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Minimum Tracking Error Volatility

Luca Riccetti∗

Abstract

Investors assign part of their funds to asset managers that are given the task of beating a benchmark.
The risk management department usually imposes a maximum value of the tracking error volatility
(TEV) in order to keep the risk of the portfolio near to that of the selected benchmark. However,
risk management does not establish a rule on TEV which enables us to understand whether the
asset manager is really active or not and, in practice, asset managers sometimes follow passively the
corresponding index. Moreover, the benchmark is sometimes difficult to be beaten when the risk
managers only check that portfolio managers do not exceed a fixed level of relative risk.

I derive analytical methods that could be used to understand whether the strategy used by the
portfolio manager is active that allows him/her to have an excess return above the benchmark large
enough to cover the commission paid by investors and, concurrently, that allows him/her to restrict
the portfolio’s variance to be not more than the benchmark’s variance in order to avoid an excess
return merely due to a higher risk level (using variance as risk indicator). These equations are
a necessary (but not sufficient) condition to beat the benchmark’s return, without increasing the
overall variance of the portfolio. This is also a generalization of the model of Jorion (2003) with the
use of commissions.

I apply these equations to an Italian liquidity fund and I find that the fees are too high and the
TEV is low. In fact, all the funds in the liquidity category show similar problems that often render
the portfolio unable to cover the fees without increasing the variance.
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Minimum Tracking Error Volatility

1 Introduction

Investors sometimes assign part of their funds to an asset manager, who is given the task

of beating a benchmark. In fact, asset managers, that receive a fee from investors to beat

the benchmark, often follow passively their index. Moreover, risk managers that only check

that portfolio managers do not exceed a fixed level of relative risk, often make the benchmark

difficult to be beaten. The comparatively poor performance of asset managers is one of

the main reasons of the decreasing growth of the Investment Fund market. The world asset

management market faced a big reduction of its growth in 2008 and in the first half of 2009, as

it can be seen in figure 1. Moreover analyzing only the “long-term” part (all funds excluding

Money market ones) in 2008 the net sales1 were largely negative (over 400 Euro billions).

Figure 2 shows that the health of Europe market is even worse, indeed it records a large fall

of net sales since the second half of 2007, with only a small rescue in 2009, after the crash in

october 2008 (-130 Euro billions in only one month due to the financial crisis also tied to the

Lehman’s Brother bankruptcy in September 2008).

Focusing on single nations it is evident that some very critical situations exist. For example

in Italy investors ransomed a huge amount of money from open funds over the last few years:

in 2008 net sales were negative at over 143 billion euro, however the decrease of interest for

open funds began since 2002 and increased since 2006, as it can be seen in fig.3.

One of the problem of the asset management market is the presence of Exchange Traded

Funds (ETFs), that are a strong competitor of funds due to the fact that they posses some

advantages that are fundamental especially during critical periods: low fees, better liquidity

and better disclosures. The global ETF market grew very much in these years, also during

the crisis; in 2009 the global asset under management exceeded 1000 billions dollars, with a

+45% that is much more than the +27% of the Msci World index2.

Now, against ETFs, all the funds that follow a passive strategy have no longer reason to exist,

and also the need to outperform the benchmark is strongly increased for active manager3. For

this reason I want to understand if a manager is truly active (he/she has the possibility to

beat the benchmark without increasing the overall portfolio variance) and, to do this, I can

use a measure already employed in the asset and risk management departments: the tracking

error volatility (TEV), which measures the volatility of the deviations of an active portfolio’s

1New sales of funds plus reinvested dividends less redemptions.
2Source for the global ETF market data are the BlackRock Etf Landscape Industry Review and the EDHEC

European Etf Survey.
3For Example, Nizam Hamid, the sale director of iShares Europe, calculates that in the 2001-2008 period,

ETFs overperformed their benchmark by 89 basis points, with a volatility of 66 basis points under their index.
Instead, active funds had an average underperformance of 297 basis points less than their benchmarks, with a
volatility higher than the benchmarks themselves (source: Bluerating). Also French (2008) finds that an U.S.
investor would increase his average annual return by 67 basis points over the 1980 to 2006 period if he/she
switched to a passive market portfolio.
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Figure 1: Net Sales of Funds worldwide (Euro billions). Source: EFAMA.

Figure 2: Net sales of European UCITS (Euro billions). Source: EFAMA.

Figure 3: Net Sales of Italian Open Funds (Euro billions). Source: Assogestioni.
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returns from the benchmark’s returns.

The paper begins with a section that introduces the TEV measure; in section 3 the literature

review is presented; the analytical derivation of the minimum TEV value is in section 4;

section 5 applies the obtained formulas and section 6 concludes.

2 Tracking Error Volatility

I analyse one of the most popular techniques to impose a restriction on the activity of an asset

manager: the use of a limit on the Tracking Error Volatility (TEV). The TEV measures the

volatility of the deviations of an active portfolio’s returns from the benchmark’s returns. I

define the following notation, as done by Jorion (2003)4:

• q: vector of benchmark weights;

• x: vector of deviations from benchmark;

• qp = q + x: vector of portfolio weights;

• e: vector of expected returns;

• V: covariance matrix of asset returns.

So I can write the TEV as:

T = x’Vx (1)

This measure can be both backward or forward-looking5: it depends on the use of x as past

or current deviations and V as occurred or guessed covariance matrix. As in Jorion (2003) I

will use the TEV in the forward-looking meaning, but it would be the same in the backward-

looking sense (and in the empirical application the backward-looking sense will be used).

The tracking error has different uses, depending on the strategy of the portfolio:

• a passive strategy seeks to reproduce a benchmark portfolio return, by minimizing the

tracking error;

• an active strategy seeks to outperform an index, while staying within certain relative

risk boundaries defined by the TEV.

4The notation is the same as Jorion (2003), but not to confuse the reader, I will use, differently from
Jorion, bold character for vectors and e instead of E for the vector of expected returns: in this way the reader
can distinguish a scalar from a vector (in bold) and from a matrix (in capital and bold). However, I point out
that only the TEV, following Jorion, in the equations is shortened in T , capital letter, even if it is a scalar
value.

5The forward-looking TEV can be linked with the concept of Value-at-Risk (VaR) as shown by Jorion
(2003). Recently many papers focused on VaR constraint in portfolio selection, as Gordon and Baptista
(2008) or Campbell et al. (2001).
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Now passive strategies, as already said, are developed directly by computers that manage the

Exchanged Traded Funds, so asset managers have to implement active strategies. For this

reason I focus only on the active strategy.

In active portfolios, it is well-known that TEV is used by risk managers to give to asset

managers an upward limit of relative risk, which helps to preserve investors’ funds from

dangerous bets. In this paper I will upset the aim of this measure, indeed it could be also

used as a downward limit to understand if the portfolio manager truly works to beat the

benchmark, or if he/she follows the index passively.

The tracking error volatility is not the only way to analyse the relative risks that a manager

assumes and examples of alternative measures are in Rudolf et al. (1999)6. However, I will

focus on TEV, because it is in practice the most used measure of relative risk. An extension

to other relative risk measures could be done in future studies.

3 Literature review

The literature on portfolio management is vast, with research papers starting from Markowitz

(1952). A lot of authors analyze the implications of constraints on the allocations, for example

Jagannathan and Ma (2003) explain why constraints are useful. Other authors, as Boyle and

Tian (2007), do not study the problem of maximizing the expected utility of terminal wealth,

but the problem of outperforming a benchmark using constraints. The tracking error volatility

is the constraint on relative risk more used in practice and the framework that defines the

investment goal in terms of the excess return on benchmark and defines risk in term of

tracking error starts with papers like Franks (1992). In the field of benchmarking, a lot of

studies debate various topics. One topic is how to optimize costs in passive management

choosing the best number of asset to use, as Jansen and van Dijk (2002), or choosing when

to rebalance, as Gaivoronski et al. (2005). Another topic is how an active manager can beat

6In Rudolf et al. (1999), the authors compare the TEV with four other measures:

1. the mean absolute deviations (MAD) of portfolio’s returns compared to the benchmark’s one;

2. the mean absolute downside deviations (MADD), that is the MAD restricted to negative deviations
between portfolio and benchmark returns;

3. the MinMax, that makes the portfolio weights such that the maximum deviation between portfolio and
benchmark returns is minimized;

4. the Downside MinMax (DMinMax), that is the MinMax restricted to negative return deviations.

Rudolf et al. (1999) think that a linear tracking error measure is better because fund managers have linear
performance fees, so this model improves the description of their risk attitude. Moreover, they show that
a linear tracking error optimization is equivalent to expected utility maximization. However, they try an
empirical application and their results do not show that MAD or MADD models give weights (and so returns
and standard deviations) very different from those obtained with an algorithm that minimizes the TEV.
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the benchmark using a particular division of labour, as suggested in papers like Lee (2000),

or using particular strategies, as in Browne (1999). This topic is directly related with the

evaluation of the asset manager and also in this field a lot of authors, like Clarke et al.

(2002), try to discern the ability of the asset manager to forecast returns from a portfolio

performance that is affected by constraints or try to understand the source of the “alpha”7

produced by the asset manager, like Lo (2007), or try to understand how active is the asset

manager, as Cremers and Petajisto (2009). Another literature layer is about management

fees, as Kritzman (1987) or Elton et al. (2003). Authors, like Kuenzi (2004), focus on tactical

ranges on portfolio weights to assure the compliance of tracking error limit. Recently, some

authors, like Barro and Canestrelli (2008), are analyzing how to optimize portfolios that have

structured pay-offs, as with a minimum guarantee constraint.

Our interest is focused on the tracking error literature generated by Jorion (2003), that brings

back the excess of return-TEV problem in the mean-variance space. A lot of authors use this

methodology: some authors, like El-Hassan and Kofman (2003), add further constraints such

as no short-selling, while other authors, as Palomba (2008), empirically analyse methods of

optimizing portfolios. Now Jorion’s paper is better reviewed.

3.1 A review of Jorion (2003)

Jorion notes that the excess return-TEV problem induces the manager to optimize in an

excess return space only, ignoring the investor’s overall portfolio risk8. Roll (1992) already

noted that excess return optimization leads to portfolio with a sistematically higher risk than

the benchmark and also other authors, as Scowcroft and Sefton (2001), questioned the utility

of a constraint on TEV. It could be more important to compare the overall volatility of the

portfolio with the volatility of the benchmark (assuming variance as a measure of risk) instead

of using the TEV to value the risks undertaken by the asset manager9. However, the asset

management industry maintains emphasis on tracking error risk control, therefore Jorion

(2003) tries to correct the problem of portfolios with higher variance than the benchmark,

imposing an additional constraint (beyond the maximum TEV one) that forces the portfolio

volatility to be equal to that of the index: σ2
P = σ2

B.

Before imposing this further restriction, Jorion analyses the form of the TEV-constrained

frontier in the mean-variance space. To summarize Jorion’s results, I need to use the notation

7Running an OLS regression of portfolio’s return on benchmark’s return, an high intercept “alpha” repre-
sents the ability of the asset manager in choosing single stocks or bonds that have a return higher than the
index or in having a goog market timing.

8Ineichen (2004) focus also on the poor returns of the relative performance paradigm.
9Moreover Admati and Pfleiderer (1997) argue that the rationale for benchmark-adjusted compensation

scheme is inconsistent with optimal risk-sharing and does not help in solving potential contracting problems
with the manager. Many studies were done on the agent/manager relationship and Cornell and Roll (2005)
also show that delegated investing should be considered by the capital market equilibrium theories.
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introduced in section 2, and also to define:

• µB = q’e : benchmark’s expected return;

• σ2
B = q’Vq : expected variance of benchmark’s returns;

• µε = x’e : portfolio’s expected excess return;

• µP = (q + x)′e = µB + µε : portfolio’s expected return;

• σ2
P = (q + x)′V(q + x) : portfolio’s expected variance.

Jorion finds that the constant TEV frontier is an ellipse in the mean-variance space (fig.4).

Figure 4: Efficient frontier and constrained tracking error volatility frontier.

Total
return

Absolute risk

efficient frontier

BMK

TEV frontier

Now I summarize some features of the ellipse, analysed by Jorion (2003), that I need to

remember in order to face our problem. A feature is that the horizontal center of the ellipse is

displaced to the right, compared to the benchmark, by the amount of tracking error variance

T , indeed it is centered at µB and σ2
B +T . Another characteristic is that the main axis of the

ellipse has a positive slope when µB − µMV > 0, a negative slope when µB − µMV < 0 and

is horizontal when µB = µMV ; µMV is the expected return of the minimum variance portfolio

and it is equal to −b/c, with b = e’V−11 and c = 1’V−11 (1 is a vector of 1), following

Jorion’s notation. Another feature is:

σ2
P = σ2

B + T + 2∆1

√
T

d
(2)
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always with Jorion’s notation, d = a − b2/c with a = e’V−1e and b and c as defined above,

while ∆1 = µB − µMV .

Finally I report the constant TEV frontier that is given by:

dy2 + 4∆2z
2 − 4∆1zy − 4T (d∆2 −∆2

1) = 0 (3)

defining the deviations from the center as y = σ2
P − σ2

B − T and z = µP − µB, and ∆2 =

σ2
B−σ2

MV , where the variance of the minimum variance portfolio is σ2
MV = −1

c
. This represents

an ellipse when d∆2−∆2
1 > 0, that is the case when the benchmark is within the efficient set.

After the analysis of the constant TEV frontier in mean-variance space, Jorion, as already

said, applies another constraint to the optimisation problem: σ2
P = σ2

B. Then he evaluates if

it is “costly” in terms of a drop in µ compared to a drop in σ, and he finds that this ratio is

very low, thanks to the shape of the ellipse that is rather flat in the upper part. Additionally

he shows that this constraint is more useful if the TEV is low or if the benchmark is more

inefficient.

El-Hassan and Kofman (2003) applies Jorion’s methodology on a portfolio of Australian

stocks, adding a short selling constraint. They observe some features with the short-selling

constraint:

• the opportunity set is severely reduced;

• assets weights are smoother, which implies less rebalancing costs;

• ex-post TEV does not usually exceeds the ex-ante one, while ex-post unconstrained

TEV heavily exceeds the ex-ante one, with a difference that is increasingly higher as

maximum tracking error is increasingly higher.

I will now use Jorion’s methodology to develop a rule to evaluate if a manager can be

considered active or not.

4 Minimum TEV in presence of commissions

In an active strategy, the declaration of a benchmark is relevant for two purposes:

1. the definition of the risk profile of the portfolio;

2. the evaluation of the performance of the fund’s manager.

Risk managers usually impose a maximum TEV to keep the risk of the portfolio near to the

risk of the selected benchmark. However, in doing so, a rule on TEV is not established to

understand if the asset manager is truly active or not. I want to fill this gap with a rule that

9
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also fixes a minimun level of TEV, so the portfolio manager should have to keep the fund’s

TEV in a range. Therefore I calculate the minimum TEV that an asset manager has to

face if he/she wants to reach the return of his/her benchmark, considering that the portfolio

manager receives a fee that reduces the return of the fund, lowering all the efficient frontier

(with and without TEV constraint); this fee produces a downward translation of the frontier

by the amount of the commission, as shown in fig.5. For example a fund that is a perfect

copy of the benchmark has a return under the return of the benchmark equal to the amount

of the fee.

In this case I am considering management fees paid to the asset management company for

its work, that are a common feature of all investment funds, and not subscription fees or

performance fees.

Figure 5: Efficient frontier and constrained tracking error volatility frontier with fee (red) and

without fee (black).

Total
return

Absolute risk

real efficient frontier
efficient frontier

BMK

TEV frontier

real TEV frontier

4.1 Mathematical proof

The notation introduced in sections 2 and 3.1 is used to set up our optimization problem. I

want the minimum TEV:

min
1

2
x’Vx (4)

Subject to these constraints:

x’1 = 0

x’e = com

σ2
P ≤ σ2

B

10
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where com is the amount of fees paid by the investors to the asset manager.

The first constraint is straightforward and imposes that the portfolio deviations (bets) must

add up to zero.

The second constraint is the core of this study: it asks to the portfolio manager to cover the

management fees with his/her active portfolio selection. It could be written as:

x’e = excess return (5)

This is a more general expression: the excess return could be more than the fee, for example if

I want to beat the benchmark at least by a minimum amount10, or could be less, for example

it could be the difference between the commission of the portfolio and the fee of an ETF that

invests on the same market. However, now the focus is in covering management fees, so I will

use the notation com.

The third constraint imposes that the portfolio’s variance should not be more than the ben-

chmark’s variance, in order to avoid an excess return of the portfolio above the index merely

due to a higher risk level. This equation can be rewritten as x’Vx+ 2q’Vx+q’Vq−σ2
B ≤ 0.

Noting that q’Vq = σ2
B, the expression can be simplified:

(x + 2q)′Vx ≤ 0 (6)

This constraint can bind or not. To face this problem, I have to use the features of the ellipse,

reported in section 3.1, which describes portfolios with constant TEV in the mean-variance

space; indeed, from equation 2 I obtain that σ2
P < σ2

B if and only if ∆1 < 0 and T <
4∆2

1

d
. So

three cases can be distinguished:

1. µB ≥ µMV (∆1 ≥ 0): the ellipse has a positive (or flat) slope and the third constraint

is binding (fig.6);

2. µB < µMV and T >
4∆2

1

d
: in this case the ellipse has a negative slope, but its center is

shifted on the right enough to make the third constraint binding (fig.7);

3. µB < µMV and T ≤ 4∆2
1

d
: the ellipse has a negative slope and the best portfolio with

this TEV covers the commission with his excess return, obtaining a total variance lower

(or equal) than the benchmark’s variance, so the third constraint do not produce effects

(fig.8).

For the first two cases, when the third constraint is binding, this Lagrangian is taken:

L = 0.5x’Vx + λ1(x’1) + λ2(x’e− com) + 0.5λ3[(x + 2q)′Vx] (7)

10In this case performance fees, if they exist, could be considered too.

11



Minimum Tracking Error Volatility

Figure 6: Frontier with constrained TEV - Case 1.

Figure 7: Frontier with constrained TEV - Case 2.

Figure 8: Frontier with constrained TEV - Case 3.
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Setting the first-order condition ∂L
∂x = 0, this solution is obtained:

x =

(
−1

1 + λ3

)
·V−1 · [1λ1 + eλ2 + λ3Vq] (8)

Substituting equation (8) in the constraints, the values of λs are obtained, so that the three

constraints are satisfied. From the first constraint I have:

λ1c+ λ2b+ λ3 = 0 (9)

where q’1 = 1 is used, and c and b are the same as used by Jorion (2003).

From the second constraint I obtain:

λ11’V−1e + λ2e’V
−1e + λ3q’e = −com · (1 + λ3) (10)

If q’e = µB is used, I obtain:

λ1b+ λ2a+ λ3µB + com · (1 + λ3) = 0 (11)

The third constraint becomes:

[λ11’V
−1 + λ2e’V

−1 + λ3q’− 2(1 + λ3)q’]V(λ1V
−11 + λ2V

−1e + λ3q) = 0 (12)

and, with some transformations, I arrive to:

λ2
1c+ λ2

2a− λ2
3σ

2
B + 2λ1λ2b− 2λ1 − 2λ2µB − 2λ3σ

2
B = 0 (13)

The system composed by equation (9), (11) and (13), is then solved to obtain the values of

λs. Now eq.(8) is used to obtain the minimum TEV that the portfolio manager has to face if

he/she wants to beat the benchmark, T = x’Vx:

T =
λ2

1c+ λ2
2a+ λ2

3σ
2
B + 2λ1λ2b+ 2λ1λ3 + 2λ2λ3µB

(1 + λ3)2
(14)

Substituting the values of λs in the previous equation, the final result (the smallest value) is
given by the following expression:

T = 2∆2 −
2∆1(∆1 + com)

d
−

2∆2

d

√
∆4

1 + 2com∆3
1 + com2∆2

1

∆2
2

−
2d∆2

1 + 2comd∆1 + com2d

∆2
+ d2 (15)

where ∆1, ∆2 and d derive from the usual notation used by Jorion (2003) and com is the

constant value of commissions.

In the third case, when the third constraint is not binding, this simplier Lagrangian is

taken:

L = 0.5x’Vx + λ1(x’1) + λ2(x’e− com) (16)

13
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Following an analogous proceeding as before, that is setting the partial derivative with respect

to x to zero, using this x in the two constraints to obtain the values of λs, and inserting the

values of λs in the solution to obtain the minimum TEV, I have this final result:

T =
com2

d
(17)

Combining eq.(17) with the condition T ≤ 4∆2
1

d
(third case), I obtain that equation (17)

can be used if

com ≤ −2∆1 (18)

otherwise eq.(15) must be used.

4.2 Analysis and considerations about the two formulas

The main driver of the minimum TEV in equation (17) is the amount of commission: with

a higher commission, a higher TEV is needed to cover the fee; moreover, the increase of

minimum TEV is parabolic (see fig.9), thus, for a high commission level, a small decrease

of the fee will strongly decrease the minimum TEV required. This is also true with eq.(15),

even if it is not so clear (see appendix A for the analytical demonstration of the positive

relationship between fees and minimum TEV).

For all the other components I can say that higher expected returns reduce the minimum

TEV in both equations (15) and (17). More generally, in equation (15), a higher value of ∆1

or a lower value of ∆2, increases the minimum TEV (see fig.9: comparing figure A with figure

B at the same level of commission, the minimum TEV is higher in fig.A where ∆1 is higher):

a more efficient benchmark increases the TEV required. Instead, in eq.(17) the values of

benchmark’s mean or variance do not modify the TEV value, except when the change makes

the third constraint binding and eq.(17) has to be replaced by eq.(15).

I can observe that equation (17) is much simpler than eq.(15), thus, for practical pourposes

in a risk management department, eq.(17) could be used as an approximation of eq.(15).

Indeed, even if eq.(17) should be used only with an inefficient benchmark (µB < µMV ), it is

also true that eq.(15) implies always a minimum TEV equal or higher than the T obtained by

eq.(17), so eq.(17) could be seen as a lower bound for TEV, that does not have to be lowered.

Moreover, if an asset manager allocates portfolio weights following the ex-ante minimum TEV,

he/she should have an ex-post TEV similar to (see Zenti and Pallotta (2002)) or larger than

the minimum, because of the stochastic nature of portfolio weights, as shown by Satchell

and Hwang (2001) and by the already cited El-Hassan and Kofman (2003). This highlights

again that a manager who has an ex-post TEV lower than this minimum value, can not be

considered active.

Finally, I outline four important considerations:

14
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Figure 9: Minimum TEV at different level of commissions. Fig.A: ∆1 = 0.001, ∆2 = 0.01,

d = 0.066. Level A of commissions is the maximum level of commission that could be covered:

d∆2 − ∆2
1 = com(com + 2∆1). Fig.B: ∆1 = −0.005, ∆2 = 0.01, d = 0.066. Level A of

commissions is the maximum that could be covered, d∆2 − ∆2
1 = com(com + 2∆1), while at

level B com = −2∆1, so between the origin and level B, the minimum TEV is calculated using

eq.(17), while between level B and level A it is calculated with eq.(15).

1. equation (15) or (17) is a necessary, but not sufficient condition to beat the benchmark.

Indeed, an asset manager can take a lot of bets compared to the allocation of the

benchmark, but these bets could be wrong. However in this context this is not a

problem, indeed if the portfolio manager is not able or lucky11, the choice of an ETF,

for example, is surely superior and the investment trust has no reason to exist;

2. a special case of the above consideration is that the benchmark is on the efficient frontier.

In this case the asset manager cannot beat the return of the benchmark if he/she does

not want to risk more than his/her referencial index. However, the most rational strategy

for an investor that wants the benchmark risk-return profile, is to invest directly in the

benchmark (in an ETF that copies it, with a passive strategy) that is already efficient;

3. benchmarks that lie out of the efficient set are avoided, because in these cases the

constant TEV frontier is no more an ellipse and all analytical results are not valid; the

11Busse et al. (2006) find that better-performing portfolios show persistence in their performance, so their
managers are probably more able than lucky.
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condition, already reported in section 3.1, to be satisfied is d∆2−∆2
1 > 0 so, for example,

I do not consider a benchmark grossly inefficient (with a very high negative ∆1, that

is µMV much higher than µB), as the investor could find and pick another index with

better mean-variance characteristics;

4. large values of commission are also avoided because, if com > −2∆1 (that implies that

I am in one of the first two cases), I have to control that d∆2 −∆2
1 ≥ com(com+ 2∆1),

to be able to use eq.(15), otherwise the term under the square root in eq.(15) becomes

negative. From the economic perspective it means that it is impossible to have an excess

return which covers the fees without increasing the volatility of the portfolio12. Thus,

combining this condition with the condition of the existence of the ellipse I obtain:

d∆2 −∆2
1 > max[0, com(com+ 2∆1)] (19)

An example can be used to see the relationship between fees and TEV and the limit values

for commissions. These features are shown in figure 9. I set ∆2 = 0.01, d = 0.066 and, for

fig.A, ∆1 = 0.001, so d∆2−∆2
1 > 0 and the ellipse exists. With a positive ∆1 I am in the first

case, thus eq.(15) is to be used. It is evident that the minimum TEV required increases with

fees and this increase is higher and higher. Level A of commissions is the maximum level that

could be covered and it is found applying constraint d∆2 − ∆2
1 = com(com + 2∆1). Above

level A the asset manager can not cover the fees without increasing the overall volatility of

the portfolio return; however, if the asset manager wants to know the minimum TEV to beat

the benchmark, accepting a portfolio’s variance higher than the benchmark’s variance, he/she

can use eq.(17).

For fig.B, instead, ∆1 = −0.005 and, again, d∆2 − ∆2
1 > 0 so the ellipse exists. With a

negative ∆1 I am in case 2 or 3. Till com ≤ −2∆1 I am in the third case and the minimum

TEV is calculated using eq.(17), while with com > −2∆1 I am in the second case and the

minimum TEV is calculated using eq.(15). In figure 9 com = −2∆1 is at level B, so between

the origin and level B eq.(17) is used, while between level B and level A eq.(15) is applied.

Level A of commissions is again the maximum that could be covered without increasing the

volatility of the portfolio return, calculated as d∆2 −∆2
1 = com(com+ 2∆1).

5 An empirical case

A category of funds that could be easily replaced by the correspondent ETFs is the liquidity

fund group. Indeed, all these funds show low TEV values and they are often not able to cover

the commission fees (that are lower compared to stock funds, but not low enough). For these

12In this case eq.(17) can be used to know the minimum TEV required to beat the benchmark, even if with
this value I accept a level of the portfolio’s variance higher than the benchmark’s one.
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funds is really difficult to have bets that can move the return of the fund significantly above

the benchmark return.

I analyse, for example, the Italian liquidity fund market13 and, in particular, the TEV of

the liquidity fund of the biggest Italian asset management firm. This fund between 2001

and 2007 always underperform its benchmark of a 0.70%-0.80%, because its tracking error is

very low and it has a commission of 0.80% (a 0.90% of Total Expense Ratio, TER). Since

2007 the benchmark is 100% the “MTS -ex Banca d’Italia- BOT lordo”. The performance in

2007 is analysed: the fund return is 2.7%, while the benchmark return is 3.5% (4% without

considering the 12.5% of taxes), the difference is about the value of the commission.

Using our formulas I can understand the causes of the underperformance compared to the

benchmark. I calculate the TEV of the fund as the standard deviation of the tracking error

between the annualized returns of the fund and of the benchmark, and I obtain a value of

3.3%. I do not know what is the universe of assets in which the fund can invest, but the ten

assets with the highest weights in the portfolio are known: they are all Italian government

debt titles (BOT, BTP, CCT and CTZ); so I use, as approximation, all the returns data of

BOT, BTP, CCT and CTZ that are present in Datastream for 2007.

I control that the benchmark is in the efficient set, indeed d∆2−∆2
1 > 0, so the costant TEV

frontier is an ellipse. In theory this fund belongs to the second case (∆1 < 0 and com > −2∆1),

so I have to apply eq.(15). However, I observe that d∆2 − ∆2
1 < com(com + 2∆1), so the

fees are too high to be covered without increasing the level of portfolio’s variance (with our

small portfolio composed by BTP-BOT-CCT-CTZ available in Datastream). The maximum

level of commission that can be covered with the estimated values of d, ∆1 and ∆2 is 0.44%:

about a half of the real commission. I can already conclude that the required commission is

too high for this kind of fund.

In this case I can only calculate the minimum TEV that can cover commissions accepting an

increase in the total variance. Thus I use eq.(17): the value obtained is 3.1%, very near to

the real 3.3%. It means that the asset manager has to be very very good to cover all the fee

with this minimum use of bets. Indeed with a value of 3.3% for the standard deviation of the

TE, the fund can cover at most a fee of 0.85%. Moreover these bets are surely not all good,

as I can understand observing the mean of the tracking error which is close to zero (if I add

to the portfolio returns the 0.80% of commission).

These values are perhaps inaccurate, because I do not know the real universe of assets avai-

13Assogestioni, the association of the Italian investment management industry, classifies liquidity fund as
all the funds that have the following characteristics:

• all the portfolio is invested in cash or bonds that must have a rating and this rating have to be at least
A2 (Moody’s) or A (S&P) or equivalent;

• duration is under 6 months;

• exchange rate risk is not covered.
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lable for the portfolio manager. However, this analysis signals strongly that the commission

level is set too high and that the activity level is quite low.

This problem is quite common for all liquidity funds. Indeed, if I hypothesize that all Italian

liquidity funds have as benchmark the “MTS - ex Banca d’Italia - BOT lordo” and I calculate

the TEV for all of them in 2007, I often find similar values; if I hypothesize the same com-

mission level (0.80%) too, some of these funds are also under the minimum level of activity

necessary to beat the benchmark even with a higher variance of the overall portfolio (eq.(17))

(I remember that, with our available assets, this level of commission is too high to be beaten

without increasing the variance of the portfolio over the variance of the benchmark).

6 Conclusions and possible future works

Asset managers often receive a fee from investors to beat a benchmark, but sometimes they

follow it passively and, in this way, they are not able to cover the fees with the excess return

obtained over the benchmark. The growth of ETFs forces asset manager to be truly active if

they want to remain on the market.

In this paper I analitically derive two formulas, (15) and (17), that fix the minimum trac-

king error volatility necessary to beat the benchmark index without increasing the overall

variance of the portfolio. The risk management department can distinguish if the asset ma-

nager is truly active following these equations. Moreover, it can understand if the maximum

level of tracking error volatility fixed is too low and makes the benchmark overly difficult to

be beaten.

The application of these equations to a real liquidity fund shows that the fees are too

high (indeed it is impossible to cover the commission without increasing the overall portfolio

variance) and the TEV is quite low. In fact, a lot of funds in the liquidity category show low

TEV values that sometimes render the portfolio unable to cover the fees.

From a theoretical point of view, this paper upsets the maximization done by Jorion

(2003), generalizing that model with the addition of commissions.

A possible extension of the present work could be the maximum TEV calculated using

the risk aversion implicit in the benchmark. The risk aversion implicit in a benchmark can

be obtained simply reversing the algorithm used to have the optimal asset weights given a

risk aversion parameter, or minimizing the distance of Certainty Equivalent Return (CER)

between the optimal and the observed portfolios as done in papers such as DeMiguel et al.

(2009) or Bucciol and Miniaci (2008). Then the expected TEV for the optimal portfolio can

be calculated and this value can be used as maximum TEV, indeed to maximize our investor’s

utility a TEV higher than this one is not needed. With this method, and with the equations

that determine the minimum TEV, the risk management can ask the asset manager to stay

in a range of TEV values.

Another possible extension could include higher moments, for example adding a constraint
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on kurtosis, to force it to be equal or less than the benchmark kurtosis, or a constraint on the

whole utility function.

A Appendix: min TEV and fees, analytical derivation

In eq.(17) it is evident that when fees increase, the minimum TEV increases also. This is not

immediately evident in eq.(15) also, thus I derive the first derivative in com and I show that

it is positive.

∂T

∂com
= −2∆1

d
− ∆2

d

1√
∆4

1+2com∆3
1+com2∆2

1

∆2
2

− 2d∆2
1+2comd∆1+com2d

∆2
+ d2

·

·
(

2∆3
1

∆2
2

+
2com∆2

1

∆2
2

− 2d∆1

∆2

− 2comd

∆2

)
With a couple of transformations I obtain:

∂T

∂com
= −2

d

∆1 +
(∆1 + com)(

∆2
1

∆2
− d)√

∆4
1+2com∆3

1+com2∆2
1

∆2
2

− 2d∆2
1+2comd∆1+com2d

∆2
+ d2

 (20)

I know that −2
d

is negative because d is positive14, so I have to show that the expression in
brackets is negative:

∆1

√
∆4

1 + 2com∆3
1 + com2∆2

1

∆2
2

− 2d∆2
1 + 2comd∆1 + com2d

∆2
+ d2 + (∆1 + com)

(
∆2

1

∆2
− d

)
< 0 (21)

Eq.(15) refers to cases 1 and 2, so I have to distinguish the two cases: in the first ∆1 is

positive, while in the second it is negative.

I can begin with the second case with ∆1 < 0 and com > −2∆1 (otherwise I am in the third

case and eq.(17) is to be used, see eq.18):

• ∆1

√
∆4

1+2com∆3
1+com2∆2

1

∆2
2

− 2d∆2
1+2comd∆1+com2d

∆2
+ d2 < 0;

• (∆1 + com)(
∆2

1

∆2
− d) < 0, because (∆1 + com) > 0 to fulfil com > −2∆1 condition and

(
∆2

1

∆2
− d) < 0 to fulfil the condition of existence of the ellipse d∆2 −∆2

1 > 0.

Thus equation (21) is surely negative.

In case 1, instead, ∆1 > 0 so (∆1 +com)(
∆2

1

∆2
−d) is again negative, but the first part of eq.(21)

is positive, thus I have to prove that:

∆2
1

(√
∆4

1 + 2com∆3
1 + com2∆2

1

∆2
2

− 2d∆2
1 + 2comd∆1 + com2d

∆2
+ d2

)2

<

[
(∆1 + com)

(
∆2

1

∆2
− d

)]2

14d has to be positive because I know, from Jorion (2003), that I have an ellipse if the condition d∆2−∆2
1 > 0

is satisfied, so d >
∆2

1
∆2

and this is positive because ∆2 is positive.
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Developing the calculus I obtain:

d · com(2∆1 + com)

(
∆2

1

∆2

− d

)
< 0 (22)

This inequality is surely true because:

• d · com > 0;

• (2∆1 + com) > 0;

• (
∆2

1

∆2
− d) < 0, as already explained.

So equation (22) is negative and the whole partial derivative (eq.(20)) is positive.

I can conclude that, in any case, the partial derivative of com for the minimum TEV is

positive: when the fees increase, the minimum TEV required obviuosly increases.
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