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Abstract

Asset managers are often given the task of restricting their activity by keep-
ing both the value at risk (VaR) and the tracking error volatility (TEV)
under control. However, these constraints can not always be simultaneously
satisfied because the VaR is independent of the benchmark portfolio. The
management of these restrictions is likely to affect portfolio performances
and produces a wide variety of scenarios in the risk-return space. The aim
of this paper is to analyse various interactions between portfolio frontiers
when restrictions upon TEV and VaR are jointly imposed. Analytical so-
lutions for the intersections are provided and short numerical methods are
proposed when solutions are not available. Finally, a new portfolio frontier
is introduced.
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Portfolio Frontiers with Restrictions to
Tracking Error Volatility and Value at Risk∗

Giulio Palomba Luca Riccetti

1 Introduction

It is well known that investors assign part of their funds to asset managers
who are given the task of beating a benchmark and the risk management
usually imposes a maximum value on the tracking error volatility (TEV) in
order to keep the portfolio risk close to that of a selected benchmark. Start-
ing from the seminal contribution of Markowitz (1959) in the risk-return
space (σP , µP ), a lot of attention has been dedicated to constrained asset al-
location strategies: for example, Jagannathan and Ma (2003) have provided
evidence explaining why constraints are useful, while others, such as Boyle
and Tian (2007), have studied the topic of outperforming a benchmark in
the presence of constraints.1 As defined by Franks (1992), the TEV is the
most commonly used constraint of relative risk and is associated with the
investment goal expressed in terms of the excess return over a benchmark;
Roll (1992) showed that asset managers that aim to produce positive return
performance over a benchmark whilst keeping TEV to a minimum usually
select portfolios that are not mean/variance efficient.

Various asset allocation strategies have been proposed in the literature.
The first is provided by Roll (1992), who suggests to restrict the portfo-
lio’s beta. Jorion (2003) shows that a TEV constraint produces an elliptic
portfolio frontier in variance-return space,2 whereas Alexander and Baptista

∗This paper has been presented at the “2nd Gretl Conference”, held on 16th-17th June
2011 in Toruń, Poland.

1Various topics have been studied in the field of benchmarking, such as how to optimise
costs in passive management by selecting the optimal number of assets to use (Jansen
and Van Dijk, 2002) or by deciding when to rebalance (Gaivoronski, Krylov and Van der
Wijst, 2005). Whether an active manager can beat the benchmark using a specific division
of labour (Lee, 2000a) or other specific strategies (Browne, 1999) is another key topic in
benchmarking and is used in the evaluation of the asset manager; see, for instance, Clarke,
De Silva and Thorley (2002), Cremers and Petajisto (2009), Grinold and Kahn (2000) or
Lo (2008).

2Various works use this methodology: for example El-Hassan and Kofman (2003) add
further constraints such as no short-selling, Palomba (2008) inserts portfolio frontiers into
an econometric model for asset allocation and Riccetti (2010) generalises the model of
Jorion (2003) by inserting portfolio commissions.
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(2008) impose a value at risk (VaR) constraint upon the standard asset allo-
cation framework in (σP , µP ) space. Alexander and Baptista (2010) recently
presented a strategy of active portfolio management in which they use a tar-
get upon ex ante alpha, defined as the intercept when the portfolio return is
linearly regressed on the benchmark return; in this case, the portfolio fron-
tier contains all portfolios which minimise the TEV for any given ex-ante
portfolio alpha.

The existence of various frontiers indicates the possibility of various as-
set allocation strategies. Hence, it would be interesting to identify one or
more portfolio which is able to satisfy different criteria at the same time.
This paper compares different portfolio frontiers and provides a summary
of their graphical and analytical properties. The field of investigation is re-
stricted to the framework of the quadratic utility function, which is strictly
related to the assumption of normally distributed expected returns and the
theories about rational expectations and market efficiency. Short sales are
also allowed. Several portfolios of interest are also calculated and discussed,
focussing on those that lie on the intersections between the different fron-
tiers.

The scope of this work is to analyse the situations in which managers
have to keep both the VaR and TEV under control. In doing so, from the
economic perspective managers have to face two problems: first, TEV con-
strained portfolios could not satisfy the VaR restriction and second, TEV-
VaR constrained portfolios are usually inefficient because they lie at the
right of the so-called “Mean-Variance Frontier” (hereafter MVF).

The remainder of the paper proceeds as follows: section 2 consists of a
summary of the principal portfolio frontiers provided in the literature; par-
ticular attention is devoted to the frontiers introduced by Jorion (2003) and
Alexander and Baptista (2008) whose possible intersections are successively
discussed in section 3; some numerical methods for determining common
portfolios are also presented in section 3. In section 4, a new boundary for
which TEV and VaR constraints can be satisfied at the same time is in-
troduced. Section 5 closes the analysis with a short empirical example and
section 6 concludes. An Appendix containing some useful proofs and results
is also provided.

2 Review of portfolio frontiers

Before introducing the portfolio frontiers, some notation is required: assum-
ing that the available data consist of n assets, their expected returns are
contained in an n-dimensional column vector µ, while the squared n×n ma-
trix Ω represents the covariance matrix. In accordance with the literature,
the following constants are defined: a = ι′Ω−1ι, b = ι′Ω−1µ, c = µ′Ω−1µ
and d = c− b2/a, where ι is an n-dimensional column vector in which each
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element is 1. As all these parameters are derived exclusively by the data,
they are independent of any allocation strategy. In this setup, some sub-
jective inputs are also relevant because risk managers could impose some
constraints upon asset managers activity: in particular, they could set a
desired level of total return (µP ) or put restrictions upon TEV (T0) and/or
VaR (V0) into place. The geometric analysis will mostly be conducted in
the (σ2P , µP ) space, whereas all the graphical implications are shown in the
usual (σP , µP ) space in which the axes refer to the absolute risk and total
return respectively.

Our study will be conducted taking two fundamental portfolio frontiers
into account: the popular MVF, first introduced by Markowitz (1959), and
the “Mean-TEV Frontier” (hereafter MTF) defined by Roll (1992). It is
well known that the MVF consists of all the portfolios which minimise the
total portfolio variance, given a desired portfolio return; its equation is

σ2P = σ2C +
1

d
(µP − µC)2, (1)

which produces a parabola in the (σ2P , µP ) space or a hyperbola in the
(σP , µP ) space. The expected return µC = b/a and the variance σ2C = a−1

are of the minimum variance portfolio (portfolio C), which is independent
of the desired portfolio return µP . All the portfolios for which µP ≥ µC
belong to the efficient subset of MVF.

The MTF, on the other hand, shifts the asset allocation strategies from
the absolute risk perspective to that of the risk relative to a benchmark port-
folio B ≡ (σ2B, µB); in this context, the TEV becomes the risk component
that the manager aims to minimise instead of the total portfolio variance.
The equation for the MTF is thus

σ2P = σ2B +
1

d
(µP − µB)2 + 2

∆1

d
(µP − µB), (2)

where ∆1 = µB − µC . The constant ∆1/d does not depend upon the ex-
pected portfolio return. Comparing equations (1) and (2), it is evident that
the MTF is a horizontal translation of the MVF in the variance-mean space;
hence, it is easy to show that these curves have no intersections. These
frontiers have the same analytical form with the only exception of the third
addend in equation (2) which contributes to the above mentioned transla-
tion. The MVF is calculated “around” the minimum variance portfolio (C),
while the benchmark is the reference portfolio for the MTF, but does not
correspond to its minimum.3 However, Roll (1992) claims that portfolios
belonging to the MTF are generally suboptimal because they lie to the right
of the MVF and are thus overly risky. The horizontal distance between the
frontiers in the (σ2P , µP ) space represents the efficiency loss (δB): for each

3In (σ2
P , µP ) space, the minimum portfolio in equation (2) is G ≡ (σ2

B −∆2
1/d, µC).
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value of the portfolio return (µP ), this distance is obtained by subtracting
equation (1) from equation (2), hence

δB = ∆2 −
∆2

1

d
, (3)

where ∆2 = σ2B − σ2C . Given the impossibility of any intersection between
MVF and MTF, δB is positive for all µP by construction. However, in
the special case of the benchmark lying on the mean-variance boundary,
a contact can occur: in such a context, the benchmark minimises both
the portfolio variance and the TEV at the same time and the relationship
∆2 = ∆2

1/d corresponds to equation (1) for µP = µB; in this situation, the
efficiency loss is clearly zero.

2.1 The Constrained TEV Frontier (CTF)

Jorion (2003) adds the specific constraint TEV=T0 to the Markowitz setup,
thus obtaining the “Constrained TEV Frontier” (hereafter CTF), a closed
and bounded frontier in the (σ2P , µP ) space whose equation is

d(σ2P−σ2B−T0)2+4∆2(µP−µB)2−4∆1(σ
2
P−σ2B−T0)(µP−µB)−4dδBT0 = 0,

(4)
where ∆1, ∆2 and δB are as previously defined. Jorion (2003) shows that
equation (4) is that of an ellipse for which the horizontal axis has a pos-
itive (negative) slope when ∆1 > 0 (∆1 < 0). The horizontal centre of
the ellipse is σ2B + T0, hence an increase in T0 produces a surface area ex-
pansion. This elliptic frontier becomes somewhat distorted in the (σP , µP )
space. Since we assume that asset managers generally face constrained opti-
misation, the CTF contains the benchmark and all the feasible portfolios for
which TEV≤ T0; as shown in Jorion (2003) and Palomba (2008), restricting
TEV influences the ellipse eccentricity, thus it is important to have one or
more intersections between the CTF and the MVF. Specifically, the number
of contacts depends on the equation

Ψ = d T0 − d∆2 + ∆2
1. (5)

When Ψ < 0 the frontiers do not intersect, but when Ψ = 0 they have
one portfolio in common. When Ψ > 0, the frontiers have two intersections
which tend to move along the MVF as the value of T0 increases. These
contacts define two arcs on the ellipse: the left arc coincides with the mean-
variance boundary, while the right arc represents the TEV constrained fron-
tier. The most interesting situation is Ψ = 0 for which the frontiers are
tangent and the tangency TEV is

TH = δB = ∆2 −
∆2

1

d
, (6)
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where H ≡ (σ2C + ∆2
1/d, µB) is the contact between the frontiers.4 Jorion

(2003) also shows that the CTF intersects the MTF in portfolios{
J1 ≡ (σ2B + T0 + 2∆1

»
T0/d, µB +

√
dT0)

J2 ≡ (σ2B + T0 − 2∆1

»
T0/d, µB −

√
dT0),

(7)

corresponding to those portfolios with the maximum and minimum expected
return respectively. The economic interpretation of this result is straightfor-
ward because the minimum TEV boundary coincides with the constrained
TEV frontier for portfolios with TEV=T0. Given that portfolios in equation
(7) belong to the MTF, their efficiency loss is δB. Defining J1 ≡ (σ21, µ1)
and J2 ≡ (σ22, µ2), where µ1 > µ2 and σ1 > σ2, all the portfolio frontiers
are shown in Figure 1: portfolio J1 gives more return and more risk than
J2, therefore managers could maintain a TEV=T0 by selecting a position in
the so-called efficient CTF, defined as the left arc J̆1J2; the efficiency loss of
portfolios which lie on this arc is less than that of portfolios lyng on the arc
formed by J1 and J2 on MTF.

Figure 1: Portfolio frontiers when ∆1 > 0

2.2 The constrained value at risk frontier (CVF)

Given the distribution of the portfolio return, the VaR is the maximum loss
V0 = zθσP − µP , where zθ is the critical value taken from the standard-
ised normal distribution with a confidence (significance) level 0.5 < θ < 1;
the VaR=V0 is fixed by risk managers and defines the intercept of the con-

4Moreover, equation (6) confirms that δB ≥ 0 for all µP .
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strained VaR frontier (hereafter CVF),

µP = zθσP − V0, (8)

a linear frontier in the (σP , µP ) space, where the slope is provided by zθ
which is always positive, while the intercept (−V0) should be negative.5

This frontier is independent of the benchmark. The constraint imposed by
the CVF is satisfied for positive σP in the space to the left of the straight
line. Alexander (2009) has shown that if this constraint binds, the CVF
surely intersects the MVF, determining a portfolio that is efficient by con-
struction. Nevertheless, the intersection between MVF and CVF can be
empty, thus several VaR constrained portfolios are not admissible: a nat-
ural consequence is that its intersections with MTF and CTF can also be
empty. Using the asymptotic slope of MVF as the critical value, Alexander
and Baptista (2008) distinguish a low confidence level (0 < zθ ≤

√
d) from

a high confidence level (zθ >
√
d) and then provide a detailed discussion

about the VaR constrained frontiers for different scenarios. Focussing on
the slope and the intercept in equation (8), this type of analysis consists of
a problem of analytical geometry problem: in this context, the objective is
reaching intersections between the hyperbola MVF and a sheaf of straight
lines depending upon parameters V0 and zθ. When this problem admits a
solution, a “Constrained Mean-TEV Frontier” (hereafter CMTF) is defined
in the (σP , µP ) space: this is the frontier which satisfies the VaR constraint
and it is composed of portfolios with the smallest TEV. According to this
definition, the CMTF could be

(i) an empty set if the CVF does not intersect the MVF,

(ii) a single portfolio if the CVF is tangent to the MVF,

(iii) a segment if the CVF crosses the MVF only,

(iv) an arc consecutive to two segments if the CVF crosses both the MVF
and the MTF (see Alexander and Baptista, 2008, for details).

3 Intersections between the CTF and the CVF

Searching for the intersections between the CTF and the CVF is especially
interesting in practical situations in which risk managers are required to
select a portfolio with restrictions on both TEV and VaR; this constrained
strategy implies allocations which are generally suboptimal because they do

5Formally, the intercept of the CVF should be negative to represent a loss, while a
positive value would indicate an earning. In practice, the relationship −V0 < 0 is not
guaranteed, thus the definition of VaR is extended here from “the maximum expected
loss” to the “worst expected return”.
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not belong to the MVF. However, the objective is to determine a non-empty
subspace within (σP , µP ) in which risk managers could set a bound on VaR
in the presence of restrictions on TEV. Given that the CVF is a straight line
with a positive slope whose left half-plane contains all the portfolios with
VaR< V0, it can have zero, one or two contacts on the CTF, depending on
T0, V0 and θ. However, the following problems arise:

1. if the CVF lies to the left of the CTF, then the VaR constraint is too
stringent. In such a case an intersection does not exist and it is thus
possible to satisfy one constraint at the most between TEV=T0 and
VaR=V0;

2. if the CVF intersects the CTF, then at least one portfolio satisfies
both restrictions upon TEV and VaR. Specifically, a unique solution
exists when the CVF is tangent to the CTF on the left, whereas two
contacts occur and an infinite number of solutions are available when
the CVF crosses the CTF;

3. if the CVF lies to the right of the CTF, the VaR constraint is uneffec-
tive.

The first two (relevant) scenarios are illustrated in Figure 2 which focuses
on the VaR constraint. A critical value VK should exist for which the curves
become tangent. In particular, only when V0 ≥ VK is there at least one
contact between the frontiers; such intersections occur independent of the
sign of ∆1 and the positions of portfolios J1 and J2. From the analytic
perspective, the intersections between the CTF and the CVF correspond to
the solutions of a system that includes the ellipse in equation (4) and the
parabola (8) in the (σ2P , µP ) space. The resolvent of such a system is the
quartic equation

c1µ
4
P + c2µ

3
P + c3µ

2
P + c4µP + c5 = 0 (9)

where 

c1 = f(θ)
c2 = f(θ, V0, µB)
c3 = f(θ, V0, T0, µB, σ

2
B)

c4 = f(θ, V0, T0, µB, σ
2
B)

c5 = f(θ, V0, T0, µB, σ
2
B).

The analytical expressions for the coefficients are provided in the Appendix.
These parameters determine the positions of the frontiers (see Figure 2),
thus:

• θ influences the magnitude of the parabola,

• V0 determines the position of the parabola’s vertex along the µP -axis,
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Figure 2: Contacts between CTF and CVF
(a) Stringent constraint (V0 < VK)

(b) Tangency constraint (V0 = VK)

(c) Two intersections (V0 > VK)
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• T0 affects the eccentricity of the ellipse,

• the benchmark portfolio indicates the position of the ellipse.

3.1 Two contacts between CTF and CVF

Unfortunately, the algebra in solving equation (9) is messier than that of
the other cases in which contacts between the frontiers are sought. Given
this, it is not always possible to find analytical solutions for this polynomial
and instead some numerical techniques are required.6 Our proposed solution
consists of minimising the function

S(µP ) = [ST (µP )− SV (µP )]2, (10)

where
ST (µP ) = σ2B + T0 +

2

d

{
∆1(µp − µB)−

»
dδB[dT0 − (µp − µB)2]

}

SV (µP ) =

Å
µP + V0
zθ

ã2
.

(11)
Both equations express the portfolio variance: SV (µP ) is the correspon-

dent of equation (8) in the (σ2P , µP ) space, while ST (µP ), with µ2 ≤ µP ≤ µ1
(see equation (7)), derives from equation (4), as documented in the Ap-
pendix. Clearly, if an intersection occurs, the minimum value of the function
(10) should be zero.

The function S(µP ) is differentiable and locally convex7 around two min-
ima (or zeros) and the BFGS algorithm represents a suitable and not com-
putationally cumbersome instrument for obtaining the contacts between the
CTF and the CVF. However, some characteristics of the entire optimisation
process have to be discussed. First, the general solution is always provided
by the contact portfolios K1 ≡ (σ2K1

, µK1) and K2 ≡ (σ2K2
, µK2); in this

context, the starting value of µP in the optimisation is decisive for the con-
vergence to minima. Second, when the frontiers do not intersect, function
S(µP ) always admits a unique minimum value that is different from zero.
In this situation the algorithm provides the expected return at which the
horizontal distance between the frontiers is minimised.

3.2 Tangency

Considering equation (10) to be a function of two variables S(µP , V0), first
order conditions are satisfied along the line µP = −V0.8 This means that

6In particular, equation (9) should admit two real solutions (and two complex conju-
gates) when the portfolio frontiers intersect. See Appendix.

7The first order conditions are discussed in the Appendix.

8In short:
∂S(µP , V0)

∂V0
= −2[S(µP , V0)− SV (µP , V0)]

µP + V0

z2θ
.
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there is an infinite number of minima and that S(µP , V0) is not convex with
respect to V0; hence, BFGS optimisation cannot be used for finding the
minimal VK at which the CTF and the CVF are tangent to each other. To
address this problem, we propose the following grid search process for µi = µ1, µ1 − ε, µ1 − 2ε, . . . , µ2

Min
µi

Vi = zθS
1/2
T (µi)− µi (12)

where ST (µi) is as defined in equation (11), µ2 < µi < µ1 and ε is an
arbitrary and numerically small increment. The algorithm in equation (12) is
fast to compute and returns a numerical solution whose numerical accuracy
strictly depends upon the magnitude of the increments. The solution is
VK = min{Vi}, which corresponds to the VaR constraint relative to the
tangency portfolio K; the coordinates of such a portfolio are µK and σ2K =
ST (µK).

4 The Fixed VaR-TEV Frontier (FVTF)

In this section we derive a new portfolio frontier. Before starting the analy-
sis, a fundamental distinction has to be made about parameter ∆1 because
its sign is that of the horizontal axis of the ellipse in the (σ2P , µP ) space, as
documented in Jorion (2003).

4.1 Horizontal axis of the ellipse with positive slope

The assumption ∆1 > 0 means that the benchmark return is superior to
that of the minimum variance portfolio (C) and that the horizontal axis of
the CTF has a positive slope. When a VaR constraint is also imposed, it
becomes binding, but only when the CVF intersects the efficient CTF; in
this context, the slope zθ becomes crucial in determining the relationship
between VaRs V1 and V2 for which the straight line passes through J1 and
J2 respectively (see Table A-4 for a summary).

4.1.1 High confidence level, no contacts between MVF and CTF

The analysis starts with the triple ∆1 > 0, zθ >
√
d, T0 < TH , indicating

that the ellipse has a positive slope, that the confidence level is high (see
Alexander and Baptista, 2008) and that the CTF does not intersect the
MVF. In practice, a high confidence level is the most realistic, provided that
the VaR constraint is generally imposed with a θ ≥ 0.9. However, we have
substantially revised the scenarios introduced by Alexander and Baptista
(2008) by also taking the TEV restriction into account; hence, analysis is
carried out in order to identify the intersections lying between the portfolio
frontiers and a parallel sheaf of lines. From the geometric perspective, the
whole of the discussion is illustrated in Figure 3:
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(a) small bound: the imposed VaR constraint is V0 < VM , where VM is
the VaR at which the CVF is tangent to the MVF. The analytical solution
for VM is

VM = −µC +
»
σ2C(z2θ − d) (13)

corresponding, in (σ2P , µP ) space, to portfolio

M ≡

Ñ
σ2C + d

σ2C
z2θ − d

, µC + d
σC»
z2θ − d

é
(14)

which only depends upon the confidence level θ (proof in the Appendix).
Under the small bound condition, the imposed restriction is too stringent,
the straight line CVF thus lies to the left of the MVF. There are no feasible
portfolios which satisfy these restrictions upon both TEV and VaR.

(b) minimum bound: the position M , at which V0 = VM , provides the
only admissible solution being the tangency portfolio between the MVF and
the CVF. Nevertheless, this VaR restriction does not satisfy the restriction
TEV≤ T0.

(c) strong bound: this situation is only available when VM < V0 < VK ,
where VK is the value of VaR at which the CVF is tangent to the CTF.
When this restriction holds, the CVF only intersects the MVF in portfolios
M1 ≡ (σ2M1

, µM1) and M2 ≡ (σ2M2
, µM2) for which the analytical coordinates

are provided in the Appendix. According to Alexander and Baptista (2008),

the admissible solution is the closed and bounded space between arc ˚�M1M2

and the segment M1M2; segment M1M2 represents the CMTF. Nevertheless,
the restriction on TEV cannot be satisfied in this portion of the (σP , µP )
space.

(d) medium bound: in this case, V0 = VK , thus the CVF is tangent
to the CTF in portfolio K(σ2K , µK) which allows asset managers to earn
TEV=T0. The region containing admissible portfolios is the same as in the
previous case, but here portfolio K ∈ M1M2 defines a new frontier: this
is the “Fixed VaR-TEV Frontier” (FVTF), which includes all admissible
portfolios which satisfy the VaR constraint and guarantee a TEV that does
not exceed an ex-ante fixed value T0.

(e) intermediate bound: when VK < V0 < VR, the CVF crosses the
MVF (portfolios M1 and M2) and the CTF (portfolios K1 and K2). The
constraint on VaR is thus less stringent than in the previous case and CMTF
is again provided by segment M1M2, as observed by Alexander and Baptista
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(2008). The value

VR = −µC +

√Ç
σ2B −

∆2
1

d

å
(z2θ − d), (15)

where VR > VM , represents the VaR constraint at which the CVF is tangent
to MTF (see Appendix). This tangency occurs in portfolio

R ≡
(
σ2C +

dσ2B −∆2
1

z2θ − d
, µC +

√
d
dσ2B −∆2

1

z2θ − d

)
, (16)

which is independent of the VaR constraint V0. In such a situation, asset
managers can satisfy both the VaR and the TEV restrictions within the
closed and bounded FVTF, the subspace inside the CTF lying to the left
of the CMTF. In Figure 3 (e), the FVTF corresponds to the arc K̇1K2 and
the segment K1K2, where µK1 > µK2 . For each µK2 < µP < µK1 , asset
managers have to make a choice: they can reduce the TEV below T0 by
augmenting the overall risk or they can maintain TEV=T0 and consequently
reduce the efficiency loss.

(f) maximum bound: when V0 = VR, the FVTF is identical to the pre-
vious case with the exception of portfolio R in which the TEV is minimised
by definition. Hence, the VaR restriction binds all along the segment M1M2,
while in segment K1K2 asset managers maintain TEV≤ T0. On the other
hand, all along the arc K̇1K2, managers can reduce the overall portfolio risk
by maintaining a fixed TEV.

(g) large bound: in this situation VR < V0 < V̂ with V̂ = max{V1, V2};
thus, the CVF crosses the MVF in portfolios M1 and M2, the CTF in
portfolios K1 and K2 and the MTF in portfolios R1 and R2. The FVTF is
given by the arc K̇1K2 to the left of the CMTF (K1R1, Ṙ1R2 and R2K2).
Furthermore, the portfolios lying within the segment R1R2 do not belong
to the FVTF since they are dominated by those in Ṙ1R2: on the one hand,
the TEV in R1R2 is not minimised and, on the other hand, it is possible
to obtain the same TEV for portfolios in R1R2 to the left of the MTF (arc

Ṙ1R2), thus reducing the efficiency loss.

(h) larger bound: this bound occurs when V0 = V̂ . In this case, the
FVTF corresponds to the two arcs formed by portfolios J1 and J2 on the
frontiers CTF and MTF. Portfolios lying within the CTF to the right of
the arc J̆1J2 on the hyperbola MTF are all dominated portfolios: this is the
reason why the restriction on V0 = V̂ is the largest that asset managers can
impose.
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Table A-4 shows that V1 < V2 when
√
d < zθ < z∗θ and V2 < V1 when zθ >

z∗θ , where the reference slope z∗θ guarantees that the CVF passes through
both J1 and J2; formally, this value depends on T0 hence

z∗θ =
d

2∆1
(σ1 + σ2). (17)

For simplicity, the plot in Figure 3 (h) is obtained under the condition
zθ = z∗θ for which the following theorem applies.

Theorem 1 In the (σP , µP ) space, when ∆1 > 0, the straight line passing
through portfolios J1 and J2 has a slope that is greater than the asymptotic
slope of the MVF (

√
d).

(proof in Appendix)

(i) no bound: when V0 > V̂ , the VaR constraint does not operate and
the FVTF is the same defined in the larger bound case.

4.1.2 High confidence level, one contact between the MVF and
the CTF

As in the previous section ∆1 > 0 is set. Here, the imposition of T0 = TH
determines a unique intersection between the MVF and the CTF; hence,
T0 = TH . The role of tangency portfolio H ≡ (σ2C + ∆2

1/d, µB) is crucial
in this analysis because it might also occur that the CVF is tangent to the
MVF in H: this is a special case in which the FVTF is given by portfolio
M ≡ H ≡ K, the minimum bound in Figure 3 (b) and the medium bound
in Figure 3 (d) become the same VaR restriction and the strong bound in
Figure 3 (c) cannot to be imposed because VM = VK . When M ≡ H ≡ K,
the slope of CVF is

zHθ =

√
d+

d2σ2C
∆2

1

, (18)

where zHθ >
√
d by definition and

z∗θ > zHθ . (19)

The Appendix contains the proofs of equations (18) and (19). All the other
scenarios with V0 > VK = VH = VM remain identical to those illustrated in
Figure 3. Furthermore, when zθ = zHθ , equation (19) indicates that V̂ = V2.

When zθ 6= zHθ , and therefore M 6= H 6= K, two different scenarios
could arise: if

√
d < zθ < zHθ , it follows that µB < µK < µM while, if

zθ > zHθ , it follows that µM < µK < µB, as shown in Figure 4. In both
cases, VM < VK < VH and minimum, strong and medium bounds exist.
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Figure 4: ∆1 > 0, high confidence level, T0 = TH . All Figures are plotted
with the CVF passing through portfolio M

(a) zθ = zHθ

(b)
√
d < zθ < zHθ (c) zθ > zHθ

4.1.3 High confidence level, two contacts between the MVF and
the CTF

When T0 > TH , the TEV constraint is feeble and the CTF intersects the
MVF in two distinct portfolios, thus forming the arc Ḣ1H2 whose length
augments when Ψ > 0 in equation (5) increases (see Palomba, 2008); in this

context, portfolio H ∈ Ḣ1H2 by definition, µH2 < µB < µH1 and the FVTF
is the same as defined in the previous sections. However, depending on zθ,
Ψ and V0, each of the following relationships may occur: K̇1K2∩Ḣ1H2 = ∅,
K̇1K2 ∩ Ḣ1H2 6= ∅, K̇1K2 ⊂ Ḣ1H2 and Ḣ1H2 ⊂ K̇1K2.

In practical situations, an interesting scenario emerges when the con-
dition M ∈ Ḣ1H2 holds: in such a situation, the minimum VaR bound
V0 = VM is sufficient for obtaining a portfolio which satisfies both TEV and
VaR restrictions. Conversely, when M /∈ Ḣ1H2, the expected return of the
tangency portfolio M could be greater than that of portfolio H1 or less than
that of portfolio H2: in the former case, M lies on the MVF efficient set, to
the right of H1, where the tangency can only be reached for slopes zθ that
are close to the MVF asymptotic slope

√
d. In the latter case, the tangency

may only occur when Ψ > 0 is sufficiently small to guarantee the condition
µC < µM < µH2 .
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4.1.4 Low confidence level

From the analytical perspective, when a low confidence level (zθ ≤
√
d)

applies, the CVF cannot be tangent to the two hyperbolic frontiers MVF
and MTF in (σP , µP ) space. The whole analysis is summarised by Figure
5, in which the condition T0 < TH is adopted for simplicity.

(a) strong bound: as clearly shown in Alexander and Baptista (2008), an
intersection always exists between the straight line CVF and the frontiers
MVF and MTF (portfolios M and R).9 When V0 < VK , asset managers
have to make a choice between VaR and TEV because it is impossible to
obtain V0 and T0 at the same time.

(b) medium bound: in this case V0 = VK and the FVTF is given by K,
which is the tangency portfolio between the CVF and the CTF: portfolio
K represents the sole position at which manager can satisfy both VaR and
TEV restrictions.

(c) intermediate bound: when VK < V0 < V1 the CVF intersects the

MTF outside the CTF, thus the FVTF is composed of K1K2 and K̇1K2,
where K1 and K2 are the contact portfolios belonging to both the CVF and
the ellipse.

(d) maximum bound: “maximum” because it corresponds to the more
stringent VaR restriction at which the FVTF has a portfolio in common
with MTF: specifically, the bound V0 = V1 implies that the CVF passes
through portfolio R ≡ J1, thus FVTF is simply provided by the segment
K2J1 and arc K̆2J1.

(e) large bound: in such a situation V1 < V0 < V2, where V2 is defined
as the VaR restriction in portfolio J2; the FVTF is generally composed by
arcs K̆2J1 and R̄J1 and segment K2R that belongs to he straight line CVF.
Portfolio R is the intersection between the MTF and the CVF.

(f) larger bound: when V0 = V2, the straight line CVF passes through
portfolio J2 and the portfolios composing the FVTF corresponds to arcs
J̆1J2 belonging to both the MTF and the CTF (to the left of MTF).

9The slope zθ =
√
d represents the only exception: Alexander and Baptista (2008)

show that when V0 ≤ −µC , the CVF does not intersect the MVF. Moreover, when −µC <
V0 ≤ −µC +

√
dδB , the CVF only intersects the MVF: in this case, the contact portfolio

R does not exist.
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(g) no bound: when V0 > V2, the VaR constraint is uneffective and the
FVTF is as described in the larger bound scenario.

When T0 ≥ TH , all the above scenarios remain substantially unaltered
and the analysis could therefore be extended to situations in which the MVF
and the CTF do intersect.

4.2 Horizontal axis of the ellipse with non positive slope

When ∆1 < 0, the horizontal axis of the ellipse CTF has negative slope in
(σ2P , µP ) space, while it has zero slope when µB = µC . Under these assump-
tions, the scenarios plotted in Figures 3 and 5 are substantially confirmed as
are the discussions of the previous sections. In such a situation, the relevant
differences are:

(i) σ1 ≤ σ2 and µ1 > µ2, thus no feasible VaR constraints pass through
J1 ≡ (σ1, µ1) and J2 ≡ (σ2, µ2): in particular, the slope z∗θ in equation
(17) would be negative when µB < µC or infinite when the ellipse in
the (σ2P , µP ) space has a horizontal axis with zero slope;

(ii) the relationship V1 < V2 applies for any 0.5 < θ < 1;

(iii) scenarios similar to those documented in Figure 4 are not available.
Portfolio H lies on the inefficient arc of the MVF, thus it can not
coincide with the tangency portfolio M .

4.3 Extreme benchmarks

In the previous sections we showed that portfolio R always provides the
position at which asset managers can minimise TEV using the most stringent
VaR constraint possible; its analytical coordinates (σ2R, µR) are provided
by equation (A-9) in the Appendix. When the confidence level is high,
portfolio R represents the tangency portfolio between the MTF and the
CVF; according to equation (16), it is independent of V0 and managers are
only able to minimise the TEV when V0 ≥ VR.

However, asset managers can opt for a very stringent TEV restriction
and the low eccentricity of the ellipse in the (σ2P , µP ) space can generate
a scenario more complex than those presented in the previous sections. In
particular, once TR defines the TEV of portfolio R, the following condition
could be violated: the tangency portfolio R could be placed outside the CTF,
thus T0 < TR and µR /∈ [µ1, µ2]. In such a situation, the maximum bound
shifts from VR to V1 when ∆1 ≤ 0, or to V2 when ∆1 > 0. In both cases,
these bounds are the most stringent VaR constraints that allow managers
to select a portfolio on the MTF lying inside CTF.

Hence, given zθ >
√
d, we consider the benchmark portfolio B for which

T0 < TR, as extreme; heuristically, an extreme benchmark is a benchmark
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that lie far from the position R. Moreover, when ∆1 > 0, the so-called
aggressive benchmarks could belong to this category. Figure 6 shows various
situations in which portfolio R lies outside the CTF and ∆1 < 0 (when
∆1 > 0 the scenarios are the same). Specifically, using VR as the reference
VaR constraint, Figures 6 (a)-(b)-(c) show the medium VaR bound in the
presence of extreme benchmarks. In particular, Figures 6 (b)-(c) highlight
that the relationship VK ≥ VR could occur and this implies that the straight
line CVF in the medium bound scenario surely intersects the MTF. Figures 6
(d)-(e)-(f) illustrate the intermediate (VK < V0 < V1), maximum (V0 = V1)
and large (V1 < V0 < V2) bounds respectively, when the benchmark is
extreme.

When the confidence is low, a benchmark can not be extreme because
asset managers are always able to minimise the TEV by simply setting a VaR
constraint. More precisely, for each VaR bound, a straight line CVF crossing
the MTF must exists, thus an infinite number of intersections is available;
these contacts are not tangency portfolios and their coordinates strictly
depend on V0 (see equation (A-9) in the Appendix). As a consequence,
it is not possible to select a unique reference portfolio R on the MTF.

5 An empirical example

5.1 Data

In order to illustrate the theoretical results of section 4, a short empirical ex-
ample is now provided which consists of an asset allocation problem among
ten asset classes; both TEV and VaR constraints are taken into considera-
tion. The available data are given by the quarterly returns (in percentages)
of the 50 stocks composing the DJ Eurostoxx 50 index.

The data set runs from the first quarter of 2003 to the fourth quarter of
2010 and the sample size is 32.10 The DJ Eurostoxx 50 and the Standard
& Poor 500 Composite indices are used as benchmark portfolios (B). In
line with Palomba (2008), all the stocks are grouped into 10 distinct asset
classes, as shown in Table A-1.

10Data were sourced from Thomson DataStream. The prices for Alcatel and Crédit
Agricole were unavailable prior the last quarter of 2001 are unavailable, thus the available
dataset starts from the first quarter of 2002. We decided to use a restricted sample to
avoid negative expected returns for the benchmark portfolios.
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5.2 Results

The analysis is carried out by imposing an expected portfolio return µP =
5.00 and setting the constraints T0 = 20.00 and V0 = 15.00. The results
are provided in Tables A-2 and A-3: in the first case, the benchmark is the
DJ Eurostoxx 50 index and ∆1 is negative, while in the second case, the
benchmark is the Standard & Poor 500 and ∆1 is positive. In both cases a
high confidence level of θ = 99% and a low confidence level of θ = Φ(

√
d)

are set. All the results are obtained for the following battery of portfolios:

• P is the portfolio lying on the MVF with an expected return of 5%,

• T is the portfolio lying on the MTF with an expected return of 5%,

• J is the portfolio lying on the CTF with an expected return of 5%,

• AB is the portfolio lying on the CMTF (see Alexander and Baptista,
2008) with an expected return of 5%,

• B is the benchmark,

• C is the minimum variance portfolio on the MVF,

• Q is the portfolio with the maximum Sharpe Ratio (Sharpe, 1994),

• J1 and J2 are the intersections between the MTF and the CTF,

• H is the portfolio on the MVF with the same return as the benchmark.
It is also the contact portfolio between the MVF and the CTF when
Ψ = 0,

• M and R are the tangency (intersection) portfolios between the CVF
and the two hyperbolic frontiers when the confidence level is high (or
low),

• K represents the tangency portfolio between the CTF and the CVF,

• K2 is the left intersection between the CVF and the CTF.

For each of these portfolios the expected return, variance, risk, Sharpe Ra-
tio, portfolio Alpha, TEV and Information Ratio (IR=Alpha/TEV, see for
instance Lee, 2000b) are evaluated. Moreover, the efficiency loss and the in-
tercept of the straight line CVF (the VaR restriction for a given θ) are also
calculated. For the intersections M1, M2, K1, K2, R1 and R2, illustrated in
Figure 3, only the coordinates within (σP , µP ) space are provided.

When the confidence level is high, the scenario is as illustrated in Figure
3; in Table A-2 ∆1 < 0 determines the conditions discussed in section 4.2.
In such a situation, the slopes z∗θ and zHθ cannot be calculated. In Table
A-3, portfolio J is not defined because the return of portfolio J1 is less than
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5%. The relationship VM < VK < VR < V̂ , where V̂ = V2, indicates that
asset managers could impose any of the different restrictions upon VaR:
small (V0 < VM ), minimum (V0 = VM ), strong (VM < V0 < VK), medium
(V0 = VK), intermediate (VK < V0 < VR), maximum (V0 = VR), large
(VR < V0 < V2), larger (V0 = V2) or no bound (V0 > V2). In the specific
case of a fixed V0 = 18.00, the intermediate bound scenario occurs, hence
the intersection portfolios M1, M2, K1 and K2 (see Figure 3 (e)) are also
determined. In Table A-2 µR /∈ [µ2, µ1], rendering the benchmark extreme
(TR = 80.674); on the other hand, in Table A-3 TR = 5.888, thus the
Standard & Poor index is not an extreme benchmark. In both Tables, an
intermediate VaR bound is set and the FVTF is given by the segment K1K2

and the arc K̇1K2 on the CTF.
When the confidence level is low, the scenario is that of Figure 5. Each

of the portfolios P , T , J , B, C, Q, J1, J2 and H are independent of the
confidence level θ, therefore they remain the same as those calculated for
the high confidence level. In Table A-3, the constraint V0 = 5.00 is set
because the value of 15.00 is too feeble (it corresponds to the “no bound”
situation) when the CVF has a small slope. In both Tables, portfolios M
and R are the intersections between CVF and the hyperbolic frontiers the
MVF and MTF respectively; K2 represents the portfolio lying on the CVF
with the maximum reduction of efficiency loss, while the VaR restrictions
in J1 and J2 have been corrected for by taking the change in the confidence
level into account. The coordinates of the tangency portfolio K differ from
those calculated when the confidence level is high, while portfolio AB lies
on the MTF (µP > µM ), thus coinciding with portfolio T . However, the

FVTF is composed by segment RK2 and arcs J̆1K2 and R̄J1.

6 Concluding remarks and further research

The key task faced by asset managers is that of beating a benchmark. Con-
sidering this and the fact that risk management usually involves measures
to keep risks under control, this paper attempts to formalise asset allocation
strategies in the presence of constraints put upon tracking error volatility
(TEV) and value at risk (VaR); all the results are obtained considering the
classical hypothesis of normally distributed expected returns which trans-
lates into an optimisation in the (σ2P , µP ) space. However, Roll (1992) shows
that portfolio optimisation based upon a relative risk measure is generally
overly risky. Indeed, the so-called “Mean-TEV Frontier” (MTF), which is
the set of portfolios with a given expected return and the smallest TEV, is
usually far from the Markowitz efficient frontier (“Mean-Variance Frontier”,
MVF) with a portfolio’s efficiency loss. Alexander and Baptista (2008) pre-
viously tried to reduce a portfolio’s efficiency loss with the “Constrained
Mean-TEV Frontier” (CMTF), which contains portfolios that satisfy a VaR
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constraint and have the smallest TEV.
This frontier does not take two economic problems into consideration.

First, the VaR constraint is independent of the benchmark portfolio, hence
it is not related to the maximum TEV constraint: in such a situation, re-
strictions on VaR and TEV cannot be satisfied at the same time. Indeed,
Jorion (2003) highlights that asset managers can choose within a closed and
bounded set of feasible portfolios (“Constrained TEV Frontier”, CTF) that
lie around the benchmark. The resulting asset allocation strategies thus
suffer from a substantial reduction of the (σP , µP ) space that is tightly con-
nected to the restrictions imposed. Second, portfolios lying on the CMTF
usually have a higher efficiency loss when compared to those lying to the left
side of the CTF; this is due to the definition of the CMTF (see Alexander
and Baptista, 2008) which is focussed on finding the smallest TEV. This
paper shows that the imposition of a maximum and fixed TEV allows man-
agers to move away from the CMTF and select less risky portfolios, thereby
reducing efficiency loss. The above two problems can be summarised as fol-
lows: if maximum TEV and VaR limits are not compatible, there are no
feasible portfolios and, at most, only one of the two constraints can be satis-
fied. Compatibility between maximum TEV and minimum VaR constraints
only arises if the related portfolio frontiers intersect; in such a situation, or
in the absence of a constraint on TEV, portfolios on the CMTF are generally
inefficient.

This paper presents various scenarios regarding all the interactions be-
tween different portfolio frontiers and provides analytical solutions for their
intersections; moreover, it introduces the “Fixed VaR-TEV Frontier” (FVTF),
a new portfolio boundary which has two important properties: on the one
hand, it allows asset managers to satisfy TEV and VaR restrictions at the
same time and, on the other hand, it contains portfolios more efficient than
those belonging to the CMTF. However, when TEV and VaR restrictions
are too stringent, the FVTF does not exist. Conversely, when this frontier
operates, an interesting trade-off between relative and absolute risk arises,
consistent with Roll (1992). In other words, for any given expected return
within the FVTF, managers can choose to reduce the relative risk (TEV)
by augmenting the absolute risk (overall portfolio variance) or increase the
relative risk by decreasing the absolute risk. This can also create a principal-
agent problem between fund investors and asset managers.

To conclude, generalising the results to non normally distributed ex-
pected returns and disallowing short sales would surely represent the natural
extensions of the analysis carried out in this paper.
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Marche.

Roll R. (1992), “A mean/variance analysis of tracking error”, Journal of
Portfolio Management 18, pp. 13–22.

Sharpe W.F. (1994), “The Sharpe Ratio”, Journal of Portfolio Manage-
ment 21(1), pp. 49–58.

Appendix

Proof of Theorem 1

This theorem can be demonstrated from two viewpoints; from the geomet-
ric perspective, the straight line passes through portfolios J1(σ1, µ1) and
J2(σ2, µ2), with σ1 > σ2 and µ1 > µ2, both belonging to the MTF. Given
these assumptions, the secant line passing through segment J1J2 has greater
slope than the asymptotic slope of the frontier. The proof consists of a com-
parison between the equation of the asymptotic slope of the MTF and the
slope of the line passing through portfolios J1 and J2. Using equation (17)
one can obtain

d

2∆1
(σ1 + σ2) >

√
d

then

µB < µC +
√
d

Å
σ1 + σ2

2

ã
, (A-1)
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where µC +
√
dσ̄2 represents the value of the asymptote of MVF calculated

in σ̄2 = (σ1 + σ2)/2; for the convexity of the hyperbola MTF σ̄2 > σ2B, so

µB < µC +
√
dσ2B < µC +

√
dσ̄2.

This demonstrates equation (A-1).

Intersection between the MVF and the CVF

Even if Alexander and Baptista (2008) fully discussed the relationships be-
tween the MVF and the CVF, they omitted the analytic solutions for the
contact portfolios (M , M1 and M2 in Figure 3). This section proves the ex-
istence of such analytical solutions. The condition under which the frontiers
intersect in (σ2P , µP ) space is the equality between equations (1) and (8)Å

µP + V0
zθ

ã2
= σ2C +

1

d
(µP − µC)2. (A-2)

The resolvent obtained after some algebra is the following quadratic expres-
sion

(z2θ − d)µ2P − 2(z2θµC + dV0)µP + cz2θσ
2
C − dV 2

0 = 0, (A-3)

which returns the solutions (for portfolios M1 and M2)

µP =
(z2θµC + dV0)±

√
D0

(z2θ − d)
(A-4)

when the discriminant

D0 = (z2θµC + dV0)
2 − (z2θ − d)(cz2θσ

2
C − dV 2

0 )

= V 2
0 + 2µCV0 + σ2C(c− z2θ) (A-5)

is strictly positive; this occurs when

V0 ≥ −µC +
»
σ2C(z2θ − d), (A-6)

which represents the solution lying in the efficient set11 under the necessary
condition z2θ−d > 0. However, when the confidence level is low (z2θ−d < 0),
it can be shown that D > 0, hence a VaR at which the CVF crosses the
MVF must surely exist.

The tangency condition D0 = 0 demonstrates equation (13) related to
tangency portfolio M . Moreover, substituting D0 = 0 in equation (A-4),
the result in equation (14) is immediately obtained.

When the tangency between the MVF and the CVF holds, some math-
ematical aspects have to be taken into consideration:

11All the algebra is omitted for brevity. It is clear that if equation (A-5) admits two real
solutions, only the relationship (A-6) has to be considered; in practice, the other condition

V0 ≤ −µC +
√
σ2
C(z2θ − d) corresponds to a VaR constraint that is too stringent (see, for

instance, Figure 3).
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- if z2θ < d (low confidence level), the radical is negative hence the
solution (13) is not real and the tangency between the frontiers is not
possible, as shown in Figure 5;

- if z2θ = d (low confidence level), the solution is V0 = −µC which
consists of the maximum small bound (see Figure 3): in this case, the
straight line CVF is the asymptote of the MVF, hence the tangency
cannot exist for finite values of σP or µP . This situation corresponds
to Proposition 1.(ii) in Alexander and Baptista (2008);

- if z2θ > d (high confidence level), the tangency condition always holds
when VaR=VM in equation (13).

Intersection between the MTF and the CVF

The process of finding the intersection between the MTF and the CVF is a
similar to that of the previous case: the frontiers show common portfolios
in (σ2P , µP ) space whenÅ

µP + V0
zθ

ã2
= σB +

1

d
(µP − µB)2 + 2

∆1

d
(µP − µB). (A-7)

The resolvent is the following second degree equation

(z2θ − d)µ2P − 2(z2θµC + dV0)µP + z2θ(dσ2B − µ2B + 2µCµB)− dV 2
0 = 0, (A-8)

and the solutions (for portfolios R1 and R2) are

µP =
(z2θµC + dV0)±

√
D1

(z2θ − d)
, (A-9)

where the discriminant is

D1 = (z2θµC + dV0)
2 − (z2θ − d)[z2θ(dσ2B − µ2B + 2µBµC)− dV0]

= V 2
0 + 2µCV0 − z2θ

Ç
σ2B −

∆2
1

d

å
+ dσ2B −∆2

1 + µ2C . (A-10)

Given that the objective of the MTF is to minimise TEV, in equation (A-10)
a benchmark portfolio is considered. The tangency condition D1 = 0 is
satisfied when the value of the constrained VaR is

VR = −µC +

√Ç
σ2B −

∆2
1

d

å
(z2θ − d). (A-11)

As in the previous case, the analytical solution for this constraint depends
on the data and the confidence level θ. The relationship VR > VM indicates
that this constraint is less stringent. In short:

VR > VM ⇒ z2θ

Ç
σ2B −

∆2
1

d

å
> σ2C(z2θ − d) ⇒ z2θ > −d

σ2C
δB
.
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This is true because d > 0, σ2C > 0 and δB > 0 by construction. Further-
more, the analysis conducted for (z2θ−d) Q 0, for the intersection MVF-CVF,
is substantially confirmed. Finally, substituting V0 = VR in equation (A-8),
the resulting portfolio is R, as already defined in equation (16).

Intersection between the CTF and the CVF: the system

Starting from equations (4) and (8), the intersections between the CTF and
the CVF correspond to the solutions of the system

x =

Å
µP + V0
zθ

ã2
−A0

dx2 + φ1(µP − µB)2 + φ2x(µP − µB) + φ3 = 0

(A-12)

where A0 = σ2B +T0, x = σ2C −A0, φ1 = 4∆2, φ2 = −4∆1 and φ3 = 4dδBT0.
The resolvent is provided by the quartic function

d

ñÅ
µP + V0
zθ

ã2
−A0

ô2
+φ1(µP−µB)2+φ2

ñÅ
µP + V0
zθ

ã2
−A0

ô
(µP−µB)+φ3 = 0.

(A-13)
Equation (9) is obtained after some algebra, thus:

c1 =
d

z4θ

c2 = 4
d

z4θ
V0 +

φ2
z2θ

c3 = 6
d

z4θ
− 2

d

z2θ
A0 + φ1 + 2

φ2
z2θ
V0 −

φ2
z2θ
µB

c4 = 4
d

z4θ
V 3
0 − 4

d

z2θ
A0V0 − 2φ1µ

2
B − φ2A0 +

φ2
z2θ
V0(V0 − 2µB)

c4 =
d

z4θ
V 4
0 − 2

d

z2θ
A0(V

2
0 + dA0) + φ1µ

2
B − φ2µB

Ç
V 2
0

z2θ
−A0

å
+ φ3

System (A-12) should return two distinct real solutions for the expected
return µP when the parabola CVF crosses the ellipse in (σ2P , µP ) space, a
double root when the curves are tangent and no solutions when the frontiers
do not have any portfolios in common. This implies that, when the intersec-
tions occur, the polynomial of the fourth degree (9) always has two non real
complex conjugate roots; this result is very difficult to handle, so the con-
tacts between the frontiers are determined via the numerical optimisation
method introduced in section 3.
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Proof of equation (10)

Setting x = σ2P − σ2B − T0, the function (4) becomes the following second
order equation

dx2 − 4∆1(µP − µB)x+ 4∆2(µP − µB)2 − 4dT0δB = 0. (A-14)

Solving x, after some algebra, one can obtain

x =
2

d

{
∆1(µP − µB)±

»
dδB[dT0 − (µP − µB)2]

}
.

Given that the CVF intersect the CTF on the left, the smaller solution of
equation (A-14) has to be considered, therefore the function

σ2P = σ2B + T0 +
2

d

{
∆1(µP − µB)−

»
dδB[dT0 − (µP − µB)2]

}
(A-15)

defines ST (µP ) in equation (10). On the other hand, equation SV (µP ) de-
rives from the definition of the straight line (8).

First order condition of equation (10)

When µ2 < µP < µ1, the first order condition is

∂S(µP )

∂µP
= 2[ST (µP )− SV (µP )]

ñ
∂ST (µP )

∂µP
− ∂SV (µP )

∂µP

ô
= 4[ST (µP )− SV (µP )]

∆1

d
+

»
δB/d(µP − µB)»
dT0 − (µP − µB)2

− µP + V0
z2θ

 .
If V0 ≥ VK , the first polynomial is zero when µP = µK1 or µP = µK2 , where
K1 and K2 are the portfolios at which the CTF and the CVF intersect,
while the second polynomial admits a unique solution at µP = µ∗P , where
µK1 ≤ µ∗P ≤ µK2 (the strict equality µK1 = µ∗P = µK2 holds when V0 = VK).
According to this results, the function S(µP ) shows two minima and a local
maximum placed between them; heuristically, this property is demonstrated
by Figure 2 (c).

When V0 < VK , the CTF and the CVF do not show common portfolios,
so the first order condition is only guaranteed by the sole solution µP =
µ∗P , which corresponds to the expected return that minimise the distance
between frontiers. Under this assumption, S(µP ) is strictly convex.

Proof of equation (18)

Given M ≡ (σ2C + dσ2C/(z
2
θ − d), µC + dσC/

»
z2θ − d) and H ≡ (σ2C +

∆2
1/d, µB), if M ≡ H, it follows that

µC +
dσC»
z2θ − d

= µB ⇒
»
z2θ − d =

dσC
∆1

.
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Given that d > 0, σC > 0, ∆1 > 0 and z2θ −d > 0, by definition, the solution
is

zHθ =

√
d+

d2σ2C
∆2

1

Moreover, the relationship zHθ >
√
d is straighforward:

zHθ =
√
d

√
∆2

1 − dσ2C
∆2

1

Proof of equation (19)

From equations (17) and (18) it follows that

d

2∆1
(σ1 + σ2) >

√
d+

d2σ2C
∆2

1

therefore
σ1 + σ2

2
>

 
σ2C +

∆2
1

d
= σH .

Given that portfolio H lies on the Mean-Variance Frontier, it surely has a
lower risk than the average of risks in portfolios J1 and J2, and this completes
the proof.

Package

All the routines for the analysis carried out in this paper, together with the
entire data set used, are freely downloadable from

http://utenti.dea.univpm.it/palomba/TEV-VaR.html

A short user guide is also available.
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