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Abstract

In this paper, we run a Monte Carlo analysis of the finite-sample performance
of an Information Matrix Test put forward by Smith (1985) for bivariate
censored models. We use the bivariate probit model and Heckman selection
model as examples.

Approximating the finite-sample distribution of this test statistic by its
asymptotic distribution can lead to very misleading results: its size is severely
distorted even in samples that common practice would judge to be perfectly
adequate for asymptotics. This is especially true when the correlation coef-
ficient is far from zero.

Power properties of the test statistic are investigated by using bivariate
t(6) and χ2

(1) alternatives. The test has very low power against leptokurto-
sis, especially in the bivariate probit case, while power against asymmetry
appears to be much more satisfactory.

In general, the performance of the Information Matrix test seems to be
related to the amount of information on the latent variables which survives
the censoring mechanism. A somewhat improved version of the test can be
obtained, in some cases, by a careful choice of the moment conditions to
employ.
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Conditional Moment Tests for
Normality in Bivariate Limited
Dependent Variable Models: a Monte
Carlo Study∗

Riccardo (Jack) Lucchetti Claudia Pigini

1 Introduction

In microeconometric applications, the bivariate normality assumption is sel-
dom, if ever, tested after estimating models with limited dependent variables,
despite the fact that a mis-specified distribution makes the maximum like-
lihood estimator inconsistent (Robinson, 1982). This is not the case for
univariate normality in limited dependent variable models, where tests were
proposed first by Bera, Jarque, and Lee (1984) and then by Chesher and Irish
(1987); the latter has become a well-established procedure and is interpreted
as a conditional moment test for regressions with grouped data, Probit and
Tobit models.

With continuous dependent variables, testing for multivariate normality
has become common practice and several options are available. Tests based
on measures of multivariate skewness and kurtosis have been first brought
forward by Mardia (1970b), where

√
b1 and b2 have respectively a χ2 and

normal distribution. Bowman and Shenton (1975) derived a test based on
approximating the distribution of

√
b1 and b2 by the Johnson System. Alter-

natively, Cox and Small (1978) (later reviewed by Cox and Wermuth (1994))
tested multivariate normality with repeated standard regression tests of non
linearity. Finally, the Omnibus Test by Doornik and Hansen (2008) uses a
conditional gamma distribution for kurtosis based on Shenton and Bowman
(1977).

However, these tests can not be applied in models subject to truncation
or censoring and there have been, to our knowledge, only few attempts to test

∗We would like to thank an anonymous reviewer and the participants to the 2nd Gretl
Conference, Toruń, 2011 for useful comments and suggestions.
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bivariate normality, even though this is a key assumption for some widely
popular limited dependent variable models that exploit the joint normality
of the random error terms, such as Heckman’s endogenous selection model
and the bivariate (possibly ordered) probit model.

One way to test bivariate normality in this kind of models is to follow
the strategy proposed by Smith, who derived the Information Matrix (IM)
test statistic for misspecification in bivariate (Smith, 1985) and multivariate
(Smith, 1987) limited dependent variable models. The Information Matrix
test for bivariate normality proposed by Smith has several advantages. First
of all, as argued in Smith (1985), it is applicable to all censoring schemes.
Moreover, building on earlier work by Gourieroux, Monfort, Renault, and
Trognon (1984), Smith introduced the definition of Generalised Error Product
of Order (r,s) (GEP henceforth), which bypasses the analytical difficulties
of computing the score and the Hessian matrix and yields a general rule
for their derivation, thus making it possible to formalise the IM test for the
most general case, that is a multivariate limited information simultaneous
equation system in latent variables subject to an arbitrary censoring scheme.
Second, the Information Matrix test may be interpreted, in the same way
as in Chesher and Irish (1987), as a conditional moment test1 (Newey, 1985;
Tauchen, 1985). Therefore, it may make sense to focus on a subset of the
moment conditions, that is those associated with skewness and kurtosis and
to test them separately (Hall, 1987) when more appropriate, even though the
IM test is originally a general test for mis-specification. Finally, an IM test
is trivial to implement in software, when analytical expressions for the score
and the Hessian are available.

Despite these qualities, however, Information Matrix tests are generally
known to deliver a poor finite sample performance when applied to the lin-
ear and univariate limited dependent variable models: especially the OPG
(Outer Proder of Gradient — see Davidson and MacKinnon (1993)) form of
the IM test tends to over-reject the true null hypothesis in finite samples.
Monte Carlo studies carried out by Taylor (1987) and by Kennan and Neu-
mann (1988) reported the extremely poor approximation of the asymptotic
χ2 distribution to the finite sample distribution of the IM test statistic. Orme
(1990) also argues that the Chesher-Lancaster OPG version leads to a high
upward finite-sample size bias. He presents several variants of an IM test
statistic for truncated normal regression and Probit model that all have an
nR2 interpretation, showing, by Monte Carlo simulations, that the size bias
can be considerably reduced by using a version subject to some parameter

1CM tests were famously advocated, in a closely related context, by Pagan and Vella
(1989).
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restrictions. Moreover, the size bias increases with large samples the higher
the number of indicators used to compute the IM test statistic and also, in
probit and Tobit models, the power against leptokurtic alternatives is ex-
tremely sensitive to the degree of censoring of the dependent variable (Skeels
and Vella, 1999).

These studies were followed by several attempts aimed to overcome the
size bias problem. Chesher and Spady (1991) show that the poor χ2 ap-
proximation ultimately depends on the method chosen to compute the test.
They develop an approximation to the finite sample distribution based on
a O(n−1) Edgeworth expansion. Davidson and MacKinnon (1992) intro-
duce a new form of the IM test based on double length artificial regression,
which performs better in small samples than the OPG variant, at least in
the univariate case. However, the DLR variant cannot be applied with lim-
ited dependent variable models. Finally, Horowitz (1994) and Dhaene and
Hoorelbeke (2004) put forward solutions based on various versions of the
bootstrap.

There is, however, no evidence about the finite-sample performance of
the Information Matrix test in bivariate limited dependent variable models.
The aim of this paper is therefore to explore the size and power properties of
the Information Matrix test by means of a comprehensive Monte Carlo ex-
periment for two very common limited dependent variable models, bivariate
probit and Heckman’s endogenous selection model.

The paper is organised as follows: section 2 describes in detail the deriva-
tion of the test statistic for the bivariate probit and Heckman selection model,
while section 3 contains the results of the Monte Carlo experiments and draws
a brief comparison with alternative approaches; section 4 concludes.

2 Moment Conditions for the Bivariate Pro-

bit and Heckman Selection Models

2.1 Conditional Moments tests

We will use the OPG variant of the Information Matrix test (Chesher, 1983;
Lancaster, 1984) to test for bivariate normality in the bivariate probit and
Heckman selection model.

As is well known, the IM test, introduced by White (1982), is based on
the Information Matrix equality: under correct specification of the model,
the variance of the score plus the expected value of the Hessian should be
zero. This fact provides a set of moment conditions that can be used to test
whether the model is correctly specified.
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Let θ be the parameter vector. The Information Matrix test statistic is
therefore a test for E(Ci) = 0, where

Ci = vech

[
∂2`i
∂θ∂θ′

+GiG
′
i

]
, (1)

evaluated at θ = θ̂ML; `i is the contribution to the log-likelihood of the i-th
observation and Gi ≡ ∂`i

∂θ
.

For the models we are considering here, deriving the score vector and the
Hessian matrix directly from the log-likelihood for observables is not overly
complex. However, in the general context of bivariate models with censoring,
the general setup proposed by Smith (1985) (see section A in the Appendix)
can be used to derive moment conditions for any censoring scheme. We
choose the former approach as it leads to analytical expressions that lend
themselves to a much easier translation into numerically efficient code2.

The Information Matrix test can be computed by means of an OPG
regression (see Davidson and MacKinnon (1993)): the test statistic equals
nR2 of the regression of an n-vector of ones on a matrix M , with typical
row M ′

i = [G′i, C
′
i]. It is important to note that, in general, M may not

be of full column rank, since the asymptotic χ2 distribution of the IM test
statistic under the null hypothesis has a number of degrees of freedom given
by rank(M) − k. The possibility of rank deficiency, however, can be easily
handled via numerical methods and will be briefly discussed later in this
section and more in detail in section B in the appendix.

In the next two subsections, we will compute these quantities explicitly for
the Bivariate Probit and the Heckman Sample Selection models. Although
these models are well known, we will expose them in detail so to establish
our notation clearly.

2.2 Bivariate Probit Model

The latent variable model is defined as

y∗1 = x′1β1 + v1 (2)

y∗2 = x′2β2 + v2 (3)

where x1 and x2 are a k1-vector and a k2-vector of exogenous variables,
respectively and the error terms v1 and v2 are assumed to be jointly normal

2On the other hand, Smith’s derivation of the score and Hessian matrix elements as
functions of the GEP(r, s) allows us to immediately recognise the moment conditions tested
in the OPG regression. Such expressions are not reported in this paper. Section A contains
a brief exposition of GEPs and their relationship to the derivatives of the log-likelihood.
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with unit variances and correlation coefficient ρ. The observable random
vector y = (y1, y2) is related to latent random variable y∗ = (y∗1, y

∗
2) via

yj = I(y∗j > 0) for j = 1, 2 and I(·) is the indicator function. Let us consider
for simplicity the case y1 = 0 and y2 = 0 and define

ai = −x′1iβ1

bi = −x′2iβ2

As customary in this kind of setting, we reparametrise the bivariate
normal density via hyperbolic functions so that instead of the correlation
coefficient ρ we will be using α = atanh(ρ) and the associated quantities
cα = cosh(α) and sα = sinh(α); thus, the contribution to the log-likelihood
for observation i can be written as

`i = ln Φ2(ai, bi, α) = lnPi (4)

where

Φ2(ai, bi, α) =
∫ ai

−∞

∫ bi

−∞
ϕ2(y1, y2, α)dy2dy1

with Φ2 and ϕ2 being the bivariate standard normal cumulative distribution
and density function, respectively. So we have a vector θ′ = (β′1, β

′
2, α)′ of

k = k1 +k2 +1 parameters to be estimated by ML. Let us define the function

ubi,ai = cαbi − sαai

and write the score elements for observation i as

Gβ1
i = Saii x

′
1i =

ϕ(ai)Φ(ubi,ai)

Pi
x′1i

Gβ2
i = Sbii x

′
2i =

ϕ(bi)Φ(uai,bi)

Pi
x′2i

Gα
i = Sαi =

ϕ(bi)ϕ(uai,bi)

Picα

The moment conditions Ci, expressed as functions of the score elements, are
shown in Table 1.

2.3 The Heckman Selection Model

The latent variable model is defined as

y∗i = x′iβ + εi (5)

d∗i = w′iγ + vi (6)
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Table 1: Moment Conditions for the Bivariate Probit Model

β1 β2 α

β1 − [aiS
ai
i + cαsαS

α
i ]x1ix

′
1i c2

αS
α
i x1ix

′
2i −uai,bicαSαi x1i

β2 −
[
biS

bi
i + cαsαS

α
i

]
x2ix

′
2i −ubi,aicαSαi x2i

α Sαi [uai,biubi,ai − tα]

where xi and wi are an m-vector and a h-vector of exogenous variables,
respectively; the error terms εi and vi are assumed to be jointly normal with
zero mean and covariance matrix

V

(
εi
vi

)
=

(
σ2 ρσ
ρσ 1

)
The observable random vector (y, d) is related to latent random variables
(y∗, d∗) as:

yi =


y∗i if d∗i > 0

NA if d∗i ≤ 0
(7)

with di = I(d∗i > 0). The contribution of observation i to the log-likelihood
is

`i = (1− di) ln Φ(−bi) + di ln Φ(ai)− di
(

ln
√

2π + lnσ +
u2
i

2

)
(8)

where ai = cαbi + sαui, bi = w′iγ and ui =
yi−x′

iβ

σ
. The parameter vector

θ′ = (β′, γ′, σ, α) includes k = m+h+2 parameters. By using the generalised
residuals

µi = di
ϕ(ai)

Φ(ai)
+ (1− di)

ϕ(bi)

Φ(−bi)

the score elements for observation can be written as:

Gβ
i = di

(
ui − sαµi

σ

)
x′i

Gγ
i = [diµicα + (1− di)(−µi)]w′i

Gσ
i = di

(
ui(ui − sαµi)− 1

σ

)
Gα
i = diµici
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where ci = cαui + sαbi; the moment conditions Ci are presented in Table 2.

Table 2: Moment Conditions for the Heckman Selection Model

Cβ,β
i di

1
σ

[
Gσ
i − sαcα

σ
Gα
i

]
xix
′
i

Cβ,γ
i di

c2α
σ
Gα
i xiw

′
i

Cβ,σ
i di

1
σ2ui [sαµi(1− sαai − 2ui) + u2

i − 2]x′i − σG
β
i

Cβ,α
i di

1
σ

[µi(sαaici + uici − cα)]x′i

Cγ,γ
i di(−c2

αµiai) + (1− di)(−µibi)wiw′i

Cγ,σ
i di

1
σ

[cαµi(sαaiui + u2
i − 1)]w′i

Cγ,α
i di [−µi(cαaici − sα)]

Cσ,σ
i di

1
σ2 [u4

i − 5u2
i + 2 + sαuiµi(4− aisαui − 2u2

i )]

Cσ,α
i di

1
σ
µi [ciui(sαai + ui)− (cαui + ci)]

Cα,α
i diµiai(1− c2

i )

2.4 The Rank Deficiency Problem

As mentioned above, the possibility of the degrees of freedom of the IM test
statistic being less than k(k + 1)/2 needs further discussion. One case in
which this happens is when the model includes constant terms or some of
the regressors in the two equations are the same; in this case, the correspond-
ing elements of Mi are linear combinations of one another and, consequently,
must be dropped from the OPG regression. As shown in Hall (1987) in the
context of the normal linear model, the test statistic can be asymptotically
decomposed into the sum of three independent components each detecting
heteroskedasticity, skewness and excess kurtosis. Therefore, dropping ele-
ments of Mi in the OPG regression due to redundancy may lead to failure in
detecting mis-specification.
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In the case of the bivariate probit model it can be proven that the degrees
of freedom are bounded between zero and k(k + 1)/2− 1. The upper bound
for df the case of the Heckman selection model can also be proven to equal
k(k + 1)/2 − 1 in the most favourable conditions, while a lower bound is
more difficult to obtain, and depends on the precise setup of the model. A
detailed analysis for the cases we will analyse in the Monte carlo experiment
of Section 3 is given in section B, in the Appendix.

3 The Monte Carlo Experiment

3.1 The test statistics

As briefly explained in section 2.1, the OPG version of the Information Ma-
trix test may be interpreted as a conditional moment test (Newey (1985)
and Tauchen (1985)) and the moment conditions of interest may be tested
separately (Hall, 1987).

We present the results of the Monte Carlo experiment for several variants
of the the Information Matrix test. For both models, we first use all moment
conditions, that is we include all non-redundant columns of the M matrix
(see tables (1) and (2)) in the OPG regression resulting in a general test for
misspecification. Next, we include in the OPG regression those columns of
M that contain third and fourth moment conditions3.

In the bivariate probit model, third moment conditions appear in Cβ1,α
i

and Cβ2,α
i , while the only condition on the fourth moment is Cα,α

i . It would be
desirable to use a mix of moment conditions that considers third and fourth
moments only. However, this becomes impossible if both equations (2) and
(3) contain a constant term, due to collinearity in the moment conditions
(see section B.1 in the Appendix for details) . This is of course a condition
which will occur in every possible realistic setting, including the DGP used
in our experiment.

In the sample selection model third moment conditions are contained in
Cβ,σ
i , Cβ,α

i , Cγ,σ
i , Cγ,α

i and fourth moment conditions are in Cσ,σ
i , Cσ,α

i and
Cα,α
i . For this model we are able to test jointly third and fourth moment

conditions since the only moment condition that gets dropped from the OPG
regression due to collinearity is Cα,α

i (see section B.2 in the Appendix).
The richer structure of the Heckit model makes it possible to explore an

alternative form of the test, obtained by selecting the two “diagonal” moment

3The presence of such moment conditions is not easy to spot inside the expressions
given in section 2. However, it becomes obvious when rewriting those expressions using
Smith’s GEP formula.
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conditions available in table (2), which contain, among others, fourth and
cross-third moments, that is Cσ,σ

i and Cα,α
i . We are unable to provide sound

theoretical justification for our choice: a possible (vague) rationale that may
be given is that, if a subset of the moment conditions has to be employed,
those along the diagonal are more likely to carry useful information. We are
so aware of the arbitrariness of our choice that we will refer to this form of
the test as the result of a “cherry-picking” strategy.

All these variants of the IM test were analysed by running a Monte Carlo
simulation based on 10000 replications and sample sizes of 1024, 4096 and
16384 observations.

3.2 Size Analysis

Tables (3), (4), (5) and (6) report the empirical size of the IM test statistic,
at the 90%, 95% and 99% quantile of the appropriate χ2 distribution. For
the sample selection model results are reported for three different degrees
of censoring: 10%, 50% and 75% of censored observations4. The correlation
coefficient ρ between the random error terms varies from 0 to 0.90. Results
are displayed only for ρ = 0, 0.50, 0.90 (results for ρ = ±0.25 and ρ = 0.75
are available upon request).

The DGP is described in detail at the end of Tables 3 and 4. The bold
font indicates that the difference between the nominal and empirical size is
not statistically significant at the 1% level.

The results of the Monte Carlo experiments for the bivariate probit model
(Table 3) are consistent with the existing literature on its univariate coun-
terpart (Skeels and Vella, 1999). As for the univariate probit model, the
Information Matrix test using all moment conditions presents a severe size
bias in the case of the bivariate extension as well. Although all tests appear
to approach their nominal size in the limit, the null hypothesis is still highly
over-rejected in samples as large as 16384 observations; the size distortion is
especially severe for large values of ρ. In all three variants, a sample of 1024
observations is not enough to restrain the size bias. However, it seems that
the size bias may be reduced if only the fourth moment condition is used.

The empirical size appears to be severely distorted in the Heckman selec-
tion model too. In all the variants of the test, the bias increases for non-zero
values of the correlation coefficient. Also the stronger is the level of censor-
ing considered, the higher is the size distortion (Tables 4, 5 and 6). The
test based on all moment conditions abundantly over-rejects the true null
hypothesis of correct specification even with a sample size of 16384 all over

4In practice, this amounted to setting the intercept in equation 6 to a suitable value.
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the three degrees of censoring, while testing fewer moment conditions seems
to make the test statistic approach faster its nominal size, especially when
more information is available. The test with only fourth moment conditions
exhibits a smaller size bias with a sample size of 4096, although it severely
worsens when ρ is far from zero. The version with “cherry-picked” moment
conditions exhibits the smallest distortion and behaves nicely with all sample
sizes. However, even if less than the others, this variant’s size is also sensitive
to high values of the correlation coefficient and to the loss of information due
to censoring.

It may be conjectured that the disappointing performance of the test
statistics analysed here has to be ascribed to the usage of the OPG estimator:
it has been known for a while that using the OPG matrix as an estimator of
the information matrix leads to tests that have severe size distortions even
in large samples (see for example Davidson and MacKinnon (1993, p. 477)).
For this reason, we also experimented with a slight variant of the test which
uses the analytical Hessian instead of the OPG estimator. The OPG-based
statistic can be written as

WOPG = c′
[
C̄ ′C̄ − C̄ ′G(G′G)−1G′C̄

]
c,

where c = C̄ ′ι =
∑n
i=1 C̄

′
i and C̄ is understood to be a suitable selection of

the columns of C. By substituting G′G with −H (the negative analytical
Hessian), we obtain the following form of the test

WH = c′
[
C̄ ′C̄ + C̄ ′GH−1G′C̄

]
c,

which is asymptotically equivalent but should perform better than WOPG

if the conjecture is correct. However, we obtained strikingly similar results
in all cases (these are not reported here, but of course are available upon
request).

3.3 Power Analysis

We analyse the power of the Information Matrix test statistic against two
alternatives running the experiments described above. For this purpose we
use the same setup as in Gao and Lahiri (2000). Assume X1 and X2 are
independent centred random variables. We use

v1 = X1 (9)

v2 = ρX2 +
√

1− ρ2X1 (10)

as the two disturbance terms, which is equivalent to using a Gaussian copula.
The marginal densities we will draw X1 and X2 from are a standardised t(6)
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for the first alternative and a standardised χ2
1 for the second one. This choice

enables us to focus on the consequences of leptokurtosis and asymmetry
separately.

It can be said that the power properties of IM tests are generally quite
unsatisfactory except in a few cases. Moreover, a number of unexpected
results appear: for example, in some cases the power does not seem to be a
monotone function of the sample size, putting the issue of test consistency
into question. This is an aspect that needs to be further investigated and
will form the object of future resaerch.

In the case of the bivariate probit model, the test statistic turns out to be
generally very weak against the symmetric but leptokurtic alternative (table
7), unless an extremely large sample size is considered. While the power of the
test is rather stable over different values of ρ when we consider all moment
conditions, it remarkably worsens for values of the correlation coefficient
higher than 0.5 when the variants based on third or fourth moments only
are considered. On the other hand, the full and third-moments variants test
statistic seems to be very powerful against skewness over all sample sizes
(table 8)5. The same, unsurprisingly, cannot be said of the fourth-moment
variant, which appears a rather poor choice.

Our results mirror closely those reported by Skeels and Vella (1999) for
the univariate case. As we observe only the signs of the latent dependent vari-
ables, the information that can be captured by tail behaviour alone in latent
variables with symmetric distributions is lost when the censoring takes place.
That is, the observed signs remain unchanged whenever the mis-specification
does not modify the proportions of zeros and ones in the dependent variables.
As a result, the test fails to detect excess kurtosis. This also explains why the
test statistic has good power against skewed alternatives, since the bivariate
probit censoring scheme is able to keep the information about the change
in the proportion of zeros and ones taken by observations produced by this
particular form of mis-specification.

Results for the Heckman selection model are displayed in tables (9), (10)
and (11). Only power for the bivariate t(6) is presented, since under a bivari-
ate right and left skewed χ2

(1) distribution the test always rejected the null
in all our simulations.

All variants of the test exhibit power properties that are considerably
more satisfactory than in the bivariate probit case: the censoring scheme
is less strict than bivariate probit, so (partial) observability of yt makes it

5Monte Carlo simulations have been run also to study the power against a left skewed
bivariate χ2

1. Results are practically the same as the ones reported against right skewness
and are not reported in the paper.
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possible, for example, to detect leptokurtosis. This is confirmed by the fact
that the tests based on fourth moment conditions (with and without third
moments) have more power against the t(6) and that power properties get
worse as the degree of censoring grows large.

The test variant based on third moments only also shows good power
properties, with the exception of the ρ = 0 case, in which the power seems
to decrease with the sample size. However, it is worth noting that with our
setup in the ρ = 0 case the two disturbances are effectively independent
from one another, as opposed to just incorrelated; therefore, by symmetry of
the marginals, all higher-order odd moments are zero or non-existent. The
reverse is not necessarily true, so the power properties of this variant of the
test in a more general case remain to be ascertained.

The “cherry-picked” variant of the test appears to have reasonably good
power properties across all cases considered, taking of course into account
the fact (common to all variants) that higher degrees of censoring lead to a
noticeable power loss.

3.4 Comparison with Edgeworth-based Alternatives

Our Monte Carlo experiments reveal that the finite-sample performance of
the Information Matrix test is rather poor, even in cases that can be rea-
sonably considered good for asymptotics: results confirm the presence of a
marked size bias and show a power loss due to censoring. In view of previous
related results, such as those cited in section 1, this is hardly surprising. The
only advantages IM tests seem to offer in this context are twofold: first, they
are derived from a very general principle, which makes them easy to gener-
alise to arbitrary censoring schemes; moreover, they are rather inexpensive to
implement in software, which makes them suitable for numerically intensive
procedures such as bootstrapping critical values to control for size.

The literature provides a parametric alternative to conditional moments
tests for normality in bivariate limited dependent variable models. These are
LM tests in which the distribution of the error terms is modelled via a bivari-
ate truncated (type AA) Edgeworth expansion, such as the one proposed first
by Murphy (2007) for the bivariate probit model and then by Montes-Rojas
(2011) for the the Heckman selection model (building on earlier work by Lee
(1984)). These tests, however, are not only more complex to compute; as
Smith (1985) points out,

the Type AA curve is not a proper p.d.f. and may yield negative
values; . . . [it] is used as an artefact to model locally non-normal
behaviour of the errors and thus to generate test statistics with
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power against such local alternatives. Attempts to use the type
AA curve to model non-normal density functions in practice have
not been satisfactory . . .

and a similar point was also raised by Mardia (1970a). Proponents of EE
tests argue that this point is likely to be moot in a setting, such as the score
test, in which only local properties of the approximate density are used, but
the relevance of the problem clearly has to be established on a case-by-case
basis.

However, since conditional moment tests also suffer from severe size dis-
tortions, the Edgeworth based tests may have a relatively better finite-sample
performance. To the best of our knowledge, no comprehensive study on the
comparison of these tests with conditional moments alternatives has been
proposed.

The Montecarlo experiment run by Murphy (2007) is not directly com-
parable to ours because the reported critical values are bootstrapped. We
are, however, able to run a Monte Carlo analysis on the same setup consid-
ered in Montes-Rojas (2011) (see end of table 12).6 It would seem that the
Edgeworth based test has in fact a more contained size bias in very small
samples, while the are no major differences between the two alternatives for
power against leptokurtosis (see table 13).

Another comparison we can draw between our IM test statistics and the
Edgeworth-based ones is based on the famous dataset Mroz (1987) on fe-
male labour force participation; the results from the application on the Mroz
dataset (see Montes-Rojas (2011) for details) displayed in table 14 are con-
troversial. The IM variant that appears to deliver the best performance in
terms of empirical size accepts the null hypothesis of bivariate normality in
the wage equation while the Edgeworth based test’s p-value is always zero,
which is not entirely easy to reconcile with the idea that IM tests are more
prone to mistakenly reject the null if true, while power properties are com-
parable.

On this basis, the comparison is ambiguous and inconclusive. On the one
hand, the complexity of computation and possible problems with values of
the density function may divert from the use of these tests. On the other,
such costs may be justified by a much better finite sample performace. The
possible superiority of Edgeworth-based tests with respect to their IM coun-
terparts has probably to be assessed by means of a comprehensive dedicated
simulation experiment, which we leave for future research.

6In Tables 12 and 13, the values for the Edgeworth-based test are not computed by
simulation, but simply copied from Montes-Rojas (2011) for ease of comparison. This is
also the reason why the left bottom panel in Table 13 is empty.
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4 Final Remarks

Approximating the finite-sample distribution of the IM test statistic by its
asymptotic distribution can lead to very misleading results in both the bi-
variate probit and Heckman selection model: its size is severely biased even
in samples that common practice would consider as perfectly adequate for
asymptotics. This is especially true when the correlation coefficient is far
from zero.

Power properties of the test statistic seem to be good (although some-
what unspectacular) against skewed alternatives, but rather dismal against
leptokurtosis in the bivariate probit case. However, the latter result is, as
shown by previous related literature, a necessary consequence of the par-
ticular censoring scheme we adopted and the possibility itself of testing for
leptokurtosis in binary models appears to be in doubt.

A somehow related point can be made for the Heckman selection model:
the greater the amount of information lost to censoring, the worse the finite-
sample performance of the test statistic seems to be, either in terms of size
bias and of power loss.

In conclusion: the IM test, in the form proposed by Smith (1985), does
not provide a reliable tool to detect non-normality in bivariate limited depen-
dent variable models unless in very large samples: the null is over-rejected
when true and often accepted when false (especially for symmetric alterna-
tives). However, if one considers variants based on a limited set of moment
conditions, there may be cases where reasonable finite-sample properties and
a rather simple computation may justify the choice of this test.

References

Bera, A. K., C. M. Jarque, and L.-F. Lee (1984): “Testing the Nor-
mality Assumption in Limited Dependent Variable Models,” International
Economic Review, 25(3), 563–78.

Bowman, K. O., and L. R. Shenton (1975): “Measures of multivariate
skewness and kurtosis with applications,” Biometrika, 62(2), 243–250.

Chesher, A. (1983): “The Information Matrix Test : Simplified Calculation
via a Score Test Interpretation,” Economics Letters, 13(1), 45–48.

Chesher, A., and M. Irish (1987): “Residual Analysis in the Grouped
and Censored Normal Linear Model,” Journal of Econometrics, 34, 33–61.

14



Chesher, A., and R. Spady (1991): “Asymptotic Expansions of the In-
formation Matrix Test Statistic,” Econometrica, 59(3), 787–815.

Cox, D. R., and N. J. H. Small (1978): “Testing multivariate normality,”
Biometrika, 65(2), 263–272.

Cox, D. R., and N. Wermuth (1994): “Tests of linearity, multivariate
normality and the adequacy of linear scores,” Applied Statistics, 43, 347–
355.

Davidson, R., and J. G. MacKinnon (1992): “A New Form of the In-
formation Matrix Test,” Econometrica, 60(1), 145–57.

Davidson, R., and J. G. MacKinnon (1993): Estimation and Inference
in Econometrics. Oxford University Press.

Dhaene, G., and D. Hoorelbeke (2004): “The Information Matrix Test
with Bootstrap-Based Covariance Matrix Estimator,” Economics Letters,
84, 341–347.

Doornik, J. A., and H. Hansen (2008): “An Omnibus Test for Univariate
and Multivariate Normality,” Oxford Bulletin of Economics and Statistics,
70(s1), 927–939.

Gao, C., and K. Lahiri (2000): “Further consequences of viewing LIML
as an iterated Aitken estimator,” Journal of Econometrics, 98(2), 187–202.

Gourieroux, C., A. Monfort, E. Renault, and A. Trognon
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Table 3: Empirical Size, Bivariate Probit Model

All Moment Conditions, df=9
90% 95% 99%

HHH
HHHn

ρ
0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 46.98 56.32 87.31 38.14 47.91 82.83 24.11 33.17 72.67
4096 25.73 29.71 59.13 17.41 21.37 51.65 7.77 10.36 38.65
16384 14.72 17.18 31.83 8.62 10.61 24.00 2.65 4.02 13.57

Third Moment Conditions, df=4
90% 95% 99%

HHH
HHHn

ρ
0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 28.71 32.54 48.38 21.44 24.95 38.26 11.54 13.85 22.17
4096 16.90 18.79 28.63 10.99 12.51 20.93 4.32 5.23 10.62
16384 12.29 13.51 17.05 6.94 7.57 11.10 2.02 2.40 4.10

Fourth Moment Conditions, df=1
90% 95% 99%

HH
HHHHn

ρ
0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 11.85 16.47 30.12 6.07 10.78 22.18 1.44 4.09 11.70
4096 10.40 13.03 19.14 5.34 7.32 12.78 1.01 2.41 6.02
16384 9.72 11.73 13.10 4.89 6.41 7.96 1.03 1.49 3.06

Explanatory variables for eq. 1: constant and x1; explanatory variables for eq. 2: constant
and x2; x1 and x2 are independent standard normal r. v. s. Parameters values are βjr = 1
for j = 0, 1 and r = 1, 2. Monte Carlo results are based on 10000 replications.
For precise details on the costruction of the tests see 3.1
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Table 4: Empirical Size, Heckman Selection Model, Censored Observations
10%

All Moment Conditions, df=15
90% 95% 99%

H
HHH

HHn
ρ

0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 52.45 59.78 88.02 42.39 50.95 83.71 26.51 35.70 73.74
4096 28.10 32.59 58.74 19.77 24.27 50.51 9.27 12.22 35.62
16384 16.96 18.17 32.62 10.35 11.44 24.16 3.22 4.27 12.65

Third Moment Conditions, df=7
90% 95% 99%

HHH
HHHn

ρ
0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 20.72 27.59 53.37 13.04 18.45 44.28 4.65 8.13 28.90
4096 13.68 17.17 31.94 7.68 10.47 23.48 2.21 3.56 12.38
16384 10.87 12.37 18.94 5.71 6.88 11.89 1.25 1.94 4.59

Fourth Moment Conditions, df=3
90% 95% 99%

HHH
HHHn

ρ
0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 18.84 28.03 48.66 12.30 20.54 40.60 4.92 11.08 28.30
4096 12.62 18.74 29.38 7.53 12.55 22.79 2.24 5.19 13.38
16384 10.90 13.62 19.47 5.74 7.91 13.22 1.43 2.66 6.07

Third and Fourth Moment Conditions, df=9
90% 95% 99%

HH
HHHHn

ρ
0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 33.92 43.10 73.48 25.39 33.97 66.71 12.90 20.16 53.32
4096 18.65 25.13 44.50 11.86 17.32 36.43 4.55 8.00 23.61
16384 12.92 15.45 25.75 7.43 9.23 17.85 1.99 3.18 8.59

Selected Moment Conditions, df=2
90% 95% 99%

HH
HHHHn

ρ
0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 16.04 22.22 40.53 9.83 15.18 33.96 3.69 7.19 23.56
4096 11.91 16.38 25.13 6.54 10.20 18.91 1.90 3.74 11.21
16384 10.44 12.31 17.16 5.62 7.59 11.54 1.35 2.42 5.21

Explanatory variables for the main eq.: constant and x; explanatory variables for the se-
lection eq. : constant and w; x and w are independent standard normal r. v. s. Parameters
values are βr = 1 for j = 0, 1, γ0 =

√
2Φ−1(p), where p = 0.9 is the percentage of uncen-

sored observations, and γ1 = 1. Monte Carlo results are based on 10000 replications.
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Table 5: Empirical Size, Heckman Selection Model, Censored Onservations
50%

All Moment Conditions, df=15
90% 95% 99%

H
HHH

HHn
ρ

0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 59.48 60.21 75.53 50.18 51.67 68.70 34.15 35.09 56.64
4096 30.96 31.50 42.29 22.74 22.69 32.74 11.09 11.07 19.74
16384 18.38 16.90 22.12 11.60 10.63 14.42 4.29 3.44 5.76

Third Moment Conditions, df=7
90% 95% 99%

HHH
HHHn

ρ
0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 22.46 25.18 44.46 14.95 16.63 35.00 5.60 6.63 21.38
4096 15.00 15.65 24.25 8.63 9.04 16.80 2.41 2.91 7.50
16384 11.49 11.75 14.89 6.37 6.02 8.84 1.48 1.53 2.92

Fourth Moment Conditions, df=3
90% 95% 99%

HHH
HHHn

ρ
0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 25.53 28.10 41.70 18.61 21.02 34.29 9.61 11.61 23.33
4096 15.99 18.32 24.95 10.15 11.87 18.23 3.73 5.08 9.80
16384 12.18 12.93 16.26 6.72 7.08 10.51 2.04 2.44 4.29

Third and Fourth Moment Conditions, df=9
90% 95% 99%

HH
HHHHn

ρ
0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 40.45 42.85 60.66 31.73 33.69 51.99 18.56 19.81 38.52
4096 22.01 24.02 34.00 14.72 16.47 26.27 6.31 7.12 14.39
16384 13.85 14.77 19.49 8.27 8.68 12.74 2.52 2.92 5.00

Selected Moment Conditions, df=2
90% 95% 99%

HH
HHHHn

ρ
0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 20.86 23.65 31.99 14.44 17.40 25.35 6.82 9.39 16.30
4096 13.86 16.05 19.35 8.25 10.37 13.44 2.84 4.38 6.73
16384 11.24 12.19 14.32 5.94 6.78 8.71 1.74 2.17 3.43

p = 0.50
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Table 6: Empirical Size, Heckman Selection Model, Censored Observations
75%

All Moment Conditions, df=15
90% 95% 99%

H
HHH

HHn
ρ

0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 75.23 73.46 83.96 67.78 65.93 78.56 52.44 50.82 66.80
4096 41.00 40.09 51.91 31.53 30.83 42.47 18.05 17.23 27.54
16384 21.01 21.20 28.76 13.70 13.56 20.78 5.56 5.32 10.02

Third Moment Conditions, df=7
90% 95% 99%

HHH
HHHn

ρ
0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 30.00 30.62 49.42 20.45 21.44 39.72 9.10 9.57 24.66
4096 17.19 17.33 26.68 10.04 10.51 18.53 3.39 3.46 8.68
16384 12.71 12.28 16.95 6.97 6.76 10.61 1.77 1.83 3.72

Fourth Moment Conditions, df=3
90% 95% 99%

HHH
HHHn

ρ
0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 32.87 33.11 47.73 25.52 25.88 35.19 15.25 15.62 23.80
4096 18.84 19.35 25.42 12.91 13.32 18.95 5.81 5.95 10.16
16384 12.51 13.36 16.82 7.82 7.70 11.12 2.65 2.59 4.40

Third and Fourth Moment Conditions, df=9
90% 95% 99%

HH
HHHHn

ρ
0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 55.26 54.95 67.45 46.36 45.79 59.74 31.84 31.25 45.91
4096 28.73 29.85 38.71 20.55 21.51 29.78 10.26 10.83 17.28
16384 17.02 16.72 22.07 10.42 10.52 15.32 3.74 3.75 6.56

Selected Moment Conditions, df=2
90% 95% 99%

HH
HHHHn

ρ
0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 24.77 27.77 33.33 18.26 20.94 26.18 9.64 12.01 17.01
4096 15.42 16.87 20.36 10.01 11.21 14.40 4.24 4.77 7.37
16384 11.68 12.46 14.56 6.29 7.19 8.91 2.00 2.21 3.23

p = 0.25
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Table 7: Empirical Power, Bivariate t(6) Distribution, Bivariate Probit Model

All Moment Conditions, df=15
90% 95% 99%

H
HHH

HHn
ρ

0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 38.16 48.06 86.01 28.74 38.68 80.41 15.45 23.92 67.13
4096 36.51 38.28 67.58 22.79 26.39 57.11 7.46 10.22 38.29
16384 97.23 96.74 98.60 94.14 92.85 96.41 78.65 75.92 85.77

Third Moment Conditions, df=7
90% 95% 99%

H
HHH

HHn
ρ

0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 20.53 24.16 44.43 12.92 16.30 33.84 5.29 7.32 18.41
4096 25.41 21.38 26.51 13.37 11.00 16.74 2.92 2.36 6.15
16384 85.73 75.59 50.64 75.32 60.76 34.93 45.98 29.33 12.07

Fourth Moment Conditions, df=3
90% 95% 99%

HHH
HHHn

ρ
0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 13.02 15.40 27.82 6.93 7.98 18.76 1.51 2.22 8.37
4096 10.66 23.80 20.17 5.22 12.90 10.75 0.88 2.32 3.28
16384 10.23 67.47 45.88 5.23 52.00 28.63 0.95 22.51 7.48
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Table 8: Empirical Power, Bivariate χ2
(1) Distribution, Bivariate Probit

Model

All Moment Conditions, df=15
90% 95% 99%

HHH
HHHn

ρ
0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 100 100 100 100 100 100 100 100 100
4096 100 100 100 100 100 100 100 100 100
16384 100 100 100 100 100 100 100 100 100

Third Moment Conditions, df=7
90% 95% 99%

HHH
HHHn

ρ
0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 100 100 99.98 100 100 99.92 100 100 99.74
4096 100 100 100 100 100 100 100 100 100
16384 100 100 100 100 100 100 100 100 100

Fourth Moment Conditions, df=3
90% 95% 99%

HH
HHHHn

ρ
0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 16.37 44.66 35.89 8.82 28.40 22.78 2.36 7.74 7.51
4096 12.11 90.83 74.71 6.17 80.98 58.67 1.26 50.77 26.66
16384 10.28 100 99.88 5.26 99.99 98.62 1.04 99.58 87.61
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Table 9: Empirical Power, Bivariate t(6) Distribution, Heckman Selection
Model, Censored Observations 10%

All Moment Conditions, df=15
90% 95% 99%

HH
HHHHn

ρ
0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 92.16 91.42 97.00 86.24 86.06 94.79 69.44 69.07 87.85
4096 98.63 99.75 99.80 97.27 99.41 99.53 92.01 97.17 97.68
16384 99.59 100 100 99.14 100 100 97.66 100 100

Third Moment Conditions, df=7
90% 95% 99%

H
HHH

HHn
ρ

0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 43.17 75.03 80.66 33.28 64.99 72.14 18.27 43.34 52.62
4096 29.77 99.42 99.71 20.49 98.60 99.29 8.87 94.70 96.06
16384 18.65 100 100 11.14 100 100 3.83 100 100

Fourth Moment Conditions, df=3
90% 95% 99%

H
HHH

HHn
ρ

0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 96.84 95.80 94.45 91.73 89.94 87.57 71.59 67.79 67.91
4096 99.49 99.98 99.16 97.99 99.79 97.68 93.52 97.72 91.83
16384 99.80 100 99.99 99.27 100 99.91 97.13 99.99 99.19

Third and Fourth Moment Conditions, df=9
90% 95% 99%

HHH
HHHn

ρ
0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 92.01 91.02 93.43 85.24 83.51 88.97 63.67 72.39 75.53
4096 99.39 99.90 99.91 98.36 99.77 99.63 94.03 98.74 97.86
16384 99.73 100 100 99.52 100 100 98.66 100 100

Selected Moment Conditions, df=2
90% 95% 99%

HHH
HHHn

ρ
0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 98.84 98.01 96.12 94.39 92.54 90.08 74.79 71.83 68.80
4096 99.93 99.97 99.77 98.60 99.09 97.60 92.12 93.13 90.04
16384 100 100 99.99 99.29 99.92 98.76 96.04 98.87 94.86
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Table 10: Empirical Power, Bivariate t(6) Distribution, Heckman Selection
Model, Censored Observations 50%

All Moment Conditions, df=15
90% 95% 99%

HH
HHHHn

ρ
0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 85.13 88.02 95.15 77.66 81.99 92.21 59.61 66.55 84.18
4096 96.98 99.21 99.95 94.04 98.27 99.83 82.73 93.86 99.35
16384 99.29 100 100 98.78 100 100 96.28 100 100

Third Moment Conditions, df=7
90% 95% 99%

H
HHH

HHn
ρ

0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 43.53 78.35 90.08 33.48 69.36 84.03 18.21 48.58 68.23
4096 27.29 99.31 99.99 18.54 98.33 99.95 7.43 93.64 99.25
16384 18.07 100 100 10.64 100 100 3.30 100 100

Fourth Moment Conditions, df=3
90% 95% 99%

H
HHH

HHn
ρ

0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 87.85 88.10 87.38 76.95 77.58 77.85 48.54 50.56 54.10
4096 99.24 98.98 99.85 97.35 96.13 95.91 89.63 85.77 84.86
16384 99.62 99.89 99.80 98.93 98.87 98.41 96.28 93.96 93.37

Third and Fourth Moment Conditions, df=9
90% 95% 99%

HHH
HHHn

ρ
0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 80.37 83.86 92.26 69.30 75.61 87.79 45.74 55.81 75.40
4096 98.16 99.65 99.98 96.00 99.16 99.93 87.26 95.99 99.64
16384 99.67 100 100 99.31 100 100 97.80 100 100

Selected Moment Conditions, df=2
90% 95% 99%

HHH
HHHn

ρ
0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 92.27 91.68 89.10 82.38 81.66 78.51 52.60 52.45 50.64
4096 99.80 99.94 99.88 97.68 98.43 98.12 88.36 88.53 87.88
16384 100 100 100 98.92 99.78 99.68 94.91 92.25 95.06
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Table 11: Empirical Power, Bivariate t(6) Distribution, Heckman Selection
Model, Censored Observations 75%

All Moment Conditions, df=15
90% 95% 99%

HH
HHHHn

ρ
0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 84.39 92.18 97.02 77.23 88.01 95.47 61.33 77.14 89.51
4096 91.01 98.91 99.93 83.93 97.81 99.78 64.99 92.37 99.04
16384 98.46 100 100 97.26 100 100 92.57 100 100

Third Moment Conditions, df=7
90% 95% 99%

H
HHH

HHn
ρ

0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 53.63 81.76 90.81 34.40 74.09 85.74 26.20 56.64 73.22
4096 33.84 99.11 99.94 24.27 97.94 99.83 11.63 92.64 98.98
16384 21.07 100 100 13.31 100 100 4.54 100 100

Fourth Moment Conditions, df=3
90% 95% 99%

H
HHH

HHn
ρ

0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 67.89 83.71 84.43 54.23 74.40 75.09 29.59 52.35 54.02
4096 97.59 99.53 99.64 92.99 98.09 97.23 75.85 90.14 86.59
16384 99.51 100 100 98.47 99.90 99.66 94.41 99.04 95.77

Third and Fourth Moment Conditions, df=9
90% 95% 99%

HHH
HHHn

ρ
0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 71.66 86.38 94.03 61.67 79.98 90.67 41.85 65.58 81.53
4096 93.08 99.42 99.95 86.48 98.49 99.83 65.33 93.79 99.32
16384 99.20 100 100 98.25 100 100 94.81 100 100

Selected Moment Conditions, df=2
90% 95% 99%

HHH
HHHn

ρ
0.00 0.50 0.90 0.00 0.50 0.90 0.00 0.50 0.90

1024 73.36 82.96 83.32 58.89 71.20 72.71 30.78 44.94 48.06
4096 98.91 98.84 99.92 94.89 98.31 99.00 77.80 88.66 88.61
16384 99.91 100 100 98.42 100 99.99 92.74 98.72 96.44
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Table 12: Edgeworth-based test vs conditional moment test for the Heckit
model, bivariate normal distribution, empirical size at 90% and 95%

Selected Moment Conditions, df=2
90% 95%

HH
HHHHn

ρ
0.20 0.40 0.60 0.80 0.20 0.40 0.60 0.80

200 56.40 61.85 70.95 73.50 49.43 54.64 64.84 68.44
500 39.43 46.20 56.48 67.01 33.03 39.40 48.44 60.68
1000 31.00 35.70 41.10 53.15 23.70 30.40 34.10 47.45

EE, df= 9
90% 95%

HHH
HHHn

ρ
0.20 0.40 0.60 0.80 0.20 0.40 0.60 0.80

200 30.60 36.60 47.50 54.90 24.20 36.60 40.50 44.90
500 24.70 30.20 39.50 43.20 15.00 25.10 33.20 37.00
1000 20.30 24.90 30.20 37.90 13.50 22.00 29.70 35.40

Main eq.: y∗i = 1 + 0.5x1 − 0.5x2 + ε where x1, x2 ∼ N(0, 3) and εi ∼ N(0; 4). Selection
eq.: d∗i = 1−w1 +x2 + v where wi ∼ U [−3; 3] and v ∼ N(0, 1); Censored observations are
about 50%. Monte Carlo results are based on 1000 replications.
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Table 13: Edgeworth-based test vs conditional moment test for the Heckit
model, bivariate t3 distribution, empirical size at 90% and 95%

Selected Moment Conditions, df=2
90% 95%

H
HHH

HHn
ρ

0.20 0.40 0.60 0.80 0.20 0.40 0.60 0.80

200 91.98 89.78 88.95 89.75. 87.24 84.09 84.75 85.73
500 99.30 99.20 98.38 98.03 97.90 97.20 96.35 94.81
1000 100 100 100 99.70 99.60 99.60 100 99.70

EE, df= 9
90% 95%

HH
HHHHn

ρ
0.20 0.40 0.60 0.80 0.20 0.40 0.60 0.80

200 90.60 97.70 99.90 100
500 96.70 98.20 99.80 100
1000 100 100 100 100

The values for the Edgeworth-based test are simply copied from Montes-Rojas (2011). In
his paper, the results at the 90% level for the case here considered are not reported, so
the left bottom panel is left blank.

Table 14: Empirical Application: Test Statistics

Wage Equation Hours Equation
All χ2

93 = 209.32 p-val.=0.000 χ2
106 = 270.96 p-val.=0.000

Third χ2
21 = 74.02 p-val.=0.000 χ2

23 = 87.10 p-val.=0.000
Fourth χ2

3 = 34.03 p-val.=0.000 χ2
3 = 25.79 p-val.=0.000

Third & Fourth χ2
25 = 97.65 p-val.=0.000 χ2

23 = 76.18 p-val.=0.000
Cherry-Picking χ2

2 = 7.80 p-val.=0.020 χ2
2 = 9.33 p-val.=0.009

Edgw.-based χ2
9 = 383.3 p-val.=0.000 χ2

9 = 67.1 p-val.= 0.000
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A Information Matrix Tests in Bivariate Lim-

ited Dependent Variable Models

Consider the latent variable model7:

y∗1 = x′1β1 + v1 (11)

y∗2 = x′2β2 + v2 (12)

where v1 and v2 have the following bivariate normal distribution:(
v1

v2

)
∼ N

[(
0
0

)
;

(
ω2

1 ω12

ω12 ω2
2

)]
(13)

where x1 and x2 are vectors of exogenous variables and β1, β2 are the pa-
rameter vectors. Since v1 can be written as v1 = ρv2 + u, where ρ = ω12/ω

2
2,

the model for y∗1|y∗2 is:

y∗1 = x′1β1 + ρv2 + u (14)

y∗2 = x′2β2 + v2 (15)

with u|x1, v2 ∼ N(0, ω2
11.2) where ω2

11.2 = ω2
1 − ω12/ω

2
2.

The log-likelihood for the latent variables `∗ can be split into conditional
`∗12 and marginal `∗2 log-likelihoods so that:

`∗(y∗1, y
∗
2; θ) = `∗12(y∗1|y∗2; θ) + `∗2(y∗2; θ2) (16)

where θ = (θ′1, θ
′
2)′, θ1 = (β′1, ρ) and θ2 = (β′2, ω

2
2). For an iid sample (yi, xi),

the observational rules for y∗1 and y∗2 are assumed to be independent from the
parameters.

The following are the key results on the likelihood function (Gourieroux,
Monfort, Renault, and Trognon, 1984) crucial to the presentation of the test
statistic for a model subject to an arbitrary censoring scheme. The score and
Hessian matrix elements for observables can be derived quite easily from the
score and Hessian matrix for the unobservables as follows8:

∂`

∂θ
= E

[
∂`∗

∂θ

∣∣∣∣∣y
]

(17)

7Smith’s original paper is more general than what presented here, as the simultaneous-
equations case is considered; however, this is not necessary here so we may skip the
resulting complications.

8A rigorous proof is given in Gourieroux, Monfort, Renault, and Trognon (1984).
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and the Hessian matrix as:

∂2`

∂θ∂θ′
= E

[
∂2`∗

∂θ∂θ′

∣∣∣∣∣y
]

+ V

[
∂`∗

∂θ

∣∣∣∣∣y
]

(18)

These quantities can be shown to be functions of the Generalised Error Prod-
uct of Order (r,s) GEP(r, s), introduced by Smith, defined as:

εrξs = E(εrξs|y)− E(εrξs) (19)

where ε = u/ω11.2 and ξ = v2/ω2. E(εrξs|y) is the expectation conditional on
the censoring scheme, that is the relevant region of integration. In (Smith,
1985, section 1) some examples are given. The sample counterpart of the
GEP(r, s) is the Generalised Residual Product of Order (r,s), GRP(r, s),
which is the GEP(r, s) evaluated at θ̂ML the ML estimator of model (14)-(15).

The Information Matrix test statistic is based on the moment conditions

Ci = vech

[
∂2`i
∂θ∂θ′

+GiG
′
i

]
.

evaluated at θ = θ̂ML. The contributions to the Hessian matrix and to the
outer product of the gradient are derived using (17) and (18) and are linear
functions of the GRP(r, s), r + s ≤ 4. Expressions for the model (14)-(15)
are given in (Smith, 1985, Appendix 1 and 2), for both unobservables and
observables.

B Rank Analysis

B.1 Rank Analysis for the Bivariate Probit Model

Let us start from the extreme case in which in each equation the only regres-
sor is a constant; then,

−x1iβ1 = ai = ā − x2iβ2 = bi = b̄ Pi = P̄

are also constant across observations with differences depending only on the
observational rule. Therefore the three score elements Gi are also constant
across observations

Gai
i = S̄ ā Gbi

i = S̄ b̄ Gα
i = S̄α

This makes every moment condition Ci a linear combination of the score
elements (compare Tables 1 and 15), which means that all these conditions
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Table 15: Moment Conditions for the Bivariate Probit Model with only two
constant terms as regressors

β1 β2 α

β1 −āS̄ ā − cαsαS̄α c2
αS̄

α −uā,b̄cαS̄α
β2 −b̄S̄ b̄ − cαsαS̄α −ub̄,ācαS̄α
α S̄α(uā,b̄ub̄,ā − tα)

are collinear to the score matrix and, as a consequence, do not contribute to
the rank of M , as defined in Section 2.1.

Let us turn to the opposite extreme case, with non-overlapping sets of
regressors9. It is possible to prove that the last moment condition, Cα,α

i is
always collinear to the rest of the columns of M , even though no suspicious
redundancy is apparent.

Dropping the i index for clarity, consider x1r 6= x2s for every r = 1, ..., k1

and s = 1, ..., k2; then

a =
k1∑
r=1

x1rβ1r b =
k2∑
s=1

x2sβ2s

The generic condition associated with cross-derivatives of β1r and β2s (see
also table (1)), may be written as:

Cβ1r,β2s = c2
αS

αx1rx2s (20)

Now write the moment condition associated with the cross-derivative of β1t

and α as:

Cβ1t,α = −
[
cα

( k1∑
r=1

x1rβ1r

)
x1t − sα

( k2∑
s=1

x2sβ2s

)
x1t

]
cαS

α

By using (20), the previous expression becomes

Cβ1t,α = −c2
αS

α
k1∑
r=1

x1tx1rβ1r + tα

k2∑
s=1

Cβ1t,β2sβ2s (21)

9More formally: we are assuming that the space spanned by the two sets of regressors
have no elements in common. Note that this excludes the presence of constant terms in
both equations.

31



By symmetry, the moment condition associated with the cross-derivative of
β2m and α can be written as

Cβ2m,α = −c2
αS

α
k2∑
s=1

x2mx2sβ2s + tα

k1∑
r=1

Cβ1r,β2mβ1r (22)

Let us now rewrite Cα,α as follows:

Cα,α = Sα[c2
αab+ s2

αab− sαcαa2 − sαcαb2 − tα] =

= c2
αS

α
k1∑
r=1

k2∑
s=1

x1rx2sβ1rβ2s + s2
αS

α
k1∑
r=1

k2∑
s=1

x1rx2sβ1rβ2s+

−sαcαSα
k1∑
r=1

k1∑
t=1

x1rx1tβ1rβ1t − sαcαSα
k2∑
s=1

k2∑
m=1

x2sx2mβ2sβ2m − Sαtα.

Note that

c2
αS

α
k1∑
r=1

k2∑
s=1

x1rx2sβ1rβ2s =
k1∑
r=1

k2∑
s=1

Cβ1rβ2sβ1rβ2s (23)

s2
αS

α
k1∑
r=1

k2∑
s=1

x1rx2sβ1rβ2s = t2α

k1∑
r=1

k2∑
s=1

Cβ1rβ2sβ1rβ2s. (24)

and that by multiplying (21) by β1ttα one gets

−sαcαSα
k1∑
r=1

k1∑
t=1

x1rx1tβ1rβ1t = tα

k1∑
t=1

Cβ1t,αβ1t − t2α
k1∑
t=1

k2∑
s=1

Cβ1t,β2sβ1t, β2s;

(25)
similarly, (22) may be multiplied by β2mtα to obtain

−sαcαSα
k2∑
s=1

k2∑
m=1

x2sx2mβ2sβ2m = tα

k2∑
m=1

Cβ2m,αβ2m−t2α
k1∑
r=1

k2∑
m=1

Cβ1r,β2mβ1r, β2m.

(26)
Finally, after rearranging (23), (24), (25) and (26), we can rewrite Cα,α

as

Cα,α = (1− t2α)
k1∑
r=1

k2∑
s=1

Cβ1r,β2sβ1rβ2s+

tα

k1∑
r=1

Cβ1r,αβ1r + tα

k2∑
s=1

Cβ2s,αβ2s − tαSα,

that is, a linear combination of elements of other columns of Mi.
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Different combinations of constant and duplicated regressors across equa-
tions lead to intermediate cases. We are particularly interested in studying
the case (which often occurs in practice) in which we have the same set of
regressors for both equations including constant terms. Other than the Cα,α

element, we now prove that in this particular case other moment conditions
are always collinear in the OPG regression. Moreover, in this special case an
explicit formula to determine a priori the rank of M can be obtained.

Consider x1 = x2 = x and k1 = k2 = q so (again, the i index is dropped)
x′ = (1, x2, . . . , xq) and

a =
q∑
r=1

xrβ1r b =
q∑
r=1

xrβ2r.

Similarly, Gβj has q elements

[Gβj1 , Gβj2 , . . . , Gβjq ]

for j = 1, 2, such that

Gβ1r = Saxr Gβ2r = Sbxr

for r = 1, ..., q (see also section (2)).
For a start, the three moment conditions associated to the two constant

terms get dropped as

Cβ11,β11 = −
[( q∑

r=1

xrβ1r

)
Sa + sαcαS

α
]

= −
[ q∑
r=1

Gβ1rβ1r + sαcαS
α
]

Cβ21,β21 = −
[( q∑

r=1

xrβ2r

)
Sb + sαcαS

α
]

= −
[ q∑
r=1

Gβ2rβ2r + sαcαS
α
]

Consider now the q2 elements associated with cross derivatives of β1r, β2s

Cβ1r,β2s = c2
αS

αxrxs

with s = 1, ..., q. Since the sets of regressors are the same, the number of
elements dropped due to collinearity will be q2−q(q+1)/2 plus the condition
associated with the cross derivative of the constant terms

Cβ11,β21 = c2
αS

α.

The are also 2q elements, collinear to other comlumns of M , associated with
the cross derivatives of regressors with α since

Cβ1t,α = −
[
cα

( q∑
r=1

xrβ1r

)
− sα

( q∑
r=1

xrβ2r

)]
cαS

αxt =
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−c2
αS

α
q∑
r=1

xtxrβ1r + sαcαS
α

q∑
r=1

xtxrβ2r =

−
q∑
r=1

Cβ1r,β2tβ1t + tα

q∑
r=1

Cβ1r,β2tβ2r

and as well

Cβ2t,α = −
[
cα

( q∑
r=1

xrβ2r

)
− sα

( q∑
r=1

xrβ1r

)]
cαS

αxt =

−
q∑
r=1

Cβ1r,β2tβ2r + tα

q∑
r=1

Cβ1r,β2tβ1r

Finally, as shown earlier in this section, Cα,α is always a linear combination
of other comlumns of M . So, in this setup, the number of degrees of freedom
amounts to

df =
k(k + 1)

2
− 2− q2 +

q(q + 1)

2
− 1− 2q − 1

and since k = 2q + 1 we have

df = 3
(
q(q + 1)

2
− 1

)
.

B.2 Rank Analysis for the Heckman Selection Model

In the the case of the Heckman selection model we are only able to prove
that the upper bound for df is also equal k(k+1)/2−1 since the last moment
condition Cα,α

i is always dropped in the OPG regression as in the bivariate
probit model. This happens when different sets of regressors without constant
terms for the two equations are considered. The lower bound is more difficult
to determine, and will be derived only for a specific setup as an example.

Let us now consider two sets of completely different regressors xis with
s = 1, ...,m and wir with r = 1, ..., h without constant terms. All the moment
conditions that are going to be considered are non-zero only for uncensored
observations, so the di index will be dropped to simplify the notation (see also
table (2)). Cα,α

i can be written as a linear combination of other columns of
matrixM . For this purpose, the following expressions are devloped. Consider
first the generic r-condition Cγr,σ

i also as a function of ui and bi:

Cγr,σ
i =

1

σ
µi
[
sαc

2
αuibi + s2

αcαu
2
i + cαu

2
i − cα

]
wir
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We now multiply Cγr,σ
i by σγr and then sum across the r moment conditions

obtaining

σ
h∑
r=1

γrC
γr,σ
i = µi

[
sαc

2
αuibi + s2

αcαu
2
i + cαu

2
i − cα

] h∑
r=1

γrwir

which gives

σ
h∑
r=1

γrC
γr,σ
i = µi

[
sαc

2
αuib

2
i + c3

αu
2
i bi − cαbi

]
(27)

since
∑h
r=1 γrwir = bi and cαs

2
α + cα = c3

α. We will later need also

t2ασ
h∑
r=1

γrC
γr,σ
i = µi

[
s3
αuib

2
i + s2

αcαu
2
i bi −

s2
α

cα
bi

]
(28)

Similar transformations applied to Cγr,α
i yield

tα
h∑
r=1

γrC
γr,α
i = µi

[
−s2

αcαb
3
i − sαc2

αuib
2
i − s3

αuib
2
i − s2

αcαu
2
i bi +

s2
α

cα
bi

]
(29)

Let us now write Cσ,α
i as a function of ui and bi. We get

σtαC
σ,α
i = µi

[
−2sαui −

s2
α

cα
bi + sαc

2
αu

3
i + s3

αuib
2
i + 2s2

αcαu
2
i bi

]
(30)

and, finally, we need

tαG
α
i = µi

[
s2
α

cα
bi + sαui

]
(31)

Since Cα,α
i , written as a function of ui and bi is

Cα,α
i = µi

[
ai(1− c2

i )
]

=

µi
[
−sαc2

αu
3
i − s2

αcαb
3
i − c3

αu
2
i bi − s3

αuib
2
i − 2s2

αcαu
2
i bi − 2sαc

2
αuib

2
i + cαbi + sαui

]
(32)

it can now be expressed as a linear combination of (27), (28), (29), (30) and
(31)

Cα,α
i = −σ(1− t2α)

h∑
r=1

γrC
γr,σ
i + tα

h∑
r=1

γrC
γr,α
i − σtαCσ,α

i − tαGα
i
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While it makes sense to consider the case of the same sets of regressors
for the rank analysis in the bivariate probit model and therefore to choose
the limiting case of only two constants to study df ’s lower bound, the choice
of the case study for the Heckman selection model needs further discussion.
First of all, it is not possible to consider only two constants since the model
would not be identified. Secondly, it is quite common to see applications with
two at least slightly different sets of regressors. Therefore we believe that the
simplest form of a reasonable setup is one containing a constant term and a
continuous regressor w in the selection equation, and only a constant term
in the main equation. The vector of parameters of the model just described
is (β0, γ0, γ1, σ, α). Six of the fifteen moment conditions are dropped in the
OPG regression. Naturally

Cβ0,β0
i = di

1

σ

[
Gσ
i −

sαcα
σ

Gα
i

]

Cβ0,γ0
i = di

c2
α

σ
Gα
i

are dropped as they are linear combinations of the score elements. Also Cγ0,γ0
i

is a linear combination of Gγ0
i , G

γ1
i , G

α
i . First notice that in this specific setup

bi = γ0 + wiγ1

and
ai = cαγ0 + cαwiγ1 + sαui; ci = sαγ0 + sαwiγ1 + cαui

then write

Cγ0,γ0
i = diµi

[
−c3

αγ0 − c3
αwiγ1 − sαc2

αui
]
− (1− di)µi [γ0 + wiγ1]

Given the following transformations, only for uncensored observations,

−c2
αγ0G

γ0
i = −c3

αγ0µi; −c2
αγ1G

γ1
i = −c3

αwiγ1µi

and
−sαcαGα

i = −µi
[
−c3

αγ0 − c3
αwiγ1 − c2

αsαui
]
,

Cγ0,γ0
i can be written as

Cγ0,γ0
i = −di [cαsαGα

i + γ0G
γ0
i + γ1G

γ1
i ]− (1− di) [γ0G

γ0
i + γ1G

γ1
i ] .

Cγ0,σ
i is also a linear combination of Gα

i and of the moment conditions Cβ0,γ1
i

and Cβ0,α
i . Rearranging algebraically Cγ0,σ

i and Cβ0,α
i we get
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Cγ0,σ
i = Cβ0,α

i − µi
1

σ

[
s2
αcαbi + sαc

2
αui

]
(γ0 + γ1wi). (33)

Applying the following transformations

sαcαγ0

σ
Gα
i =

µi
σ

[
s2
αcαbi + sαc

2
αui

]
γ0

sα
cα
γiC

β0,γ1
i =

µi
σ

[
s2
αcαbi + sαc

2
αui

]
γ1wi

we can rewrite (33) as

Cγ0,σ
i = Cβ0,α

i − sαcαγ0

σ
Gα
i −

sα
cα
γ1C

β0,γ1
i . (34)

The OPG regression also drops

Cγ0,α
i = −µi(cαaici − sα). (35)

Considering

−σ cα
sα
Cβ0,α
i = −µi

(
cαaici +

cα
sα
uici −

c2
α

sα

)
and

σ

sαcα
Cγ0,σ
i = µi

(
cαbiui +

c2
α

sα
u2
i −

1

sα

)
we can rewrite (35) as

Cγ0,α
i = −σ cα

sα
Cβ0,α
i +

σ

sαcα
Cγ0,σ
i (36)

and substituting (34) in (36) we finally get

Cγ0,α
i = −σsα

cα
Cβ0,α
i − γ0G

α
i −

σ

c2
α

γ1C
β0,γ1

Finally the last column to be dropped is Cα,α
i as we discussed earlier. So in

this simple setup the number of moment conditions are k(k + 1)/2 = 15 of
which only 9 are kept for testing.
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