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Abstract

In Riccetti (2010) I find that the use of copulas can be useful in an asset allocation model for choosing the
stock and the bond composition of portfolios (the macro asset allocation) or if the portfolio is composed by one
bond index and some stock indices. Thus, in these cases, easy methods to reconstruct the copula allocation
without estimating the copula, could be important for an asset manager/investor.
In this paper I build a model that considers moments and co-moments of the returns till the fourth power
(respectively the mean of the returns and the mean of the crossed products of the returns raised up to fourth
power) in order to understand whether they can approximate the use of copulas to obtain optimal weights. I
analyse two models: the first reconstructs the copula model’s weights using only moments and co-moments,
while the second models the weights using moments, co-moments and the mean-variance weights.
I also use the moments and co-moments of the excess returns of the stock indices over the bond index return
as independent variables.
The in-sample and the out-of-sample analyses show that it is possible to have an approximation of the weights
obtained by a copula model using moments and co-moments of returns. Even if these models are different
for each asset, changeable in time, with explanatory variables and signs that are not predictable and with
accuracy that is uncertain, both models appear useful: the first appears to be easier (because the weights
of the Markowitz model are not needed), while the second is more accurate in-sample and out-of-sample.
Moreover the regression with the excess returns of the stock indices over the less risky index seems to be
useful: it is a bit less accurate, but it needs to calculate less combinations of moments and co-moments.
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From Moments, Co-Moments and Mean-Variance Weights to Copula Portfolio Allocation

1 Introduction

In Riccetti (2010) I find that the use of copulas can be useful in an asset allocation model for

choosing the stock and the bond composition of portfolios (the macro asset allocation) or if

the portfolio is composed by one bond index and some stock indices. Thus, in these cases,

easy methods to reconstruct the copula allocation without estimating the copula, could be

important for an asset manager/investor.

High moments seem also useful in portfolio choice, so I analyse whether the use of high

moments can produce allocations similar to those produced by the copula model.

In this paper I build a model that considers moments and co-moments of the returns till the

fourth power (respectively the mean of the returns and the mean of the crossed products of

the returns raised up to fourth power) in order to understand whether they can approximate

the use of copulas to obtain optimal weights. I analyse two models: the first reconstructs

the copula model’s weights using only moments and co-moments, while the second models

the weights using moments, co-moments and the mean-variance weights. In the first case I

run an OLS regression on the weights obtained with the copula models, using as independent

variables the non central moments and co-moments of the returns. In the second case, I repeat

the OLS adding the mean-variance weights as independent variable.

The paper proceeds as follows. Section 2 reports the literature review and the analysis

done in Riccetti (2010) that is the base for the present analysis; section 3 contains the two

models used to reconstruct the copula weights; section 4, 5 and 6 present the in-sample results

and section 7 reports the out-of-sample results; section 8 concludes.

2 Literature review and data

In this section I briefly review some papers about the use, in the asset allocation context, of

return moments of higher order than the variance and of copulas. Then I conclude with a

review of the book of Riccetti (2010), that is the base for the following analysis.

2.1 Asset allocation with high order moments

The Markowitz model is optimal if investors only care about mean and variance or if returns

are distributed as a Normal.

In fact financial returns are not Normally distributed as observed since 1963 with two papers

of Mandelbrot and Fama, and it is especially true in cases like the Emerging Markets (see,

for example, Bekaert et al. (1998)).

On the other side, a lot of authors as Arditti (1967), Kraus and Litzenberger (1976), Simkowitz

and Beedles (1978) found, for example, that people prefer high values for skewness.

Scott and Horvath (1980) analytically prove, in their study “On the direction of preference for
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moments of higher order than the variance”, that people prefer returns with higher skewness

and lower kurtosis. This proof can also be repeated for higher moments, and investors always

prefer higher values for odd moments and lower values for even moments.

Authors as Bekaert et al. (1998), Harvey and Siddique (2000), Dittmar (2002) or Cvitanic

et al. (2008) prove that higher moments improve the allocation if returns are distributed in a

very different way from the Normal. Indeed, they find that “ignoring higher moments can lead

to significant overinvestment in risky securities, especially when volatility is high” (Cvitanic

et al. (2008)).

Jondeau and Rockinger (2006b) try to improve the mean-variance allocation using a skewed-

t distribution for “innovations”, allowing third and fourth moments to catch skewness and

kurtosis features. They find that the opportunity cost of using a mean-variance allocation,

compared to a four-moment optimisation, can be high under large departures from Normality.

Ioannidis and Williams (Williams and Ioannidis (2002) and Ioannidis and Williams (2007))

highlight that also the multivariate co-dependency between assets is often assumed to be

conditional multivariate Normal, while there is non-linearity between risky assets returns.

Therefore, they use conditional higher co-moments1 in the asset allocation models, in order

to capture the tail dependency and improve the diversification of the portfolio.

2.2 Use of copulas

Every joint distribution function contains a description of the marginal behaviour of the indi-

vidual factors and a description of their dependence structure. Copulas isolate the description

of the dependence and, describing it on a quantile scale, help to understand dependence at a

deeper level than correlation. In this way they can describe the extreme outcomes and allow

the building of a multivariate model that combines more developed marginal models with the

variety of dependence models. Sklar (1959) shows that all multivariate distribution fuctions

contain copulas and that copulas may be used in conjunction with univariate distribution

functions to construct multivariate distribution functions. For an introduction on copulas see

Embrechts et al. (2005) or Joe (1997).

Over recent years, many authors have applied the use of copulas to finance research. Much

literature exists on the use of copulas for the computation of VaR in risk management and

very advanced papers have been published in this field. However, there are also papers that

use copulas to model stock market returns without a direct application to risk management,

one of which is Jondeau and Rockinger (2006a). In this paper the authors first estimate the

multivariate distributions of returns using copulas with time-varying parameters. This model

is used by Jondeau and Rockinger to investigate the interactions between four major stock

1There are some papers on asset pricing, as Chung et al. (2006), that use co-moments till a very high order
and not only co-skewness or co-kurtosis. A book that analyses moments and co-moments both in the field of
asset pricing and in the field of asset allocation is edited by Jurczenko and Maillet (2006).
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indices (S&P500, FTSE100, DAX, CAC) and they find that the Student-t copula is more

accurate than the Gaussian one, consistent with the idea that dependence is stronger in the

tails (high joint gains and high joint losses for indices).

In section 2.3 an asset allocation done with a copula model is reviewed in detail.

2.3 Patton (2004)

Patton (2004) does not only analyse multivariate returns series with copulas, but also builds

an asset allocation on a portfolio composed by two stock indices and a risk free asset. He tries

some models with different copulas and he finds that the best model for the investor’s utility

uses the skewed-t marginal distributions and the rotated Gumbel copula and this model (that

I will call “Gumbel”) gains more utility on the others if the investor is very risk adverse.

After the asset allocation, Patton makes an analysis similar to the one that I am going to

implement, trying to determine the causes of the differences in portfolio weights between the

mean-variance model and the copula model. He uses nine parameters for the regression on

the difference between the two weights: the two expected excess returns (of the stock indices

over the risk-free return), the two volatilities, the two skewness parameters, the two kurtosis

parameters and the copula parameter. This regression helps to highlight the causes of the dif-

ferences, even if it is probably misspecified (because optimal weights are nonlinear function of

the parameters of the joint density, so this is a first-order approximation of the true function

relating parameters to weights) and suffer of error-in-variables bias (because all variables are

estimated).

Patton finds that “Normal” portfolio weights react more strongly to changes in forecasted re-

turn and volatility. On the other side, the “Gumbel” portfolio reacts to the degrees-of-freedom

parameter. Moreover, the dependence parameter is also important: greater dependence leads

to more conservative weights in “Gumbel” portfolio, while the “Normal” portfolio responds

in the opposite way, being more aggressive.

2.4 Riccetti (2010)

In Riccetti (2010) I try to develope the analysis published by Patton (2004). I use models

with copulas (Normal, Student-t, Clayton, Gumbel, Frank, mix copulas and Canonical Vine

copulas) in an allocation on two, three and four assets, analyzing various combinations of

indices to test whether the use of copulas improves the investor’s utility and revenue.

The copula model is so structured:

• means are unconditional;

• variances are explained by a GARCH(1,1), using error terms extracted from a Student-t

distribution;
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• the joint behaviour of the residuals of the indices is modelled by a copula.

I assume that the investor does not face any transaction costs, so there are no costs for

rebalancing or for short-selling. Moreover, I take savings decisions exogenously specified and

I ignore intermediate consumption: the investor/asset manager has to invest an amount of

money at the beginning of the period (that, for simplicity, I take as equal to 1) and does not

receive or disinvest anything until the end. As remarked by Ang and Bekaert (2002), the use

of a CRRA utility does not address market equilibrium, so the investor can not necessarily

be the representative agent.

Differently to Patton, who uses monthly returns, in my analysis I use daily returns, but I aim

to obtain weekly, monthly and yearly allocations. In this way, I cover quite a long time period

without rebalancing (and this reduces the problem of not considering rebalancing costs), but

I can use more information compared to few monthly returns2. However, to do this for a

weekly allocation, for example, I need to simulate a path of 5 returns (I assume that a week

has 5 working days).

The daily time series are obtained from Datastream, for the period that goes from January

1999 to September 2008, but the model is chosen on data from January 1999 to September

2005, because the last three years are left for the out-of-sample analysis.

The steps to build the optimal portfolio are:

1. estimate with the Maximum Likelihood the parameters of the above model;

2. simulate 5000 times the path of assets returns on the investment horizon (for example

5 days for the weekly allocation);

3. choose the optimal weights in order to maximize the investor’s expected utility, using

the CRRA utility function:

U(γ) = (1− γ)−1(P0Rport)
1−γ (1)

with Rport that is the portfolio capitalization factor and the initial investment P0=1.

The values of γ used are: 2, 5, 10 and 15.

From those analyses I conclude that the best copula model for a portfolio composed by 2

or 3 assets, is the one that uses the Student-t copula, but it is only useful for deciding the

macro-asset allocation (for choosing the stock and the bond composition of the portfolios)

or if the portfolio is composed by one bond index and some stock indices, especially when

the investor is very risk averse. In the other cases the copula model does not beat mean-

variance of naive allocations. Here I report the result of the copula model compared to the

mean-variance model and to an allocation equally divided among the assets, in the case of

a portfolio composed by three indices: Italian Mibtel, U.S. Dow Jones and an Italian Long

2Similar to Morana (2009) who compute monthly realized betas from daily data
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Term Bond index. The allocation is rebalanced weekly for three years (156 rebalancing every

5 working days). The results are in table 1 and they show that the copula model obtains the

best utility (also driven by the highest final amount) for all levels of risk aversion except γ=2

(when the equally divided portfolio is the best).

Table 1: Utility and final amount with weekly allocation for a portfolio composed by Mibtel,

Dow Jones and an Italian Long Term Bond index.

Utility Portfolio γ 2 γ 5 γ 10 γ 15

Copula -1,0023 -0,2511 -0,1119 -0,0721

Mean-Variance -1,0038 -0,2517 -0,1122 -0,0723

Equal Division -1,0009 -0,2512 -0,1126 -0,0734

Final Amount Portfolio γ 2 γ 5 γ 10 γ 15

Copula 0,8425 0,9564 0,9674 0,9677

Mean-Variance 0,6750 0,8781 0,9274 0,9411

Equal Division 0,8747

For the analyses of this paper I will use the weights obtained for this portfolio allocation,

so I have 156 weights for the three years of out-of-sample allocation. With this portfolio

composed by 3 assets, I can study in the same simulation the way to reconstruct the series

of the weights of two assets (the third series could be calculated as 1 less the other two

weights): Mibtel and Dow Jones. I will analyse the case of an investor with γ=10, in which

the copula model has a very good performance, but I will also try the case of a γ=5 investor

as a robustness check.

3 Models

I build two models that consider the non central moments and co-moments of the returns till

the fourth order (respectively the mean of the returns and the mean of the crossed products of

the returns raised up to fourth power) in order to understand if they can approximate the use

of copulas to obtain optimal weights. In practice, I run OLS regressions using as independent

variables the non central moments and co-moments of the returns.

The first model reconstructs the weights using only moments and co-moments, thus I run the

following OLS regression on the weights obtained with the copula models (WC
t ):

WC
t = α +momtβ

′ + εt (2)

where momt is the row vector of all moments and co-moments.

The second model reconstructs the copula model weights using moments, co-moments and
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the mean-variance weights:

WC
t = α +WMV

t φ+momtβ
′ + εt (3)

Then I repeat the two OLS regressions using as independent variable not moments and co-

moments of the returns, but moments and co-moments of the excess returns of Mibtel and

Dow Jones over the return of the Italian Long Term Bond index; in this way I need to calculate

less combinations of moments and co-moments.

4 In-sample results

4.1 Reconstruct copula model weights using only moments and

co-moments - Model 1

I run an OLS on the weights obtained by the copula model using as independent variables the

mean of the returns and of the (cross) products of the returns raised up to fourth power. The

labels in the regressions are so composed: the first part represents how high is the moment

and the second part means which assets are present in that combination (1 = Mibtel, 2 =

Dow Jones, 3 = Italian Long Term Bond Index). For example:

• m1 1 = mean (rmibtel);

• m1 2 = mean (rdowjones);

• m2 1 = mean (rmibtel ∗ rmibtel), like a variance, but it is not a centered moment;

• m2 12 = mean (rmibtel ∗ rdowjones), like a covariance, but again it is not a centered

moment;

• m3 1 = mean (rmibtel ∗ rmibtel ∗ rmibtel), similar to a skewness measure, but it is not a

centered moment;

• m3 112 = mean (rmibtel ∗ rmibtel ∗ rdowjones);

• m3 123 = mean (rmibtel ∗ rdowjones ∗ rlongtermbond);

• m4 1 = mean (rmibtel ∗ rmibtel ∗ rmibtel ∗ rmibtel), similar to a kurtosis measure.

The vector momt contains all these moments and co-moments, thus the model is the one

reported in eq.2:

WC
t = α +momtβ + εt

As already noted by Patton (2004), this regression is probably misspecified (because optimal

weights are nonlinear function of the parameters of the joint density, so this is a first-order
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approximation of the true function relating parameters to weights) and suffer from error-in-

variables bias (because all variables are estimated). However, I want to find a simple and fast

method to reproduce the copula weights without estimating a copula.

Differently from Patton, I do not use the copula parameter as a regressor (it is obvious: I do

not want to understand the cause of the differences in weights between the two mean-variance

and the copula models, but I want to have the copula model weights without the copula), but

I insert the co-moments up to the fourth order, to catch the interactions between assets3.

I begin with the analysis of table 4 that contains the results of the regression on the weights

of the copula model for Mibtel index, for an investor with risk aversion γ=10. The Ramsey

test (RESET test) shows a misspecification trouble, as supposed by Patton, and the test for

omission of variables points out that some variables are useless.

Moreover the signs of the coefficients are sometimes different from what I expect. For example

the fourth moment of Mibtel (m4 1) is significantly positive while I expect it to be negative:

if a measure similar to the kurtosis of the Mibtel increases, the copula model should give less

weight to Mibtel. This problem could be caused by the very high multicollinearity among

all the independent variables (shown by the Variance Inflation Factor, not reported here):

to really understand what happens when the kurtosis of the return of Mibtel increases, all

moments and co-moments have to be considered together.

However the regression is very powerful, indeed the R2 is 0.89 and it shows that, in this case,

it is possible to reproduce quite well the copula weights using moments and co-moments of

returns.

To reduce the multi-collinearity problem without losing large explanatory power, I exploit the

result of the test for omission of variables and I progressively eliminate the variable with the

highest p-value till all variables have a p-value under 10%4; the final regression, that I call

“reduced”, is reported in table 5. The results obtained in the “reduced” regression are very

close to those obtained in the OLS with all the moments and co-moments:

• the R2 value is very high (88%);

• all remained variables have the previous sign;

• the multicollinearity problem is reduced, but it is still strongly present.

3The use of co-moments is often adopted also in the asset pricing, as an extension of the CAPM. In these
models the use of co-moments is also extended to higher moments and co-moments, till an order of 10 or 15,
as done by Chung et al. (2006) or Nguyen and Puri (2006).

4This procedure is often called “backward iteration”. The model is estimated with all variables. Then the
variable with the highest p-value is eliminated. The model is estimated again without the deleted variable.
Among the remained variables, the one with the highest p-value is eliminated. The model is estimated again
without the two eliminated variables. The process goes on till there is an estimate in which all variables have
a p-value smaller than 10%.
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In other words, with the model with less explanatory variables the multi-collinearity problem

is reduced without losing explanatory power. Moreover, the reduced models improve the out-

of-sample forecast (see section 7).

These features are common for both models and at all levels of risk aversion, and also with the

use of the excess returns instead of the returns, so I will report only the reduced regressions

in the rest of the paper.

I study the series of weights of Dow Jones index for the same portfolio of the same investor

(that has γ=10); estimates of the reduced model are in table 6. Again I can observe that:

• the R2 is high, 83%, so the model reconstructs the copula weights in a good way;

• the Ramsey test shows a misspecification trouble;

• the variables that are statistically significant for this regression are different from the

variables used for the OLS in the case of Mibtel. This means that each index has a

different model for its weight, so there is not a standard way to reproduce these series,

but each index has a peculiar model;

• the multicollinearity problem is strongly present (as shown by the Variance Inflation

Factors, not reported) and probably it is the cause of the unexpected signs for some

coefficients; for example, a higher second moment of Mibtel index (m2 1) should increase

the weight of Dow Jones, instead it has a negative coefficient. However, with this kind

of model, as already explained, I can not expect to forecast the signs of moments and

co-moments.

The previous results are confirmed by all regressions at all γ levels (see section 5).

Similar results are obtained without using the three series of returns, but using the two series

of excess returns of Mibtel and Dow Jones over the Italian Bond index, as done by Patton

(2004). These results are in section 6.

I can conclude that I am able to obtain an approximation of the weights of the copula

model with these simple models, that are using moments and co-moments of returns.

4.2 Reconstruct the copula weights using the mean-variance weights

- Model 2

I reproduce the weights of the copula model using also the mean-variance weights, as expressed

in equation 3:

WC
t = α +WMV

t φ+momtβ + εt

In the tables the mean-variance weights are denoted as “norm” plus the γ coefficient of the

investor and the name of the index, for example “norm10 mib” In the case of an investor
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with risk aversion γ=10, the reduced model for the weights of Mibtel is reported in table 7,

while the reduced model for the weights of Dow Jones is in table 8. Observing both tables, I

note that:

• these regressions have very high R2 (96% for Mibtel and 87% for Dow Jones weights),

thus these models reconstruct well the copula weights;

• the coefficient of the mean-variance weights (φ in equation 3) is always positive and

significant, thus this variable is surely useful; moreover the coefficient is smaller than 1

(indeed copula model’s weights are usually less large than mean-variance weights);

• moments and co-moments help in explaining the copula weights (as already found with

model 1). Moreover some first and second order moments and co-moments are si-

gnificant, even if the mean-variance weights already consider these moments; however,

compared with the first model, I note, as expected, that signs are often (but not always)

the same for moments and co-moments of the first and second order; instead moments

and co-moments of higher order always have the same sign of the model without mean-

variance weights (even if the significant moments and co-moments are not always the

same);

• in this case the signs of the coefficients are more consistent with what I expect, but I

can not forecast all the signs of the coefficients of the moments and of the co-moments,

and which variables are significant;

• the problems with the signs are probably due to the multicollinearity problem; however

the models seem correctly specified, indeed Ramsey’s RESET and White test do not

signal problems;

• the model on Mibtel weights and the model on Dow Jones weights are very different

about the statistically significant variables (except than the mean-variance weights that

always have a coefficient significant and positive).

I analyse better the goodness-of-fit: as already noted, these regressions have very high R2

(between 87% and 96%), higher than those of the first models. The improvement in the value

of R2 is small, but it could have a relevant impact on the improvement in the sum of squared

residuals: in the case of Mibtel, this value falls significantly from 4.28 in the first model to

1.38 in the second one, while in the case of Dow Jones it falls only from 1.51 to 1.18. This

difference is also more evident observing the standard errors of the residuals: in the case of

Mibtel they pass from 17.8% to 9.8%, while in the case of Dow Jones they pass only from

10.4% to 8.9%.

However, with these small values for the standard errors of residuals (even if for γ=5 they are

higher and they appear economically significant, see section 5) I can confirm that these models
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reconstruct well the copula weights. Moreover the errors are often very small; for example,

for Mibtel weights, over 90% of errors are between -14% and +14%, with few relevant errors,

as show in figure 1.

Figure 1: Frequency plot of the residuals of the regression on Mibtel weights for an investor

with γ=10
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I can conclude that both models analyzed are useful to model the copula’s weights: the

first appears easier (because the weights of the Markowitz model are not needed), but the use

of the mean-variance weights renders the estimate more accurate. In situations like Mibtel

(or in presence of small γ as we will see in section 5), perhaps, it is more useful to use also

mean-variance weights because there is a good improvement in performance, while the use

of regressions without this variable is faster in cases like Dow Jones (or with very risk averse

people), when these regressions are already good and the use of the mean-variance model

weights does not improve significantly the estimation.

5 Robustness checks - γ=5 investor

The previous results are confirmed by all regressions at all γ levels and both models present

the same features, so I report the results only for model 1 in the case of an investor with

risk aversion γ=5. Table 9 presents the results of the regression (after the backward iteration

on the independent variables) on Mibtel weights, while table 10 reports the results for Dow

Jones weights. I can observe that the regressions have the same features of the regression on

weights obtained for an investor with γ=10. For example observing the regression on weights

for Mibtel index, it is again very powerful with the same R2 of 0.89, it has the same problems

of multicollinearity and of specification (shown by the Ramsey test), it has almost the same

significant variable (with only small differences) and the same sign of the coefficient.

A difference is that the signs of the coefficients have higher absolute values (and higher
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standard error) in the case of an investor with γ=5 and it is normal because the absolute

values of weights are more extreme with a less risk averse investor.

Another difference is that the sum of the squared residuals is much higher in the case of γ=5,

indeed it passes from 4.28 to 15.93, due to the fact that weights are more extreme. In this

case the standard errors of the residuals are economically significant, indeed the value is about

34% for the Mibtel index. However, as shown by the high value of R2, these values are small

if I consider that, for γ=5, the weights of the indices (without a short-selling constraint) are

very large: in the case of Mibtel the weights vary from a minimum of -86% to a maximum of

+356%, with a standard deviation of 95%. Moreover, also in this case, the errors are often

very small, with only few relevant errors.

All the previous considerations can be replied in the case of Dow Jones index’s weights, even

if with this index the weights are less extreme, so the standard error of residuals is smaller

than in the case of Mibtel: the weights of the portfolio vary from a minimum of -177% to a

maximum of +40%, with a standard deviation of 49%, so the standard error of the residuals

of the regression is about 21%.

As already said, the previous features are present also for model 2 and also the comparison

between model 1 and 2 has the same characteristic at every level of risk aversion. So I can

conclude that the results found in section 4 are confirmed by all regressions at all γ levels: both

models analyzed are useful to model the copula’s weights, but the first appears easier (because

the weights of the Markowitz model are not needed), while the second renders the estimate

more accurate; so in situations like Mibtel and/or in presence of small γ, it appears more

useful to use also mean-variance weights because there is a good reduction of the standard

error of the residuals, while the use of regressions without this variable is faster in cases like

Dow Jones and/or with very risk averse people, when these regressions have already a small

value of standard error of the residuals and the use of the mean-variance model weights does

not improve significantly the estimation.

6 Regressions with excess returns

6.1 Model 1

I run the same regressions on the copula model weights, using as independent variables the

moments and co-moments calculated on the series of excess returns of Mibtel and Dow Jones

over the Italian Long Term Bond index:

• excess return 1 = rmibtel − rlongtermbond ;

• excess return 2 = rdowjones − rlongtermbond .

Thus the independent variables are written, for example, in this way:
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• exm1 1 = mean (excess return 1);

• exm2 1 = mean (excess return 1*excess return 1);

• exm2 12 = mean (excess return 1*excess return 2);

• exm3 2 = mean (excess return 2*excess return 2*excess return 2);

Now I am not using the three series of returns but the two series of excess returns, as done

by Patton (2004). In table 11 there are the results (after the backward iteration) for Mibtel

weights for an investor with risk aversion γ=10. I can note that these results present differences

compared to the ones obtained with the three returns used separately:

• the R2 is a bit lower (0.76 versus 0.88), thus the sum of squared residuals is higher;

• with excess returns, signs of the coefficients are more coherent with our expectations

(observe the significant variables: exm1 1 shows that if the return of the Mibtel increa-

ses, the weight of the Mibtel increases; exm2 2 shows that if the “variance” of the Dow

Jones increases, the weight of the Mibtel increases; exm3 2 shows that if the “skewness”

of Dow Jones improves, the weight of the Mibtel decreases).

However, there are also some similarities compared to the model obtained with the three

returns used separately:

• the model residuals show a misspecification trouble (see the Ramsey test);

• the multicollinearity problem is strongly present (as shown by the Variance Inflation

Factors, not reported), even if it is smaller than in the case of total returns (and perhaps

it is the reason for the coefficients more coherent with our expectations);

• some similar variables (for example mean return of Mibtel in the regression with sepa-

rated returns and mean excess return of Mibtel in this OLS) have coefficients with the

same sign, even if the significant variables are not the same, so it means that there is

not a standard way to reproduce these weights and each case needs a peculiar model.

I also repeat the OLS on the weights of Dow Jones index. The result of the reduced model,

for a γ=10 investor, are in table 12. I can confirm the considerations already done for Mibtel:

• the R2 is a bit lower and the sum of squared residuals is higher;

• the model residuals show a misspecification trouble;

• the multicollinearity problem is strongly present, even if smaller than in the case of

total returns and, with excess returns, signs of the coefficients are consistent with my

expectations;

14
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• the similar variables that were significant in the other regression with returns (and not

excess returns) are not the same of this case;

These results are confirmed by all regressions at all γ levels. Moreover the coefficients are

almost the same at different γ, with the only difference that for higher γ the absolute values

of the coefficients are smaller.

6.2 Model 2

For Model 2 I run the same regressions on the copula model weights using as independent

variable the moments and co-moments calculated on the series of excess returns of Mibtel

and Dow Jones over the Italian Long Term Bond index and the mean-variance weights. As

an example, I report in table 13 the estimate of the reduced model for Mibtel weights for an

investor with γ=10. This model is very similar to model 2 done with the total return (see

table 7):

• the performance is almost the same: the R2 decreases from 96.2% to 96.1%, the sum of

squared residuals increases from 1.38 to 1.45 and the standard error of the residuals is

the same around 9.8%;

• the most important variable is the correspondent weight of the mean-variance model,

that has a positive coefficient with a value above 0.8, but, with the reduced model, there

are also moments and co-moments statistically significant;

• there are not misspecification problems.

I repeat the analysis on the weights for the Dow Jones index and I find the same results

found in the case of Mibtel, as shown in table 14. So, observing these tables, I note that these

regressions have a very good performance (high R2, small standard errors of residuals), thus

these models reconstruct well the copula weights, and this performance is almost as good as

the performance of model 2 that uses the three returns and not the two excess returns.

In conclusion I can use the returns or the excess returns of the stock indices over the less

risky index. The first way is more accurate (has a higher R2 in the regressions and smaller

standard errors of residuals), while the model with excess returns needs to calculate less

combinations of moments and co-moments.

It is better to use the total returns in situations in which the mean-variance weights does

not improve significantly the estimates (in cases like Dow Jones weights and/or with very

risk averse people) and I prefer to use the faster model 1 (moments and co-moments only),

therefore the use of excess return creates a significant loss in the accuracy of the regressions.

Meanwhile, in situations in which the use of the mean-variance weights is relevant (in cases

like Mibtel weights and/or in presence of small γ), so I prefer model 2, the use of the excess

returns can be a valid alternative to the use of total returns.
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7 Out-of-sample results

Till now I have analysed the in-sample goodness-of-fit of the regressions. However in the real

world an investor/asset manager that wants to use one of the two models to have an allocation

similar to the one obtained by a copula model, has to forecast the weights out-of-sample.

I leave the observations of the last year out-of-sample (so the last 52 observations).

The out-of-sample analysis is done only in the cases that use the three separated returns and

not with the use of the two excess returns.

To measure the goodness-of-fit I will use the mean absolute error (M.A.E.):

M.A.E. =
∑
|errors| /n (4)

where n is the number of the out-of-sample observations.

7.1 Model 1

Here I report the results for the Mibtel weights in the case of an investor with γ=10. The first

analysis hypothesizes that I want to forecast all the copula weights using the model estimated

at the beginning of the year (so with the first 104 observations): I call this the “static”

forecast. This model obtains a very bad M.A.E. equal to 310%. Observing the plot of the

forecast and of the real values (fig.2) I note that the model begins its very bad performance

from week 122, with a very unrealistic forecast of -689% against a real weight of -2%.

Figure 2: Forecast and real weights for Mibtel - static forecast
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However, if I use the reduced model, which estimates are shown in table 16, the M.A.E. is

again very bad, but much better: 156%. This is not a general rule, indeed the reduced model

does not improve the M.A.E. in the case of Dow Jones weight for the static model (that

forecasts all the 52 weeks). However, the reduced model is often better than the model that
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contains all the independent variables: for example it happens with the dynamic forecast (see

after for the meaning of “dynamic” forecast) and with the static forecast done on shorter

periods (for example 9 or 17 weeks, such as I will show in table 3). For this reason, I will only

analyse the out-of-sample performance of the reduced models.

Going back to the reduced model 1, I have already observed that it obtains a very bad M.A.E.

equal to 156%. So, the model estimated at week 104 is not good in the forecast for all the

year. Perhaps the use of a one-step ahead forecast, done with the up-to-date model, should

be better: for every week of the last year I estimate the model and I forecast the weights for

the next week, then I compare the forecast weights with the real copula model weights. I call

this the “dynamic” forecast.

In this case the M.A.E. is much smaller (32.4%).

Again, I report the plot with the forecast and the real values of the copula model’s weights

(fig.3). I note that the model presents a very bad forecast for some weeks, such as week

Figure 3: Forecast and real weights for Mibtel - dynamic forecast
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132 and 142, but in this case the model does not repeat the error for the following weeks.

Observing the output of the regression done on 104 observations and the one done with the full

sample, it is evident that there are some important changes during the 52 weeks. Estimating

the model every week, I observe that there are only small changes in the estimates and the

biggest changes are in weeks after a bad forecast, such as week 142. Thus, a good strategy

could be to use the first estimate of the model till the error is not too big, then re-estimate

(the re-estimation is done with all moments and co-moments as independent variables and not

only the ones used in the previous reduced model) the model and keep it till a new unrealistic

forecast.

As already said the M.A.E. is 32.4%, which is not a huge value (compared to the high values

of the weights, caused by the fact that in this portfolio there are only three assets and there

are not short-selling constraints), but it is not an optimal prediction. However, this value is
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due to few very bad forecasts, indeed the forecasts are usually enough accurate, as shown in

fig.4.

Figure 4: Frequency of the forecast error - Mibtel weights
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Now I briefly show the results for Dow Jones weights, that are qualitatively the same as

Mibtel.I report in table 17 the reduced model estimated at week 104 and in figure 5 the graph

of the forecast done with this static model for all the 52 observations out-of-sample.

Figure 5: Forecast and real weights for Dow Jones - static forecast
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Again the model presents a very bad M.A.E. of 273%; however, I can note from the plot of

the forecast and of the real values (fig.5) that the model has not a very bad performance for

some weeks, then the error becomes larger and larger. So the model estimated at week 104 is

not good in the forecast for all the year, but only for the following weeks.

The use of a one-step ahead forecast, done with the up-to-date model, has a much smaller

M.A.E.= 17.1%.
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As in the case of Mibtel, I report the plot with the forecast and the real values of the copula

model’s weights (fig.6), to show that there are only a few heavy errors. Observing that the

Figure 6: Forecast and real weights for Dow Jones - dynamic forecast
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estimates of the model at time 104 are quite different from those at time 156, I can confirm

that the strategy proposed in the case of Mibtel can be a good solution to apply to this model

overcoming the temporal instability of the estimates, but avoiding the computation of the

copula model every week (indeed, in that case the weights of the copula model could be used

directly!) or too often: an investor/asset manager could use the model estimates till a bad

forecast, than he/she has to re-estimate the model till a new unreal or bad forecast.

7.2 Model 2

I repeat the same analysis done in the previous section, using also the mean-variance weight

as independent variable. I begin estimating the reduced model 2 for Mibtel weights at week

104 (see table 17). The mean-variance weight is again statistically significant and positive

(near 0.8)

This model obtains a bad M.A.E. of 134.4%, even if it is better than the correspondent M.A.E.

obtained by model 1. Observing the plot of the forecast and of the real values (fig.7), I see

that the prediction is almost perfect for the first 9 weeks and not very bad till week 122. So,

also with model 2, the estimates at week 104 are not good in the forecast for all the year. I

compare this forecast with the dynamic forecast (one-step ahead), done with the up-to-date

model. Now the M.A.E. is much smaller at 10.7%. The plot with the forecast and the real

values of the copula model’s weights (fig.8) shows that there are not huge errors (except at

week 114). Comparing the two forecasts, I can understand that at week 122 there is a change

in the estimates that makes the static model to be permanently no more useful, so after that

week there is the need to estimate again the model. This is confirmed by the observation of
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Figure 7: Forecast and real weights for Mibtel - static forecast
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Figure 8: Forecast and real weights for Mibtel - dynamic forecast
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the outputs of the regressions done on 104 and 156 observations, that show some important

changes during the 52 weeks. Thus, again, a good strategy could be to use the model without

re-estimating it till an unrealistic (the changes in weights are usually not so big as it appears

in the forecast) or bad forecast, then be careful in the weight of that week and then re-estimate

the model the following week and keep it till a new unrealistic or bad forecast.

I do not report the results for Dow Jones weights, because they are qualitatively the same

as Mibtel:

• the estimates of the model at time 104 are quite different from the estimates at time

156 (with different moments and co-moments statistically significant and with different

sign);

• the static forecast (done with the model estimated only at time 104) has a bad M.A.E.
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Table 2: M.A.E. of the static and dynamic forecast of reduced model 1 and 2 on Mibtel and

Dow Jones weights.

M.A.E. Model 1 static Model 2 static Model 1 dynamic Model 2 dynamic

Mibtel 156.4% 134.4% 32.4% 10.7%

Dow Jones 273.4% 158.8% 17.1% 10.1%

Table 3: M.A.E. of the static forecast of model 1 and 2, full and reduced (red), on the first 9

and 17 weeks of Mibtel and Dow Jones weights.

Mibtel Model 1 Model 1 red Model 2 Model 2 red

9 weeks 73% 75% 43% 12%

17 weeks 95% 115% 36% 35%

Dow Jones Model 1 Model 1 red Model 2 Model 2 red

9 weeks 55% 9% 28% 19%

17 weeks 69% 24% 38% 24%

of 158.8%, but with very good estimates till week 121;

• the dynamic forecast (done with the model estimated every week) presents a M.A.E. of

10.1% (with a not small error at week 122).

I summarize all the results in table 2.

In conclusion model 2 presents better M.A.E. than model 1, especially for static forecast

which does not estimate the model often, while in the dynamic forecast (the use of a one-step

ahead forecast, done with the up-to-date model) the improvement of M.A.E. is smaller (for

example in the Dow Jones case it passes from 17.1% to 10.1%), even if economically significant

(especially in cases as Mibtel when it passes from 32.4% to 10.7%).

As already said and as evident from the difference in the M.A.E of the static and dynamic

forecast, the static forecast has a good performance only for some weeks, so a strategy could

be to use the model without re-estimating it till an unrealistic or bad forecast. In table 3, I

report the M.A.E. of the static forecast done for the first 9 weeks and for the first 17 weeks.

These values are chosen because they are the periods in which the static forecasts have a good

performance and also because they represent roughly 2 and 4 months respectively.

The table shows some features:

• model 2 is better (except reduced model for Dow Jones weights on 9 weeks horizon)

than model 1 and the improvement is stronger in the case of Mibtel, the index with the

highest variance, as already found in the in-sample analysis;

• the reduced model is better (except model 1 for Mibtel weights) than the model with

all moments and co-moments;
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• the static model is more unsatisfactory when the forecast week is further away from

the estimate. Indeed the M.A.E. on 9 weeks is better (except non reduced model 2 for

Mibtel weights) than the M.A.E. on 17 weeks.

So, if I use the strategy to estimate the copula model weights with reduced model 2 (using

also the mean-variance weights), for the first 9 weeks I have a mean absolute error of 12% for

Mibtel and of 19% for Dow Jones. That is a very good result considering the high values of

the weights of these indices.

8 Conclusions

In conclusion, I am able to have an approximation of the weights obtained by a copula model

using moments and co-moments of returns. I analyse two models: the first one models the

copula model weights using only moments and co-moments and the second one models the

weights using moments, co-moments and the mean-variance weights. Both models are useful:

the first appears to be easier (because the mean-variance weights are not needed), while the

second is more accurate in-sample and, above all, out-of-sample. In situations when the time

series of the weights have a high variance (like Mibtel or in presence of small γ), perhaps, it

is more useful to use the second model because there is a good improvement in performance,

while the use of a regression without the mean-variance weights is faster in cases when the

series of weights have small variance (like Dow Jones and with very risk averse people), when

this regression is already good and the use of the mean-variance model does not improve

significantly the estimation.

Moreover, I can use both the returns or the excess returns of the stock indices over the less

risky index. The first way is more accurate, while the model with excess returns needs to

calculate less combinations of moments and co-moments. In situations in which the use of

the mean-variance weights does not improve significantly the estimation (in cases like Dow

Jones weights with very risk averse people) and I prefer the faster use of the moments and

co-moments only (model 1), the use of excess return creates a significant loss in the accuracy

of the regressions, so it is better to use the total returns. In situations in which the use of the

mean-variance weights is relevant (in cases like Mibtel weights or in presence of small γ) and

I prefer regressions that use also this variable (model 2), the use of the excess returns can be

a valid alternative to the use of total returns.

The estimated models are often similar at various levels of risk aversion, but they are diffe-

rent for each asset, with explanatory variables and signs that are not predictable and with

accuracy that is uncertain (uncertain R2 and sum of squared residuals).

Moreover, observing the out-of-sample analysis, I understand that these models are also chan-

geable in time, so, to put into practice, a good strategy could be to use the model estimating

it once till an unrealistic forecast, then estimate again the model and keep it till a new un-
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realistic forecast. In this way there is no need to estimate both copula model weights and the

OLS too often and, at the same time, the prediction is quite accurate.
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Table 4: Model 1 - Mibtel weights

OLS estimates using the 156 observations 1–156

Dependent variable: copula10 mib

Coefficient Std. Error t-ratio p-value

const −16.9945 12.3356 −1.3777 0.1708

m1 1 126.689 28.3894 4.4626 0.0000

m1 2 63.6412 23.2406 2.7384 0.0071

m1 3 193.535 87.3440 2.2158 0.0286

m2 1 12.7422 23.0882 0.5519 0.5820

m2 2 40.0890 20.3435 1.9706 0.0511

m2 3 194.439 330.120 0.5890 0.5570

m2 12 −63.3158 29.5129 −2.1454 0.0339

m2 13 −136.903 150.960 −0.9069 0.3663

m2 23 246.766 136.507 1.8077 0.0731

m3 1 1.85847 13.0211 0.1427 0.8867

m3 2 −8.49073 5.46248 −1.5544 0.1227

m3 3 −9.86500 381.927 −0.0258 0.9794

m3 123 −118.137 93.3024 −1.2662 0.2079

m3 112 −32.8922 13.5257 −2.4318 0.0165

m3 122 22.5713 12.6572 1.7833 0.0770

m3 113 −45.1638 77.4488 −0.5831 0.5609

m3 133 −301.594 198.724 −1.5177 0.1317

m3 223 −31.5079 49.0310 −0.6426 0.5217

m3 233 19.6199 174.726 0.1123 0.9108

m4 1 9.39097 3.42000 2.7459 0.0070

m4 2 −0.757155 1.99700 −0.3791 0.7052

m4 3 −767.731 697.452 −1.1008 0.2732

m4 1112 −4.72961 4.84150 −0.9769 0.3306

m4 1122 −21.7814 6.74711 −3.2283 0.0016

m4 1222 15.2295 5.78505 2.6326 0.0096

m4 2223 18.3088 25.2783 0.7243 0.4703

m4 2233 −46.3872 127.641 −0.3634 0.7169

m4 2333 −789.313 404.285 −1.9524 0.0532

m4 1113 112.672 38.5954 2.9193 0.0042

m4 1133 −30.6776 216.548 −0.1417 0.8876

m4 1333 −895.556 490.500 −1.8258 0.0703

m4 1123 −135.863 60.1853 −2.2574 0.0258

m4 1223 2.19340 47.3694 0.0463 0.9631

m4 1233 −413.988 198.224 −2.0885 0.0389

Mean dependent var 0.576623 S.D. dependent var 0.487096

Sum squared resid 4.000780 S.E. of regression 0.181836

R2 0.891211 Adjusted R2 0.860643

F (34, 121) 29.15438 P-value(F ) 1.03e–43

Log-likelihood 64.38819 Akaike criterion −58.77637

Schwarz criterion 47.96859 Hannan–Quinn −15.42119

ρ̂ 0.084562 Durbin–Watson 1.826556

RESET test for specification –

Null hypothesis: specification is adequate

Test statistic: F (2, 119) = 3.80304

with p-value = P (F (2, 119) > 3.80304) = 0.0250611

White’s test for heteroskedasticity –

Null hypothesis: heteroskedasticity not present

Test statistic: LM = 48.0825

with p-value = P (χ2(68) > 48.0825) = 0.96798
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From Moments, Co-Moments and Mean-Variance Weights to Copula Portfolio Allocation

Table 5: Model 1 reduced - Mibtel weights

OLS estimates using the 156 observations 1–156
Dependent variable: copula10 mib

Coefficient Std. Error t-ratio p-value

const −13.7563 4.10504 −3.3511 0.0010
m1 1 125.331 17.6437 7.1035 0.0000
m1 2 60.7860 18.2246 3.3354 0.0011
m1 3 151.147 36.0343 4.1945 0.0000
m2 1 26.6158 11.3705 2.3408 0.0207
m2 2 40.8253 4.66708 8.7475 0.0000
m2 12 −76.1407 16.2284 −4.6918 0.0000
m2 23 184.589 77.0512 2.3957 0.0180
m3 2 −7.53856 3.21790 −2.3427 0.0206
m3 112 −18.1228 8.43388 −2.1488 0.0334
m3 122 14.2183 6.38388 2.2272 0.0276
m3 223 −58.6037 24.9149 −2.3522 0.0201
m4 1 6.17405 1.42432 4.3347 0.0000
m4 3 −722.593 173.518 −4.1644 0.0001
m4 1122 −20.0774 4.35849 −4.6065 0.0000
m4 1222 11.9277 3.19261 3.7360 0.0003
m4 2333 −664.326 206.164 −3.2223 0.0016
m4 1113 85.3283 17.5391 4.8650 0.0000
m4 1333 −1072.26 202.249 −5.3017 0.0000
m4 1123 −65.1868 24.4122 −2.6703 0.0085
m4 1233 −396.280 122.894 −3.2246 0.0016

Mean dependent var 0.576623 S.D. dependent var 0.487096
Sum squared resid 4.280299 S.E. of regression 0.178062
R2 0.883611 Adjusted R2 0.866368
F (20, 135) 51.24506 P-value(F ) 4.51e–53
Log-likelihood 59.12058 Akaike criterion −76.24117
Schwarz criterion −12.19419 Hannan–Quinn −50.22806
ρ̂ 0.193397 Durbin–Watson 1.608530
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From Moments, Co-Moments and Mean-Variance Weights to Copula Portfolio Allocation

Table 6: Model 1 reduced - Dow Jones weights

OLS estimates using the 156 observations 1–156
Dependent variable: copula10 dj

Coefficient Std. Error t-ratio p-value

const 6.71128 2.11074 3.1796 0.0018
m1 1 −59.1814 7.24674 −8.1666 0.0000
m1 3 −105.650 15.8540 −6.6639 0.0000
m2 1 −18.4188 6.10024 −3.0194 0.0030
m2 2 −7.81119 3.26167 −2.3948 0.0180
m2 12 18.8610 8.64823 2.1809 0.0309
m3 223 64.3433 9.60711 6.6975 0.0000
m3 233 145.879 38.7787 3.7618 0.0002
m4 1 −1.74963 0.631899 −2.7688 0.0064
m4 1122 6.69345 2.29181 2.9206 0.0041
m4 1222 −4.08848 1.53950 −2.6557 0.0088
m4 2223 −15.9512 3.91651 −4.0728 0.0001
m4 1113 −42.9057 10.2050 −4.2044 0.0000
m4 1333 404.948 115.446 3.5077 0.0006
m4 1123 43.4508 12.2380 3.5505 0.0005
m4 1233 159.452 48.7699 3.2695 0.0014

Mean dependent var −0.191118 S.D. dependent var 0.239912
Sum squared resid 1.513287 S.E. of regression 0.103967
R2 0.830376 Adjusted R2 0.812202
F (15, 140) 45.69040 P-value(F ) 2.60e–46
Log-likelihood 140.2202 Akaike criterion −248.4404
Schwarz criterion −199.6427 Hannan–Quinn −228.6209
ρ̂ 0.148044 Durbin–Watson 1.687030

RESET test for specification –
Null hypothesis: specification is adequate
Test statistic: F (2, 138) = 4.31155
with p-value = P (F (2, 138) > 4.31155) = 0.0152648

White’s test for heteroskedasticity –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 131.272
with p-value = P (χ2(135) > 131.272) = 0.57468
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From Moments, Co-Moments and Mean-Variance Weights to Copula Portfolio Allocation

Table 7: Model 2 reduced - Mibtel weights

OLS estimates using the 156 observations 1–156
Dependent variable: copula10 mib

Coefficient Std. Error t-ratio p-value

const 0.970087 0.559287 1.7345 0.0850
m1 3 −19.8850 11.6646 −1.7047 0.0904
m2 12 −5.83966 2.73288 −2.1368 0.0343
m3 1 4.52977 1.46644 3.0889 0.0024
m3 112 −4.23525 2.33950 −1.8103 0.0723
m3 113 30.6474 14.0242 2.1853 0.0305
m4 1 1.26914 0.477434 2.6583 0.0087
m4 1113 11.1571 5.91880 1.8850 0.0614
m4 1333 −164.331 76.3589 −2.1521 0.0330
m4 1233 −67.8216 26.1954 −2.5891 0.0106
norm10 mib 0.856943 0.0218606 39.2003 0.0000

Mean dependent var 0.576623 S.D. dependent var 0.487096
Sum squared resid 1.383112 S.E. of regression 0.097666
R2 0.962391 Adjusted R2 0.959797
F (10, 145) 371.0423 P-value(F ) 5.80e–98
Log-likelihood 147.2362 Akaike criterion −272.4723
Schwarz criterion −238.9239 Hannan–Quinn −258.8464
ρ̂ −0.078664 Durbin–Watson 2.148210

RESET test for specification –
Null hypothesis: specification is adequate
Test statistic: F (2, 118) = 0.466584
with p-value = P (F (2, 118) > 0.466584) = 0.628293

White’s test for heteroskedasticity –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 70.6677
with p-value = P (χ2(70) > 70.6677) = 0.455176

29



From Moments, Co-Moments and Mean-Variance Weights to Copula Portfolio Allocation

Table 8: Model 2 reduced - Dow Jones weights

OLS estimates using the 156 observations 1–156
Dependent variable: copula10 dj

Coefficient Std. Error t-ratio p-value

const 2.40184 0.559532 4.2926 0.0000
m1 1 −25.7238 4.64009 −5.5438 0.0000
m2 2 −7.04751 1.31984 −5.3397 0.0000
m2 12 9.72590 2.24566 4.3310 0.0000
m3 3 −153.061 46.8990 −3.2636 0.0014
m3 223 20.0485 6.98808 2.8690 0.0047
m4 1113 −3.04979 1.40846 −2.1653 0.0320
norm10 dj 0.660231 0.0603359 10.9426 0.0000

Mean dependent var −0.191118 S.D. dependent var 0.239912
Sum squared resid 1.184599 S.E. of regression 0.089465
R2 0.867219 Adjusted R2 0.860939
F (7, 148) 138.0879 P-value(F ) 1.37e–61
Log-likelihood 159.3208 Akaike criterion −302.6417
Schwarz criterion −278.2428 Hannan–Quinn −292.7319
ρ̂ 0.019429 Durbin–Watson 1.957599

RESET test for specification –
Null hypothesis: specification is adequate
Test statistic: F (2, 118) = 0.298423
with p-value = P (F (2, 118) > 0.298423) = 0.742546

White’s test for heteroskedasticity –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 61.934
with p-value = P (χ2(70) > 61.934) = 0.743077
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From Moments, Co-Moments and Mean-Variance Weights to Copula Portfolio Allocation

Table 9: Model 1 reduced - Mibtel weights - γ=5

OLS estimates using the 156 observations 1–156
Dependent variable: copula5 mib

Coefficient Std. Error t-ratio p-value

const −10.6555 7.55794 −1.4098 0.1609
m1 1 214.160 33.2677 6.4375 0.0000
m1 2 131.893 35.5260 3.7126 0.0003
m1 3 302.606 70.2962 4.3047 0.0000
m2 2 71.4378 13.0156 5.4886 0.0000
m2 12 −108.267 33.5272 −3.2292 0.0016
m2 13 −274.988 118.114 −2.3282 0.0214
m2 23 305.904 160.060 1.9112 0.0581
m3 2 −22.2533 6.29402 −3.5356 0.0006
m3 112 −50.3248 16.7968 −2.9961 0.0033
m3 122 42.7615 12.8493 3.3279 0.0011
m3 223 −128.280 48.9170 −2.6224 0.0097
m4 1 16.2107 2.96367 5.4698 0.0000
m4 3 −1316.21 423.434 −3.1084 0.0023
m4 1122 −35.6315 9.24770 −3.8530 0.0002
m4 1222 18.9968 6.64850 2.8573 0.0050
m4 2223 33.7535 19.7695 1.7074 0.0901
m4 2333 −1155.49 413.664 −2.7933 0.0060
m4 1113 188.791 36.5319 5.1678 0.0000
m4 1333 −1902.22 385.644 −4.9326 0.0000
m4 1123 −125.053 46.0064 −2.7182 0.0074
m4 1233 −660.445 236.129 −2.7970 0.0059

Mean dependent var 1.065582 S.D. dependent var 0.954051
Sum squared resid 15.92739 S.E. of regression 0.344762
R2 0.887106 Adjusted R2 0.869414
F (21, 134) 50.14089 P-value(F ) 4.41e–53
Log-likelihood −43.37276 Akaike criterion 130.7455
Schwarz criterion 197.8424 Hannan–Quinn 157.9973
ρ̂ 0.179765 Durbin–Watson 1.639416

RESET test for specification –
Null hypothesis: specification is adequate
Test statistic: F (2, 132) = 6.89733
with p-value = P (F (2, 132) > 6.89733) = 0.00141557

White’s test for heteroskedasticity –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 38.2791
with p-value = P (χ2(42) > 38.2791) = 0.635053
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From Moments, Co-Moments and Mean-Variance Weights to Copula Portfolio Allocation

Table 10: Model 1 reduced - Dow Jones weights - γ=5

OLS estimates using the 156 observations 1–156
Dependent variable: copula5 dj

Coefficient Std. Error t-ratio p-value

const 11.4361 4.24337 2.6951 0.0079
m1 1 −116.940 14.5686 −8.0268 0.0000
m1 3 −206.128 31.8724 −6.4673 0.0000
m2 1 −33.2321 12.2638 −2.7098 0.0076
m2 2 −15.4710 6.55717 −2.3594 0.0197
m2 12 37.9615 17.3862 2.1834 0.0307
m3 223 128.856 19.3139 6.6717 0.0000
m3 233 287.183 77.9597 3.6837 0.0003
m4 1 −3.94423 1.27035 −3.1048 0.0023
m4 1122 14.1340 4.60740 3.0677 0.0026
m4 1222 −8.71456 3.09497 −2.8157 0.0056
m4 2223 −33.4417 7.87364 −4.2473 0.0000
m4 1113 −86.4525 20.5159 −4.2139 0.0000
m4 1333 829.928 232.090 3.5759 0.0005
m4 1123 89.8678 24.6029 3.6527 0.0004
m4 1233 328.978 98.0456 3.3554 0.0010

Mean dependent var −0.445834 S.D. dependent var 0.492921
Sum squared resid 6.116094 S.E. of regression 0.209013
R2 0.837599 Adjusted R2 0.820199
F (15, 140) 48.13758 P-value(F ) 1.31e–47
Log-likelihood 31.28231 Akaike criterion −30.56462
Schwarz criterion 18.23308 Hannan–Quinn −10.74510
ρ̂ 0.151412 Durbin–Watson 1.678889

RESET test for specification –
Null hypothesis: specification is adequate
Test statistic: F (2, 138) = 4.80292
with p-value = P (F (2, 138) > 4.80292) = 0.00962751

White’s test for heteroskedasticity –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 132.024
with p-value = P (χ2(135) > 132.024) = 0.556381
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From Moments, Co-Moments and Mean-Variance Weights to Copula Portfolio Allocation

Table 11: Model 1 reduced - Mibtel weights - excess returns

OLS estimates using the 156 observations 1–156
Dependent variable: copula10 mib

Coefficient Std. Error t-ratio p-value

const −2.97127 3.47062 −0.8561 0.3933
exm1 1 61.2431 16.4103 3.7320 0.0003
exm2 1 −7.27118 3.39292 −2.1430 0.0337
exm2 12 −42.1267 7.12076 −5.9160 0.0000
exm2 2 38.1680 3.39557 11.2405 0.0000
exm3 122 20.8892 2.79692 7.4687 0.0000
exm3 2 −10.7828 1.90780 −5.6520 0.0000
exm4 1122 −2.55456 0.554933 −4.6034 0.0000

Mean dependent var 0.576623 S.D. dependent var 0.487096
Sum squared resid 8.698919 S.E. of regression 0.242439
R2 0.763460 Adjusted R2 0.752273
F (7, 148) 68.24113 P-value(F ) 3.61e–43
Log-likelihood 3.804856 Akaike criterion 8.390287
Schwarz criterion 32.78914 Hannan–Quinn 18.30004
ρ̂ 0.578494 Durbin–Watson 0.830555

RESET test for specification –
Null hypothesis: specification is adequate
Test statistic: F (2, 146) = 10.3245
with p-value = P (F (2, 146) > 10.3245) = 6.39967e-005

White’s test for heteroskedasticity –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 51.5148
with p-value = P (χ2(35) > 51.5148) = 0.0355204
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From Moments, Co-Moments and Mean-Variance Weights to Copula Portfolio Allocation

Table 12: Model 1 reduced - Dow Jones weights - excess returns

OLS estimates using the 156 observations 1–156
Dependent variable: copula10 dj

Coefficient Std. Error t-ratio p-value

const 2.87362 1.99779 1.4384 0.1525
exm1 1 −39.6703 9.76722 −4.0616 0.0001
exm1 2 20.2123 9.38499 2.1537 0.0329
exm2 1 6.79435 1.82658 3.7197 0.0003
exm2 12 14.2591 4.87434 2.9253 0.0040
exm2 2 −19.8374 1.95848 −10.1290 0.0000
exm3 122 −7.37855 2.04480 −3.6084 0.0004
exm3 2 3.23898 1.31157 2.4695 0.0147
exm4 1112 −0.681372 0.409822 −1.6626 0.0985
exm4 1222 1.81322 0.438231 4.1376 0.0001

Mean dependent var −0.191118 S.D. dependent var 0.239912
Sum squared resid 2.396625 S.E. of regression 0.128122
R2 0.731363 Adjusted R2 0.714803
F (9, 146) 44.16496 P-value(F ) 2.31e–37
Log-likelihood 104.3576 Akaike criterion −188.7151
Schwarz criterion −158.2165 Hannan–Quinn −176.3279
ρ̂ 0.437032 Durbin–Watson 1.104548

RESET test for specification –
Null hypothesis: specification is adequate
Test statistic: F (2, 144) = 8.80715
with p-value = P (F (2, 144) > 8.80715) = 0.00024635

White’s test for heteroskedasticity –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 79.8724
with p-value = P (χ2(54) > 79.8724) = 0.0126167
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From Moments, Co-Moments and Mean-Variance Weights to Copula Portfolio Allocation

Table 13: Model 2 reduced - Mibtel weights - excess returns

OLS estimates using the 156 observations 1–156
Dependent variable: copula10 mib

Coefficient Std. Error t-ratio p-value

const 0.752401 0.266827 2.8198 0.0055
exm2 12 −3.44862 1.18061 −2.9210 0.0040
exm3 112 −2.92516 1.33776 −2.1866 0.0303
exm3 122 2.23812 0.916297 2.4426 0.0158
exm4 1112 −0.350041 0.193958 −1.8047 0.0731
exm4 1122 0.620813 0.257838 2.4078 0.0173
norm10 mib 0.855878 0.0156823 54.5760 0.0000

Mean dependent var 0.576623 S.D. dependent var 0.487096
Sum squared resid 1.448043 S.E. of regression 0.098582
R2 0.960625 Adjusted R2 0.959039
F (6, 149) 1343.935 P-value(F ) 5.2e–127
Log-likelihood 143.6577 Akaike criterion −273.3154
Schwarz criterion −251.9665 Hannan–Quinn −264.6444
ρ̂ −0.042752 Durbin–Watson 2.076987

RESET test for specification –
Null hypothesis: specification is adequate
Test statistic: F (2, 147) = 1.48657
with p-value = P (F (2, 147) > 1.48657) = 0.229528

White’s test for heteroskedasticity –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 30.0248
with p-value = P (χ2(27) > 30.0248) = 0.31304
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From Moments, Co-Moments and Mean-Variance Weights to Copula Portfolio Allocation

Table 14: Model 2 reduced - Dow Jones weights - excess returns

OLS estimates using the 156 observations 1–156
Dependent variable: copula10 dj

Coefficient Std. Error t-ratio p-value

const 1.66964 1.27028 1.3144 0.1907
exm1 1 −14.0113 6.10952 −2.2934 0.0232
exm2 12 7.85182 3.44042 2.2822 0.0239
exm2 2 −6.58501 1.54207 −4.2702 0.0000
exm3 122 −3.20473 1.14673 −2.7947 0.0059
exm3 2 1.89533 0.765610 2.4756 0.0144
exm4 1222 0.408061 0.223536 1.8255 0.0699
norm10 dj 0.719254 0.0552248 13.0241 0.0000

Mean dependent var −0.191118 S.D. dependent var 0.239912
Sum squared resid 1.229133 S.E. of regression 0.091132
R2 0.862227 Adjusted R2 0.855711
F (7, 148) 132.3187 P-value(F ) 2.07e–60
Log-likelihood 156.4423 Akaike criterion −296.8845
Schwarz criterion −272.4857 Hannan–Quinn −286.9748
ρ̂ 0.051076 Durbin–Watson 1.881407

RESET test for specification –
Null hypothesis: specification is adequate
Test statistic: F (2, 146) = 0.0474202
with p-value = P (F (2, 146) > 0.0474202) = 0.953701

White’s test for heteroskedasticity –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 33.0158
with p-value = P (χ2(35) > 33.0158) = 0.564198
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From Moments, Co-Moments and Mean-Variance Weights to Copula Portfolio Allocation

Table 15: Model 1 reduced - Mibtel weights - 104 observations

OLS estimates using the 104 observations 1–104
Dependent variable: copula10 mib

Coefficient Std. Error t-ratio p-value

const −3.41233 4.87400 −0.7001 0.4856
m1 1 132.467 18.4806 7.1679 0.0000
m2 2 54.9885 12.8507 4.2790 0.0000
m2 12 −173.270 29.8799 −5.7989 0.0000
m2 13 −215.848 77.5129 −2.7847 0.0065
m3 122 16.4099 6.06883 2.7040 0.0082
m3 223 140.740 24.7413 5.6884 0.0000
m3 233 904.975 191.177 4.7337 0.0000
m4 1222 19.5894 4.60351 4.2553 0.0001
m4 2223 −80.4272 46.9938 −1.7114 0.0904
m4 2233 −478.430 119.763 −3.9948 0.0001
m4 1223 335.489 79.3205 4.2295 0.0001
m4 1233 758.897 171.499 4.4251 0.0000

Mean dependent var 0.742604 S.D. dependent var 0.488075
Sum squared resid 2.463132 S.E. of regression 0.164522
R2 0.899613 Adjusted R2 0.886375
F (12, 91) 67.95768 P-value(F ) 5.02e–40
Log-likelihood 47.06417 Akaike criterion −68.12833
Schwarz criterion −33.75125 Hannan–Quinn −54.20117
ρ̂ 0.025715 Durbin–Watson 1.943373

RESET test for specification –
Null hypothesis: specification is adequate
Test statistic: F (2, 141) = -31.768
with p-value = P (F (2, 141) > -31.768) = 1.79769e+308

White’s test for heteroskedasticity –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 78.2774
with p-value = P (χ2(90) > 78.2774) = 0.806367
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From Moments, Co-Moments and Mean-Variance Weights to Copula Portfolio Allocation

Table 16: Model 1 reduced - Dow Jones weights - 104 observations

OLS estimates using the 104 observations 1–104
Dependent variable: copula10 dj

Coefficient Std. Error t-ratio p-value

const −6.70381 2.87362 −2.3329 0.0220
m1 1 −99.0090 18.9395 −5.2277 0.0000
m1 2 65.8535 19.0844 3.4506 0.0009
m1 3 −146.134 58.9723 −2.4780 0.0152
m2 12 31.3717 14.4145 2.1764 0.0323
m3 1 11.6378 4.75300 2.4485 0.0164
m3 2 −22.7497 6.63525 −3.4286 0.0009
m3 3 522.630 223.186 2.3417 0.0215
m3 113 147.046 46.7181 3.1475 0.0023
m3 133 556.016 173.060 3.2129 0.0019
m3 223 −77.0080 43.1596 −1.7843 0.0779
m3 233 −615.546 123.776 −4.9731 0.0000
m4 2 −3.86941 1.85605 −2.0848 0.0401
m4 1112 21.7657 6.26306 3.4753 0.0008
m4 1122 −17.2387 7.53938 −2.2865 0.0247
m4 2223 83.4617 37.6597 2.2162 0.0293
m4 2233 525.937 113.562 4.6313 0.0000
m4 1223 −138.880 63.6228 −2.1829 0.0318
m4 1233 −783.461 226.303 −3.4620 0.0008

Mean dependent var −0.276961 S.D. dependent var 0.242036
Sum squared resid 0.778757 S.E. of regression 0.095718
R2 0.870937 Adjusted R2 0.843605
F (18, 85) 31.86615 P-value(F ) 3.22e–30
Log-likelihood 106.9416 Akaike criterion −175.8832
Schwarz criterion −125.6398 Hannan–Quinn −155.5282
ρ̂ −0.091027 Durbin–Watson 2.176045

RESET test for specification –
Null hypothesis: specification is adequate
Test statistic: F (2, 135) = -30.5547
with p-value = P (F (2, 135) > -30.5547) = 1.79769e+308

White’s test for heteroskedasticity –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 36.6757
with p-value = P (χ2(36) > 36.6757) = 0.43735
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From Moments, Co-Moments and Mean-Variance Weights to Copula Portfolio Allocation

Table 17: Model 2 reduced - Mibtel weights - 104 observations

OLS estimates using the 104 observations 1–104
Dependent variable: copula10 mib

Coefficient Std. Error t-ratio p-value

const 0.917532 4.57907 0.2004 0.8417
m1 1 44.6758 22.8587 1.9544 0.0539
m1 2 −41.8620 17.2452 −2.4275 0.0173
m2 1 49.4419 17.7865 2.7797 0.0067
m2 2 −28.8912 11.3289 −2.5502 0.0126
m2 13 164.295 73.2912 2.2417 0.0276
m3 1 −28.9866 9.49052 −3.0543 0.0030
m3 2 21.3942 7.32295 2.9215 0.0045
m3 112 20.1131 9.95035 2.0213 0.0464
m3 133 −335.096 192.798 −1.7381 0.0858
m3 233 362.656 114.882 3.1568 0.0022
m4 1 −13.7555 3.75945 −3.6589 0.0004
m4 2 8.69683 2.18298 3.9839 0.0001
m4 3 −704.105 233.546 −3.0148 0.0034
m4 1113 −47.8414 25.1805 −1.8999 0.0608
m4 1133 −332.301 134.941 −2.4626 0.0158
m4 1333 −919.039 322.616 −2.8487 0.0055
m4 1233 358.830 176.160 2.0370 0.0448
norm10 mib 0.813892 0.0522572 15.5747 0.0000

Mean dependent var 0.742604 S.D. dependent var 0.488075
Sum squared resid 0.861601 S.E. of regression 0.100680
R2 0.964885 Adjusted R2 0.957449
F (18, 85) 129.7556 P-value(F ) 6.75e–54
Log-likelihood 101.6848 Akaike criterion −165.3696
Schwarz criterion −115.1262 Hannan–Quinn −145.0145
ρ̂ −0.180582 Durbin–Watson 2.353138

RESET test for specification –
Null hypothesis: specification is adequate
Test statistic: F (2, 135) = -23.8348
with p-value = P (F (2, 135) > -23.8348) = 1.79769e+308

White’s test for heteroskedasticity –
Null hypothesis: heteroskedasticity not present
Test statistic: LM = 32.5556
with p-value = P (χ2(36) > 32.5556) = 0.633196
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