9). A growth of β increases the volatility of the aggregate production’s

growth rate, the leverage level, the number of defaults and the amount of the bad debt ratio.

Moreover, a high β implies very strong cascade effects, with events characterized by high

values of maximum leverage, bad debt ratio and bank defaults.

rCB see Section 7.

γ (see Table 11). A high γ, increasing the risk premium, increases the mean interest rate

even if the leverage is reduced (due to the fact that is less convenient to borrow money at

high interest rates). Then, the number of firm bankruptcies increases. However, the increased

bad debt does not create problems to banks, because they earn very large profit thanks to

the high interest rates on non defaulted firms.

Minor parameters. The number of observed banks BNK (see Table 12) influences the

number of bank defaults only, given that when firms have a larger set of banks among which

to choose the best partner, they tend to concentrate on the cheapest ones, so implying the

failure of minor banks. The parameter c (see Table 13) has a similar effect. A relevant in-

crease of bank defaults is also caused by an increase of parameter LE (see Table 14): if the

18



recovery rate (RR) is reduced, the amount of bad debt increases for a given number of firm

defaults; then, it strongly affects bank profits and the number of bank defaults. The policy

maker has to develop the laws about bankruptcies also to improve the stability of banks.

The fact that bank defaults are not strongly related to other output variables, and in partic-

ular to aggregate production, is the consequence of our simplifying assumption of one-to-one

replacement of bankrupt agents. Indeed, in certain circumstances, for instance when BNK,

c or LE are “high”, small banks tend to fail with a high probability and they are replaced by

new “small” entrants that stabilize the system and, in turn, have a high probability to fail,

and so on. As a consequence, the banking system becomes more concentrated and a large

fraction of firms, that continues to borrow from large banks, does not have consequences from

the high default rate of (small) banks. This is one of the assumptions we want to remove in

our future research on the topic.

Initial conditions. Computer simulations are robust to changes in initial conditions of

the firms’ net worth (Afiniz) (see Table 15) and of the banks’ net worth (Abiniz) (see Table

16). We also simulate the system for different ratios between the number of firms and banks:

from 500/50 to 1400/50 adding 100 firms for each of the ten steps (keeping constant the

number of banks). Simulations are again robust to this change, the only difference being a

decreasing volatility of the growth rate, and a decreasing number of bank defaults given that

each bank has more customers (see Table 17).

6 From variable to fixed target leverage

We devote this section to the sensitivity analysis of the parameter adj that is the most

important variable regarding the leverage behavior. We change it from 2% to 20% with steps

of 2%. When adj increases an increase of all output variables analyzed follows (see Table 7). In

particular, a strong adjustment of the leverage level increases the volatility of the system both

in terms of the aggregate production’s growth rate and failures (bad debt ratio). It is worth to

note that cascades of bad debt are more likely to appear for larger values of adj (for example,

when adj = 20%, the average of the bad debt ratio is around 2.7% and a cascade of more than

7.8% magnitude may happen). It clearly emerges that a higher mean leverage (due to the fact

that the skewness of leverage distribution is higher when adj is higher: the distribution of the

leverage has a lower bound in 0, while it has not an upper bound theoretically) and a higher

pro-cyclicality of the leverage increase the “leveraged network-based financial accelerator”

with a destabilizing effect on the economy. Instead, as adj decreases the pro-cyclicality of the

leverage becomes less evident.

Geanakoplos (2010) finds that leverage is pro-cyclical, while Kalemli-Ozcan et al. (2011),

as well as Adrian and Shin (2008,2009), find that the leverage pattern for non-financial firms

is acyclical (instead this is pro-cyclical for investement banks and large commercial banks).

We simulate the model also for adj even smaller than 2%, approaching zero, finding that our
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model is able to reproduce also this acyclical pattern. If adj is equal to zero, the financial

structure of the model changes and it is based on a fixed leverage target (that is the standard

trade-off theory). In this scenario, the leverage becomes even counter-cyclical11. Accordingly,

our model gives rise to different patterns of leverage along the business cycle: from pro-cyclical

to acyclical and even counter-cyclical.

In Section 7 we will compare this simulation with those where the leverage target is fixed.

The simulation with fixed leverage target has a smaller standard deviation of the production

growth12 (2.81%, as shown in Table 3, compared to 3.28% of our baseline model), because

there is not the pro-cyclicality of the leverage that increases investments in growth periods

and decreases them during recessions: do not considering the leverage pro-cyclicality makes

it lose a component of volatility due to the financial accelerator.

Moreover, with a variable leverage also big firms go bankrupt, as shown by the maximum

reached by the bad debt ratio that is higher than the maximum reached with fixed target

leverage (3.97% vs 2.72%) even if the mean bad debt is similar and the number of firm defaults

is higher when the target is fixed (in mean 77.8 vs 98.7, with a maximum of 105 vs 126). The

reason is that a firm that has a high profit enlarges its net worth, but also its leverage, thus

it could be financially fragile even with a high net worth.

The inverse relation between firm net worth and leverage is also the cause of another difference

between the two simulations. Indeed, the number of bank defaults is higher if the leverage

is fixed. The reason is that, in case of a fixed leverage target, a negative correlation between

net worth and leverage emerges: a net worth reduction can pursue the real leverage over the

target; in this case banks do not constraint the credit to firms, then they are more exposed.

Instead, the variable leverage simulation presents, as already explained, a positive correlation

between net worth and leverage; this is a better description of the credit constraint applied

by banks to their borrowers during the last crisis. In this way banks reduce their risks and

their probability of default, reacting to the external changes.

11In this case, the exogenous choice of the fixed target leverage is fundamental, while in the variable leverage

target setting the system evolves to an endogenous target, reducing the impact of the initial condition. In

order to compare this simulation with the baseline simulation, we set the fixed target leverage at 2. The

effective mean leverage is a bit over the target - about 2.09, very close to the mean leverage which emerges

from the baseline model - and has a small, but non-null variance, because of the mechanism of equation 5

explained in section 3.1. This mechanism is also the cause of the counter-cyclical pattern: a firm facing a

huge net worth loss should proportionally reduce the debt, but it could be not feasible at all if the previous

period debt is so high that pushes the leverage above the target.
12The growth rate is calculated on firms’ production only. The banking sector component is not included

in the product computation.
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7 Monetary policy experiments

In this section we first show the effect of the sensitivity analysis on rCB and then we analyze

a couple of monetary policy experiments. As already said, stochastic prices fluctuate around a

common mean, then the Central Bank does not follow an inflation target strategy or somewhat

similar focused on the control over inflation through interest rate changes. However, we find

interesting to investigate the influences of monetary policy on the financial stability of the

system.

When rCB (see Table 10) increases, firms’ financial conditions weaken. This has two

consequences:

• firm defaults and the bad debt ratio increase, so leading to a higher number of bank

defaults;

• firms ask for less credit, reducing the leverage.

The second effect counteracts the first. Indeed, if we repeat the same sensitivity analysis (as

shown in Table 3) setting the leverage target at the fixed level of 2, we find that a higher

interest rate has much stronger consequences: firm and bank defaults significantly increase

if compared to the simulation with floating leverage, and the growth volatility is also larger,

because the system does not adapt itself to the new monetary conditions.

Then, model findings suggest that Central Bank should consider this effect of the monetary

policy change on the leverage when deciding monetary policy changes. For example, a reduc-

tion of the interest rate made to revitalize the economy, could increase the overall leverage

and, then, the volatility of the system, with possible negative cascade effects.

Table 3: rCB with leverage target = 2

rBC 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Growth std % 2.40 2.55 2.66 2.78 2.96 3.01 3.14 3.26 3.29 3.39

Bad debt ratio mean % 0.70 0.87 1.05 1.25 1.47 1.69 1.91 2.16 2.41 2.66

Bad debt ratio max % 1.70 1.86 2.33 2.57 3.21 3.53 3.95 4.54 4.74 5.61

Bank Defaults mean % 3.08 3.06 4.134 6.30 6.66 11.12 11.70 14.28 16.60 20.18

Bank Defaults max % 12 14 18 20 20 28 26 32 34 38

Now we analyze the following policy experiment: we modify the interest rate during the

simulation to show the different impact of a monetary policy in a context of fixed vs variable

leverage. When the policy rate decreases (increases) a short-run expansion (restriction) of

aggregate production follows (after a while the growth rate converges to the long-run level)

with a fall (growth) of firm and bank defaults: the economy passes from a steady state to

another, with a period of growth (recession). Figure 7 shows the short-run expansion due to

a policy rate decreases from 4% to 2% at time 600, both for a simulation with fixed leverage
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(dash-dot line) and with variable leverage (solid line). We can observe that the effect of the

monetary expansion is stronger in the case of fixed leverage. To confirm this finding, we

report some statistics in Table 4: the last two columns show the difference between growth

standard deviation, firm defaults and bank defaults before and after the interest rate change.

It is evident that do not considering the influence of the monetary rate on leverage makes

the central bank overestimate the strenght of the monetary policy. The reason is, as already

observed, the leverage increases due to the reduction of the interest rate: when the central

bank interest rate is set at 4% the mean leverage is 1.89, with a standard deviation of 9.63%

and a maximum of 2.19; instead, when the central bank interest rate is set at 2% the mean

leverage is 2.03, with a standard deviation of 12.32% and a maximum of 2.35; then, a higher

and more volatile leverage counteracts the positive effects of the monetary expansion, making

the economy relatively more fragile.

Figure 7: Monetary policy easing with variable vs. fixed target leverage
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We try another experiment. In this case we keep the leverage target variable and we

implement a monetary tightening from 2% to 4% in two simulations with a different value of

bank costs c: 2% and 10%. As already explained, the monetary tightening creates a recession

phase, but after a while the growth rate converges to the long-run level. However, after the

recession phase, the number of bank defaults remains higher (from 2.12% to 5.62% mean

bank default per period) in the simulation where c is 10%, because the banking system is less

capitalized and the increased number of firm bankruptcies makes it more fragile. On the other
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Table 4: Monetary policy with variable target leverage and fixed target leverage at 2.

Leverage variable fixed variable fixed variable fixed variable fixed

Sample 201:1000 201:1000 201:600 201:600 601:1000 601:1000 ∆ ∆

Growth std 3.30% 2.99% 3.43% 3.23% 3.17% 2.73% -0.26% -0.50%

Firm Defaults mean % 16.13 20.81 16.57 21.63 15.70 19.99 -0.87 -1.64

Firm Defaults max % 21 27 21 27 20.6 25.4 -0.4 -1.6

Bank Defaults mean % 4.52 9.06 6.06 12.68 2.98 5.46 -3.08 -7.22

Bank Defaults max % 18 36 18 36 12 22 -6 -14

‘Variable ∆’ represents the difference between column ‘variable 601:1000’ and column ‘variable 201:600’, while

‘fixed ∆’ represents the difference between column ‘fixed 601:1000’ and column ‘fixed 201:600’.

hand, when c is equal to 2% there is no variation between the two sub-samples (before and

after the monetary restriction), given that there are almost no bank failures in both. Thus,

the important policy implication is: a Central Bank that wants to increase the interest rate,

should previously check if the banking system is well capitalized, to avoid cases such as the

financial crises started in 2007 after a monetary restriction phase.

8 Conclusions

In this paper we build on the agent based model of Delli Gatti et al. (2010), determining the

firms’ financial structure with the dynamic trade-off theory (Flannery and Rangan, 2006),

adding multiperiodal debts and the loss given default rate in bankruptcies.

Following the dynamic trade-off theory, we hypothesize that firms have a target leverage. It

implies that a growing firm will couple the increasing capital with increasing debt exposure,

thus creating in good times the basis for the subsequent crisis. Then, we enrich the positive

feedback mechanism tied to the network-based financial accelerator of Delli Gatti et al. (2010),

with the pro-cyclicality of leverage. Indeed, a negative shock on firms’ output makes banks

less willing to loan funds (the same holds for risk averse firms characterized by dynamic

trade-off theory), hence firms might reduce their investment both because of less internal

funds and because of a reduced leverage due to the increased interest rates faced (or a credit

constraint) and the reduced investment leads again to lower output. Moreover, there is

the network-based accelerator: bankruptcies deteriorate banks’ financial condition and this

leads to higher interest rates to all borrowers (Stiglitz and Greenwald, 2003, p.145), further

increasing the financial weakness of the whole non-financial sector. Thus, the presence of a

credit network may produce an avalanche of firms’ bankruptcies, in another vicious circle that

can make banks go bankrupt too. The last mechanism makes possible that an idiosyncratic

shock creates an extended/global crisis, without the need of a systemic shock.

In this framework, we have found a number of interesting results, besides being able to
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reproduce some of those already found in Delli Gatti et al. (2010), such as the emergent right-

skew distribution of firms’ and banks’ size from firms that start with the same conditions,

even without the use of trade-credit between two different kinds of firms (upstream and

downstream).

As already said, the first result concerns the leverage: if it increases, the economy is riskier,

with a higher volatility of aggregate production and an increase of firms and banks’ defaults.

Moreover, if the leverage target is variable (positively related to gains and negatively related

to interest rate), the pro-cyclicality of credit clearly emerges. During the expansionary phase

of the cycle, gains make firms accumulate capital and the decrease of firm defaults reduces the

bad debt; this allows firms to borrow more both because they are more capitalized and banks

are financially sounder thus lending at favourable terms. However, the overall spread could

be higher due to the increased leverage. The higher leverage boosts firms’ growth until the

system reaches a critical point of financial fragility and the cycle is reversed through an in-

crease of defaults. In this framework the network-based financial accelerator is even increased

and we can call it “leveraged network-based financial accelerator”.

In particular, if leverage changes rapidly (adj increases), the volatility of the system grows both

in terms of the aggregate production’s growth rate and in the number of failures. Moreover,

cascades of bad debt are more likely to appear for larger values of adj: a higher pro-cyclicality

of the leverage increases the “leveraged network-based financial accelerator” with a destabil-

izing effect on the economy.

Another result is tied to the consideration of the recovery rate (RR) or loss given default

rate (LGDR). The amount of losses that banks suffer in case of borrowers’ default is a variable

strongly significant in determining the number of bank defaults. Thus, an increase of the

LGDR causes a growth of bank defaults and the banking system becomes more concentrated

(in fact, many banks near to bankruptcy were acquired by financially sounder ones). The

policy maker has to develop the laws about bankruptcies also to improve the stability of

banks and, then, of the economic system.

Comparing this model to a model with fixed leverage target, some other features emerge:

with variable leverage big firms go bankrupt too, because a firm that has a high profit enlarges

its net worth but also its leverage, thus it could be financially fragile even with a high net

worth. On the other hand, a variable leverage reduces the number of bank defaults because

there is a strong credit constraint (interest rate hike) during the crisis.

The most important result regards the monetary policy. When the policy rate decreases

(increases) a short-run expansion (restriction) of aggregate production follows (after a while

the growth rate converges to the long-run level) with a fall (rise) of firm and bank defaults.

However, the presence of a variable leverage target weakens this effect because, for example,

when rCB decreases, firms ask more credit enlarging the leverage and this mechanism coun-

teracts the standard expansionary effect, increasing the volatility of the system. Indeed, if

we repeat the same sensitivity analysis setting the leverage target at a fixed level, we find
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that monetary policy change has much stronger consequences. Thus, the incorporation of

the effect of the interest rate on the leverage exposure of firms should be considered by the

Central Bank when deciding monetary policy changes.

The last result concerns again the monetary policy. A monetary tightening creates a re-

cession phase, but it also creates a higher number of bank failures when the banking system

is poorly capitalized. Then, a Central Banks that wants to increase the interest rate, should

previously check if the banking system is well capitalized, to avoid cases such as the financial

crises started in 2007 after a monetary restriction phase. In future works it would be inter-

esting to see whether the same holds when an increase of the reserve requirements is decided

or the Central Bank may follow this alternative way to implement a monetary tightening

considering banks’ financial solidity. Moreover, in order to improve the analysis of monetary

policy, we are going to extend our framework to also consider the role of the Central Bank in

stabilizing the financial system through ’monetary easing’ measures, even when interest rates

are close to zero.
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A Sensitivity Analysis: Tables

Table 5: α

α 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

Growth std (%) 4.01 3.83 3.81 3.52 3.28 3.09 2.77 2.62 2.52 2.40

Leverage mean 1.55 1.64 1.86 1.95 2.08 2.20 2.32 2.43 2.55 2.67

Leverage maximum 2.48 2.20 2.65 2.37 2.47 2.67 2.73 2.70 2.87 2.97

Bad debt ratio mean (%) 3.37 2.36 1.97 1.44 1.09 0.89 0.73 0.63 0.58 0.54

Bad debt ratio max (%) 11.86 9.89 6.14 6.90 3.97 4.67 4.48 3.37 2.87 2.63

Bank Defaults mean (%) 36.87 25.45 17.73 8.74 2.57 0.96 0.15 0.02 0.00 0

Bank Defaults max (%) 60 46 36 22 10 6 2 2 2 0
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Table 6: varp

varp 24% 28% 32% 36% 40% 44% 48% 52% 56% 60%

Growth std (%) 1.82 2.19 2.59 2.94 3.28 3.68 3.96 4.32 4.63 4.80

Leverage mean 1.93 2.02 2.07 2.06 2.08 2.07 2.08 2.10 2.07 2.07

Leverage maximum 2.25 2.29 2.41 2.68 2.47 2.58 2.65 2.77 2.74 2.98

Bad debt ratio mean (%) 0.28 0.44 0.64 0.87 1.09 1.31 1.56 1.77 1.97 2.17

Bad debt ratio max (%) 1.15 2.54 3.67 3.90 3.97 7.32 9.77 11.13 9.93 13.87

Bank Defaults mean (%) 0.00 0.04 0.09 1.16 2.57 6.17 11.82 17.21 22.64 27.81

Bank Defaults max (%) 2 2 2 8 10 18 26 38 42 52

Table 7: adj

adj 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

Growth std (%) 1.69 2.13 2.54 2.87 3.28 3.65 4.01 4.22 4.56 4.77

Leverage mean 1.35 1.57 1.75 1.89 2.08 2.22 2.35 2.50 2.60 2.72

Leverage maximum 1.45 1.76 2.03 2.19 2.47 2.73 3.06 3.54 3.43 3.61

Bad debt ratio mean (%) 0.21 0.39 0.59 0.82 1.09 1.40 1.73 2.05 2.38 2.73

Bad debt ratio max (%) 0.74 1.22 2.26 3.75 3.97 7.32 6.87 8.83 8.26 7.82

Bank Defaults mean (%) 1.86 1.89 2.19 2.87 2.57 4.27 5.52 7.17 9.35 10.15

Bank Defaults max (%) 10 10 10 12 10 16 16 26 24 26

Table 8: φ

φ 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8

Growth std (%) 2.74 2.91 3.03 3.12 3.18 3.28 3.42 3.44 3.61 3.66

Leverage mean 1.98 2.02 2.02 2.05 2.07 2.08 2.11 1.99 2.12 2.12

Leverage maximum 2.31 2.44 2.33 2.57 2.47 2.47 2.59 2.52 2.61 2.76

Bad debt ratio mean (%) 0.92 0.98 1.03 1.05 1.07 1.09 1.14 1.17 1.17 1.17

Bad debt ratio max (%) 3.63 4.40 4.57 4.56 6.82 3.97 7.32 5.87 6.52 7.93

Bank Defaults mean (%) 0.40 0.82 1.23 1.70 2.19 2.57 4.27 5.50 5.36 5.61

Bank Defaults max (%) 4 6 10 10 10 10 16 16 16 18

Table 9: β

β 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8

Growth std (%) 1.91 2.19 2.47 2.84 3.28 3.95 4.82 6.20 8.22 11.27

Leverage mean 1.91 1.94 1.99 2.03 2.08 2.14 2.20 2.30 2.39 2.51

Leverage maximum 2.12 2.17 2.33 2.43 2.47 2.65 3.20 3.87 5.81 8.29

Bad debt ratio mean (%) 0.85 0.90 0.96 1.01 1.09 1.20 1.28 1.44 1.62 1.76

Bad debt ratio max (%) 2.21 2.59 3.96 3.59 3.97 8.79 12.88 17.01 16.28 18.59

Bank Defaults mean (%) 0.18 0.58 1.05 1.50 2.57 5.27 7.77 10.95 14.99 18.68

Bank Defaults max (%) 4 6 6 10 10 14 24 28 34 40
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Table 10: rCB

rCB 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0%

Growth std (%) 3.15 3.22 3.32 3.28 3.30 3.32 3.41 3.39 3.36 3.21

Leverage mean 2.25 2.20 2.12 2.08 2.02 1.98 1.92 1.87 1.84 1.66

Leverage maximum 2.78 2.88 2.75 2.47 2.49 2.33 2.30 2.22 2.27 2.06

Bad debt ratio mean (%) 0.82 0.90 1.00 1.09 1.21 1.33 1.40 1.52 1.63 1.47

Bad debt ratio max (%) 5.61 4.57 5.08 3.97 6.97 6.47 5.46 7.72 7.07 6.81

Bank Defaults mean (%) 1.82 2.10 2.51 2.57 3.83 4.37 5.06 5.76 7.54 6.10

Bank Defaults max (%) 12 10 12 10 14 22 18 18 20 18

Table 11: γ

γ 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0%

Growth std (%) 3.16 3.20 3.26 3.28 3.39 3.37 3.39 3.39 3.35 3.44

Leverage mean 2.94 2.52 2.24 2.08 1.96 1.85 1.76 1.71 1.63 1.60

Leverage maximum 3.75 3.48 2.93 2.47 2.33 2.24 2.09 2.11 1.93 2.01

Bad debt ratio mean (%) 0.43 0.69 0.89 1.09 1.33 1.53 1.78 1.98 2.21 2.41

Bad debt ratio max (%) 2.86 5.04 4.24 3.97 6.15 7.07 6.63 6.58 6.49 6.77

Bank Defaults mean (%) 7.65 4.72 3.97 2.57 3.21 3.26 3.57 3.55 3.47 3.92

Bank Defaults max (%) 16 16 14 10 12 14 14 12 12 16

Table 12: BNK

BNK 1 2 3 4 5 6 7 8 9 10

Growth std (%) 3.27 3.34 3.24 3.31 3.28 3.25 3.30 3.30 3.27 3.34

Leverage mean 2.06 2.07 2.08 2.07 2.08 2.05 2.08 2.08 2.08 2.06

Leverage maximum 2.69 2.43 2.52 2.51 2.47 2.44 2.57 2.53 2.66 2.47

Bad debt ratio mean (%) 1.09 1.11 1.10 1.09 1.09 1.10 1.09 1.09 1.10 1.09

Bad debt ratio max (%) 5.66 5.53 6.44 6.31 3.97 6.86 7.49 7.60 6.33 5.62

Bank Defaults mean (%) 1.88 2.70 2.73 3.08 2.57 3.17 3.24 3.23 4.00 4.29

Bank Defaults max (%) 8 12 12 12 10 16 12 12 16 16

Table 13: c

c 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

Growth std (%) 3.30 3.34 3.28 3.37 3.28 3.35 3.31 3.30 3.33 3.29

Leverage mean 2.08 2.09 2.07 2.07 2.08 2.08 2.08 2.06 2.07 2.07

Leverage maximum 2.59 2.59 2.55 2.53 2.47 2.53 2.55 2.55 2.52 2.52

Bad debt ratio mean (%) 1.08 1.11 1.11 1.10 1.09 1.10 1.09 1.10 1.12 1.10

Bad debt ratio max (%) 6.30 5.49 6.75 6.02 3.97 5.63 5.30 4.87 5.15 7.43

Bank Defaults mean (%) 0.02 0.21 0.68 1.00 2.57 4.56 6.14 6.22 7.36 7.95

Bank Defaults max (%) 2 4 6 8 10 16 18 16 20 24
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Table 14: LE

LE 0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

Growth std (%) 3.25 3.26 3.28 3.30 3.28 3.26 3.29 3.31 3.36 3.32

Leverage mean 2.07 2.07 2.08 2.06 2.09 2.08 2.08 2.06 2.08 2.07

Leverage maximum 2.49 2.50 2.47 2.49 2.66 2.46 2.56 2.56 2.60 2.60

Bad debt ratio mean (%) 0.68 0.88 1.09 1.29 1.51 1.72 1.94 2.12 2.36 2.52

Bad debt ratio max (%) 4.21 5.15 3.97 8.04 9.18 8.74 11.17 12.73 14.95 14.46

Bank Defaults mean (%) 1.37 1.82 2.57 5.43 6.49 8.67 10.45 11.97 13.05 13.39

Bank Defaults max (%) 6 10 10 16 18 22 26 28 32 32

Table 15: Afiniz

Afiniz 2 4 6 8 10 12 14 16 18 20

Growth std (%) 3.20 3.33 3.31 3.25 3.28 3.25 3.33 3.32 3.23 3.26

Leverage mean 2.07 2.07 2.08 2.07 2.08 2.07 2.08 2.08 2.07 2.07

Leverage maximum 2.48 2.68 2.60 2.64 2.47 2.57 2.55 2.64 2.46 2.51

Bad debt ratio mean (%) 1.10 1.10 1.09 1.10 1.09 1.10 1.10 1.09 1.08 1.09

Bad debt ratio max (%) 5.55 6.15 4.33 6.66 3.97 5.17 6.29 6.62 4.14 5.97

Bank Defaults mean (%) 3.00 3.77 3.08 3.24 2.57 2.48 2.59 3.02 3.13 3.45

Bank Defaults max (%) 14 12 10 14 10 14 10 12 10 14

Table 16: Abiniz

Abiniz 2 4 6 8 10 12 14 16 18 20

Growth std (%) 3.27 3.24 3.30 3.30 3.28 3.25 3.29 3.32 3.25 3.28

Leverage mean 2.08 2.07 2.08 2.09 2.08 2.07 2.08 2.08 2.07 2.08

Leverage maximum 2.48 2.67 2.51 2.63 2.47 2.48 2.69 2.53 2.52 2.57

Bad debt ratio mean (%) 1.09 1.10 1.12 1.11 1.09 1.10 1.10 1.11 1.10 1.11

Bad debt ratio max (%) 6.37 5.27 5.55 7.22 3.97 5.72 6.10 5.09 7.48 5.36

Bank Defaults mean (%) 2.86 3.14 3.16 3.47 2.57 2.86 2.72 3.49 3.33 3.02

Bank Defaults max (%) 12 14 14 14 10 14 12 14 12 12

Table 17: Nd

Nd 500 600 700 800 900 1000 1100 1200 1300 1400

Growth std (%) 3.28 2.88 2.75 2.60 2.48 2.31 2.34 2.12 2.02 1.98

Leverage mean 2.08 2.10 2.09 2.08 2.09 2.08 2.10 2.09 2.08 2.08

Leverage maximum 2.47 2.48 2.38 2.45 2.34 2.40 2.37 2.35 2.36 2.32

Bad debt ratio mean (%) 1.09 1.09 1.12 1.15 1.11 1.10 1.11 1.14 1.13 1.12

Bad debt ratio max (%) 3.97 4.15 4.95 3.07 3.05 2.75 2.58 2.81 2.83 3.89

Bank Defaults mean (%) 2.57 3.14 1.84 2.43 1.68 1.71 1.29 0.74 1.14 0.73

Bank Defaults max (%) 10 14 10 8 8 6 8 6 6 6
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