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Abstract

We consider the estimation of linear models where the dependent variable is ob-
served by intervals and some continuous regressors may be endogenous. Our ap-
proach is fully parametric and two estimators are proposed: a two-step estimator
and a limited-information maximum-likelihood estimator.

The results can be summarised as follows: the two-step estimator may offer
some computational advantages over the LIML (Limited Information Maximum
Likelihood) estimator, and a Monte Carlo experiment suggests that its relative
efficiency is rather satisfactory. The LIML estimator, however, is probably simpler
to implement and has the advantage of providing a framework in which several
testing procedures are more straightforward to perform. The application of TSLS
(Two-Stage Least Squares) to a proxy of the dependent variable built by taking
midpoints, on the other hand, leads to inconsistent estimates.

An example application is also included, which uses Australian data on mi-
grants’ remittances.
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Interval Regression Models with
Endogenous Explanatory Variables∗

Giulia Bettin Riccardo (Jack) Lucchetti

1 Introduction
Interval data are very common in survey databases. In most cases, when it comes
to recording economic and financial data, such as income, wealth and so forth,
questionnaires provide an array of categories and the respondent is asked to state
which category she belongs to.

Using this kind of data as the dependent variable poses a partial censoring
problem, since the dependent variable of interest y∗i is unobserved; what is ob-
served is an interval that contains it:

mi ≤ y∗i ≤Mi

where the interval may be left- or right-unbounded.
While the idea of converting the intervals into a pseudo-continuous variable by

taking midpoints may seem attractive to many a practitioner, it is in general a bad
idea, as the resulting estimators possess no desirable properties. In Stewart (1983)
this issue is comprehensively analysed and the estimation of interval models by
maximum likelihood is advocated. Stewart’s procedure can be briefly described
as follows: the data generating process is assumed to be

y∗i = X ′i β + εi (1)

where y∗i is unobservable per se; however, once a distributional hypothesis for εi
is made, estimation becomes a simple application of maximum likelihood tech-
niques. Under normality, the log-likelihood for one observation is

`i(β ,σ) = lnP(mi < y∗i ≤Mi) = ln
[

Φ

(
Mi−X ′i β

σ

)
−Φ

(
mi−X ′i β

σ

)]
(2)

∗We would like to thank the Commonwealth Department of Immigration and Multicultural and
Indigenous Affairs for providing us with the dataset. Thanks are also due to Massimiliano Bratti,
Luca Fanelli, Chiara Monfardini, Giulio Palomba, Sergio Pastorello and the participants to the
1st Gretl Conference, Bilbao, 2009 for useful comments and suggestions.
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and the total log-likelihood can be maximised by standard numerical methods,
which are, in most cases, very effective. The above procedure is implemented
natively in several econometric packages, among which Gretl, Limdep, Stata and
TSP.

The extension of this model to the general case of endogenous regressors was
considered in a non-parametric setting by (Hong and Tamer, 2003), building on
the same techniques as in (Manski and Tamer, 2002). However, these techniques
seem rare in the applied literature, arguably because of their complexity1. For
example, in a recent paper (Neumann, Olitsky, and Robbins, 2009) a Mincer wage
equation was estimated via an interval model. Regrettably, the lack of a viable
estimating procedure prevented the authors from taking into account the possible
endogeneity of education, as customary in this type of literature.

If we confine our attention to the case when the endogenous regressors are
continuous, estimation can be performed by much simpler methods: equation (1)
can be generalised to

y∗i = Y ′i β +X ′i γ + εi (3)
Yi = Π1Xi +Π2Zi +ui = ΠWi +ui (4)[

εi
ui

]
∼ N

(
0,
[

σ2
ε θ ′

θ Σ

])
(5)

where Yi is a vector of m explanatory variables and θ , the covariance between εi
and ui, may be nonzero. In this case, Yi becomes endogenous and ordinary interval
regression does not provide consistent estimates of β and γ .

In the next section, we will tackle estimation and the related computational
issues. In section 3 the performance of several estimators will be compared by
means of a Monte Carlo experiment, while section 4 contains an example appli-
cation on real data.

2 Estimation
A simple two-step estimator can be defined in the same vein as the two-step esti-
mator for probit models with endogenous regressors by Rivers and Vuong (1988).

In practice, two-step estimation may be carried out as follows2:

1. Perform the estimation of Π and Σ by running first-stage OLS of Yi on Wi
and collect the residuals ûi.

1See Chesher (2007) for a comprehensive analysis of identification problems. See also Terza,
Kenkel, Lin, and Sakata (2008).

2We assume that the instruments Zi satisfy the order and rank identification conditions.
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2. Estimate the structural parameters by running an ordinary interval regres-
sion with Yi, Xi and ûi as explanatory variables.

The above procedure is very easy to perform if an interval regression routine is
available.

As for the asymptotic properties of the resulting estimator, its consistency fol-
lows quite trivially from the consistency of Π̂ and the clear fulfillment of the iden-
tification condition stated in (Wooldridge, 2002, p. 354). However, estimation of
the asymptotic covariance matrix for the structural parameters should take into ac-
count the fact that the second step uses the generated regressors ûi. The covariance
matrix for the parameter must therefore be computed through the logic explained,
among others, in Wooldridge, section 12.5.2. Details are given in section B in the
appendix.

The estimation problem can also be tackled by maximum likelihood. The
loglikelihood can be split into a conditional component and a marginal component
as follows:

`i(Ψ) = `C
i + `M

i (6)

where Ψ is a vector containing all the parameters. Since y∗i is imperfectly ob-
served, the conditional component is

`C
i (Ψ

∗) = lnP(mi < y∗i ≤Mi|ui) = ln [Φ(Ei)−Φ(ei)] (7)

where

Ei =
Mi− ŷi

σ
(8)

ei =
mi− ŷi

σ
(9)

ŷi = Y ′i β +X ′i γ +u′iδ (10)

The marginal component `M
i is just an ordinary multivariate Gaussian log-

likelihood:

`M
i = ln f (ui;Ψ

∗) =−1/2
[
m ln(2π)+ ln |Σ|+(Yi−ΠWi)

′
Σ
−1(Yi−ΠWi)

]
(11)

Estimation can be routinely carried out via standard numerical optimisation
algorithms, such as BFGS or similar3. However, it is interesting to note that

3A recent paper by (Kawakatsu and Largey, 2009) advocates the usage of the EM algorithm for
dealing with numerical problems in a closely related case (the ordered probit model), but we found
it unnecessary in our case, provided that the anaytical score is used. Details on the computation of
the analytical score are provided in section A in the appendix.
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point estimation is considerably simpler in the just-identified case than in the
over-identified case, since it coincides with the two-step estimator. The proof
can be obtained by a reasoning similar to the one presented in (Rivers and Vuong,
1988, p. 356), by noting that in the exactly identified case the model can be
reparametrised in such a way that the parameters of the two components of the
loglikelihood are variation free, so they can be maximised separately. In the over-
identified case, the two-step estimator is still consistent, which makes it a natural
choice for initialising the ML numerical search procedure.

In this context, several hypothesis tests are likely to be of interest: the most
obvious one is an exogeneity test, which is constructed by testing for δ = 0 by
means of a Wald test. This test can be carried out equivalently for the two-step
and the LIML estimator.

However, other hypotheses of interest are quite natural to test in a likelihood
framework: first, a LR test for overidentifying restrictions may be simply com-
puted via the difference `C and that for an interval regression of (mi,Mi) on Wi
and ûi, which would be the unrestricted log-likelihood. Additionally, the per-
observation contribution to the log-likelihood can be used for performing test
against non-nested competing models, such as Vuong’s (1989).

3 Does it really matter?
From the viewpoint of an applied economist, the methods outlined in the previous
section may seem overkill. After all, how much inaccuracy do we introduce in
the data by choosing the interval midpoint? In fact, a procedure that is commonly
used is to approximate y∗i by

ỹi =
Mi +mi

2
and assume that ỹi can be used as a proxy for y∗i : an additional source of error in
the model (most likely heteroskedastic), that could be accommodated via robust
estimation of the parameters covariance matrix. Hence, running TSLS on ỹi may
look as a sensible and inexpensive procedure.

Trivially, a first problem that arises with this method is that it does not provide
an obvious indication on how to treat unbounded observations (that is, when mi =
−∞ or Mi =∞). A more serious problem, however, is that that the above procedure
leads to substantial inference errors. The analytical explanation is obvious after
rearranging equation (3) as

ỹi = Y ′i β +X ′i γ +(εi +ξi), (12)

where ξi is defined as ỹi−y∗i . If the interval (mi,Mi) is “small”, then V (ξi) should
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be negligible4 compared to V (εi).
However, even if the basic instrument validity condition E(εi|Wi) = 0 holds,

there is no reason why the midpoint rule should guarantee E(ξi|Wi) = 0. This can
be proven by a simple extension to the IV case of the line of reasoning in (Stewart,
1983). As a consequence, the TSLS estimator converges in probability to a vector
that differs from the true values of β and γ .

To explore the consequences of the above, in a seemingly harmless case, we
ran a Monte Carlo experiment. Its setup is:

y∗i = γ0 +Yiβ +Xiγ1 + εi

γ0 = β = γ1 = 1

Yi = 1+Xi +
5

∑
j=1

Z ji +ui[
εi
ui

]
∼ N

(
0,
[

2 1
1 2

])
and the cutpoints are the vector [−2,0,1,2,5], so that, for example, if y∗i = 3, then
mi = 2 and Mi = 5. The variables Xi and Z ji are independent N(0,1). A “naive”
proxy for y∗i was constructed via the midpoint rule, as

ỹi =


−4 for y∗i <−2
Mi+mi

2 for −2 < y∗i < 5
10 for y∗i > 5

The above DGP was simulated with sample sizes of 100, 400 and 1600 obser-
vations; 40000 simulations were run in which the midpoint estimator was com-
pared to the the maximum likelihood estimator and the two-step estimator.

The results are summarised in table 1 which is organised as follows: the first
three lines report the mean bias, the median bias and the RMSE. The next two
lines report the mean of the estimated standard errors5 and the ex-post dispersion
of the parameters, namely the standard error of the estimates across the 40000
replications. Note that estimated and Monte Carlo standard errors should roughly
match, if inference is to be at all credible. The last row shows the frequency of
rejection of the hypothesis that the corresponding parameter equals its true value
at 95%.

The evidence from the Monte Carlo experiment is:

4By construction, the support of ξi is a finite interval, whose length goes to 0 as Mi−mi→ 0.
5For the midpoint estimator robust standard errors are used in the TSLS stage, while the robust

“sandwich” estimator is used for LIML: see for instance (Davidson and MacKinnon, 1999, chap.
10).
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1. The LIML and the 2-step estimators are both consistent and the actual size
of t-test is reasonably accurate even for small samples, although in this re-
spect LIML seems to perform slightly better.

2. The relative efficiency of these two estimators is comparable in the RMSE
metric. However, it should be noted that this may be a misleading compari-
son, since in the linear case the LIML estimator is known to possess no finite
moments (see Mariano and Sawa (1972)) and it is not unlikely that a similar
property carries over to the present case. On the contrary, the median bias
seems to be lower for the LIML estimator than for the 2-step estimator.

3. The application of TSLS to the naı̈ve midpoint dependent variable proxy
leads to seriously inconsistent estimates and substantial inference errors.

4 Example: the Analysis of Immigrants’ Remittance
Behaviour

An empirical application of the estimators presented above deals with the deter-
minants of remittance behaviour by immigrants and replicates the analysis put
forward in Bettin, Lucchetti, and Zazzaro (2009).

Economic literature has long ago turned its attention to the analysis of the de-
cision to remit at the microeconomic level, regarding it as a function of migrants’
characteristics and of the household’s welfare in the country of origin. Since the
pioneering work of (Lucas and Stark, 1985) on Botswana, many attemps have
been made to identify the main motivations to remit: altruism, inheritance, ex-
change, self-insurance and so forth (see (Rapoport and Docquier, 2005)).

The most crucial aspect in this context is that the empirical literature deal-
ing with the topic usually treats migrant’s income as an exogenous determinant
of remittance behaviour. Yet, the need of sending money back home can affect
working, consumption and possibly investment decisions. The amount of money
to remit is determined in the broader context of the household’s strategies. Hence,
while estimating a remittance equation that detects the main determinants of re-
mittance behaviour, endogeneity and reverse causality relationships between re-
mittances, income, consumption and saving need to be addressed..

Since data for microeconomic analyses on remittance behaviour are typically
taken from household surveys, the amount of remittances is often designed in the
questionnaires as a discrete ordered variable, with mutually exclusive intervals.

The dataset used in this empirical application is the first cohort of the Longitu-
dinal Survey of Immigrants to Australia (LSIA), selected from visaed immigrants
aged 15 years and over, who came to Australia between 1993 and 1995.
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Table 2: Remittances by immigrants: frequency distribution
Amount Abs. Freq. Cumul. Freq. % Cumul. %
1-1000 AUS$ 1584 1584 64% 64%
1001-5000 AUS$ 728 2312 29.4% 93.6%
more than 5000 AUS$ 164 2476 6.6% 100%

Individuals were interviewed three times: the first time five or six months after
arrival, the second time one year later and the third one two years later6. Unlike
most of the previous microeconomic studies on the topic, data here do not concern
a specific ethnic group, but people from 125 different countries (both developed
and developing).

When answering the question on remittance, immigrants could choose be-
tween six intervals: 1-1000 AUS $, 1001-5000, 5001-10000, 10001-20000, 20001-
50000, more than 50000 AUS $. Since observations concentrate mainly in the first
two intervals, the top four are compacted to a single one going from 5001 AUS$
upwards. Table 2 shows the frequency distribution for the remittance variable
used in the estimation. The dependent variable in our model is therefore:

ri =


1 for 1 < Ri < 1000
2 for 1001 < Ri < 5000
3 for Ri > 5001

where Ri represents the real amount of money remitted.
The remittance equation that we estimate can be written as:

ri = α
∗
1 yi +α

∗
2 ci +α

∗
3 Xi +ui (13)

where yi is the yearly income of the migrants’ household, ci total yearly consump-
tion and Xi a set of exogenous controls. ri, yi and ci are all in natural logarithms.

Xi includes two sets of control variables that can influence remittance be-
haviour. The first one refers to immigrants’ individual characteristics: the age
and its square, gender, a dummy for the presence of close relatives in the coun-
try of origin, another dummy for the intention to return to the home country and
the time since the arrival in Australia. Dummies for education level are added as
a further control. Educational attainment is divided into five levels, from upper
tertiary to primary education7.

6The time between interviews may vary substantially between households; this problem, to-
gether with considerable sample attrition, led us to ignore the “panel” aspect of our dataset and
use all data as pooled data.

7Our group of reference is the highest level of education.
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The second set of control variables includes characteristics of the origin coun-
tries: the level of per capita GDP8, as a general measure of the level of develop-
ment and the distance between Australia and the country of origin, to proxy for
transaction costs for money transfers9.

The problem of endogeneity of income and consumption is addressed using
a set Zi of six instruments. The first two describe the migrant’s knowledge of
the English language: one dummy for English being the language the immigrant
speaks best and another one which equals 1 if the immigrant declared a good
knowledge of English10. The third instrument is a dummy variable stating if the
immigrant lives in a urban or a rural environment. Dummies for the presence of
partner and children in migrant’s household are also employed, together with the
number of migrant’s household members (expressed in natural logarithm).

In order to focus on IV techniques for interval models, we chose to ignore
problems that arise when the sample is made up of people who remit and people
who do not, so that the dependent variable is truncated below a zero threshold11.

Results are reported in Table 3. With non-IV interval estimates, both income
and consumption appear statistically significant with a positive sign. The result is
expected for income, and in line with the previous findings12; on the other hand,
the only way to make sense of a positive effect of consumption on remittances
is to consider this specification as a conditional mean, in which the coefficients
do not have a behavioural interpretation, rather than a proper structural form, in
which they do. Consumption may well be an excellent predictor of remittances,
despite not causing them. This is likely to be true, for example, in a permanent-
income setting, in which consumption follows a smoother time path than current
income due to forward-looking behaviour. In this case, failing to take endogene-
ity into account makes a behavioural interpretation of the estimated coefficients
impossible.

In fact, the Wald test for exogeneity rejects strongly the null hypothesis for
income and consumption. Moreover, the result from a LR test of over-identifying

8Data are from the World Development Indicators database; the variable is the log of the mean
per capita GDP over the period 1992-2000.

9Geographical distance could also represent the strength of family relationship with those left
behind. The source of the data employed here is the CEPII (Centre d’Etudes Prospectives et
d’Informations Internationales) dataset on bilateral distances.

10Although it may be argued that the two instruments are highly correlated, we use them both to
capture different aspects: on one hand, the direct effect of the English knowledge on migrants’ job
performance, and then income; on the other hand, their degree of integration in the host country,
trying to take into account that if migrants rigidly stick to their native language and do not improve
their use of English, this could be read as a difficulty (or even a choice not) to integrate in the host
society.

11For a thorough analysis of this problem, see Bettin, Lucchetti, and Zazzaro (2009).
12Among others, see Brown (1997) and Clark and Drinkwater (2007).
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Table 3: Estimates for the Australian remittances data
Non-IV Midpoint Two-step LIML

const 1.627 34.226 *** 15.328 *** 16.106 ***
male 0.299 *** 0.713 ** 0.259 ** 0.255 **
age 0.025 0.250 ** 0.099 ** 0.103 **
age2 0.000 -0.003 * -0.001 ** -0.001 *
time in AUS 0.439 *** 1.438 *** 0.451 *** 0.450 ***
back home 0.412 ** 1.445 ** 0.461 ** 0.465 **
relatives overseas 0.048 0.007 -0.019 -0.029
qualifications 2 0.177 0.533 0.149 0.149
qualifications 3 -0.151 -0.697 -0.210 -0.207
qualifications 4 -0.408 ** -0.390 -0.150 -0.118
qualifications 5 -0.633 *** -1.645 *** -0.608 *** -0.601 ***
per capita GDP 0.188 *** 0.948 *** 0.283 *** 0.287 ***
distance -0.408 *** -1.286 *** -0.412 *** -0.411 ***
income 0.217 ** 3.050 *** 0.993 *** 1.083 ***
consumption 0.351 ** -6.725 *** -2.087 *** -2.275 ***
N 1135 1130 1130 1130
sigma 1.18 5.23 1.15 1.14
Wald test 25.825 26.139
Wald test p-value 2.47e-6 2.11e-6

restrictions yields a test statistic of 6.051 (p-value: 0.19), which confirms the
validity of the set of instruments we chose to address the issue.

Two-step estimates (column 3) are only slightly different from LIML estimates
(column 4). Income and consumption are in both cases statistically significant at
1%, with the signs predicted by the theory. Elasticity of remittances to income
is not significantly different from 1, while elasticity to consumption is slightly
larger than -2. It is noteworthy that this result matches the estimates presented in
Bettin, Lucchetti, and Zazzaro (2009) very closely, despite the difference in the
estimation techniques used.

The fact that the coefficient on income is never statistically different from
1 gives some support to exchange-driven models of remittances, in which their
elasticty to income is usually not bigger than one and remittances therefore can be
considered as a normal good. On the other hand, pure altruistic models typically
predict a higher elasticity to income, meaning that remittances act as a superior
good.

It is also interesting to compare the income and consumption elasticities to
the results from the midpoint estimates. In column 2, the sign on the elasticity
to consumption is negative as we espect when using IV techniques but the coeffi-
cients are much bigger (in modulus) both for income (3.050) and for consumption
(-6.725) and hardly justifiable from an economic point of view. Keeping in mind
also the outcomes of the Monte Carlo experiment presented in Section 3 it should
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be then rather clear that this empirical procedure may produce unreliable results.13

Among individual characteristics, gender differences result statistically signif-
icant: other things being equal, male migrants remit on average 25% more than
female (Aggarwal and Horowitz, 2002, Amuedo-Dorantes and Pozo, 2006). The
relationship between the age of the immigrant and the amount remitted seems to
be nonlinear, with a positive coefficient on the variable and a negative one on its
squared term14. The desire to return to the country of origin predictably affects
the amount remitted in a significant way, with potential returnees remitting around
46% more, and the same positive effect is associated to the length of the period
spent in Australia.

As far as the immigrants’ education is concerned, what emerges is that, even
after controlling for the level of income, more educated migrants are likely to
remit higher amounts than the less educated as the repayment motivation would
suggest (Funkhouser, 1995, Hoddinott, 1994).

Surprisingly, per capita GDP of immigrants’ country of origin turns out to be
significant with a positive sign. Immigrants coming from richer countries seem
to remit more. However, if we consider that this variable might act as a rough
proxy of the economic conditions of the recipients, the result is consistent with
the exchange bargaining-type hypothesis of Cox, Eser, and Jimenez (1998), since
a higher income for recipients might be associated with a stronger bargaining
power with respect to the migrant and hence a more effective enforcement of the
contract15. Finally, the distance from the country of origin plays a significant role
in decreasing the amount of remittances. The intensity of the altruistic feelings is
weakened as distance increases and all kinds of exchange become more and more
difficult.

5 Conclusions
We argue that estimation of models in which the dependent variable is observed
by intervals and explanatory variables may be endogenous ought to be conducted
via appropriate methods, “sensible” alternatives being inefficient at best and plain

13It should be noted, however, that the midpoint estimates are roughly proportional to the esti-
mates obtained by the two consistent estimation methods. It may be conjectured that the bias in
the midpoint estimator is essentially a consequence of its failure to properly estimate the scale of
the latent variable. This, in turn may be due to the fact that the imputed value for the unbounded
category is essentially arbitrary. However, in our dataset the observations falling into the top cate-
gory comprise only a small share (see Table 2), and it is quite unlikely that they exert such a large
influence on the final outcome.

14Hoddinott (1994) and Clark and Drinkwater (2007) also found an inverted U shaped relation-
ship between migrants’ age and remittances.

15A similar result emerges also in Bettin, Lucchetti, and Zazzaro (2009).
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wrong at worst.
These appropriate methods include maximum likelihood and 2-step estima-

tion: as Monte Carlo evidence shows, they both lead to consistent estimates, but
thanks to the ease of implementation and other properties, we find the LIML es-
timator to be slightly preferable. The two-step estimator, however, offers com-
parable performance and is far less demanding in terms of CPU usage, although
more difficult to implement. The most interesting result to applied economists is
that from our experiment the commonly used midpoint technique clearly results
in inefficient and biased estimates.

An example with Australian remittances data shows that our procedure is ef-
fective. Endogeneity of income and consumption in the context of immigrants’
remittance behaviour does matter. Failing to account for these endogeneity ef-
fects, that we showed to be altogether highly significant, will lead to incorrect
estimates. A similar caveat applies to the midpoint IV technique, which appears
to correct the estimates for endogeneity in the right direction, but grossly overes-
timates their absolute size.
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A Analytical score for the ML estimator
In the maximum likelihood estimation, the analytical score can be computed sep-
arately for the conditional component `C

i and the marginal component `M
i .

In order to optimise the numerical search for the ML estimator, it is useful
to reparametrise equations (2) and (11) by re-expressing the covariance matrix of
[εi,ui]

′ as [
exp(κ)2 +ψ ′ψ ψ ′C−1

(C′)−1ψ (CC′)−1

]
where C is the Cholesky factorisation of Σ−1, ψ ≡C′θ and κ ≡ lnσ . Upon defin-
ing c ≡ vechC, this parametrisation ensures that the covariance matrix above is
symmetric and positive definite for any real vector [κ,ψ ′,c′].

With the single exception of κ , `C
i depends on Ψ only through ŷi. Hence, it is

useful to define16

µi ≡
∂`C

i
∂ ŷi

=
1
σ

ϕ(ei)−ϕ(Ei)

Φ(Ei)−Φ(ei)
(14)

and consider that
ût = Yi−ΠWi = Yi−

(
W ′i ⊗ Im

)
π,

16It may be interesting to note that µi equals the conditional mean of εi divided by its standard
deviation.
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so that

∂`C
i

∂β
=

∂`C
i

∂ ŷi

∂ ŷi

∂β
= µiY ′i

∂`C
i

∂γ
=

∂`C
i

∂ ŷi

∂ ŷi

∂γ
= µiX ′i

∂`C
i

∂π
=

∂`C
i

∂ ŷi

∂ ŷi

∂π
= µiδ

′∂ ûi

∂π
=−µiδ

′ (W ′i ⊗ Im
)
=−µi vec(δW ′i )

′

∂`C
i

∂ψ
=

∂`C
i

∂ ŷi

∂ ŷi

∂ψ
= µiû′i

∂δ

∂ψ
= µiû′iC = µiω

′
i

∂`C
i

∂c
=

∂`C
i

∂ ŷi

∂ ŷi

∂c
= µiû′i

∂δ

∂c
= µiû′i

(
ψ
′⊗ Im

)
L′m = µi vech(ûiψ

′)′

where Lm is a selection matrix17 such that vech(A) = Lm vec(A).

As for ∂`C
i

∂κ
, we have

∂`C
i

∂κ
=

ϕ(Ei)
∂Ei
∂κ
−ϕ(ei)

∂ei
∂κ

Φ(Ei)−Φ(ei)
=

ϕ(ei)ei−ϕ(Ei)Ei

Φ(Ei)−Φ(ei)

The evaluation of the score for the marginal component of the log-likelihood
is considerably simpler, since `M

i only depends on π (via ωi) and c. We have

∂`M
i

∂π
= −ω

′
i
∂ωi

∂π
=−ω

′
iC

∂ ûi

∂π
= ω

′
iC
(
W ′i ⊗ Im

)
=W ′i ⊗ω

′
iC

∂`M
i

∂c
=

∂

∂c

m

∑
i=1

lnCii−ω
′
i
∂ωi

∂c
= τ

′−ω
′
i
(
û′i⊗ Im

)
L′m = τ

′−vech(ωiû′i)
′

where τ is the result of applying the vech operator to a diagonal matrix containing
the inverses of the diagonal of C.

B Computation of the covariance matrix for the 2-
stage estimator

Here, we consider the model as spelled out in equations 3 and 4, with the only
exception that we consider the set of exogenous explanatory variables Xi empty,
to keep notation as simple as possible with no loss of generality.

For the two step estimator the second-step objective function is the ordinary
interval regression log-likelihood. Denote θ as the vector of its arguments; clearly,

17Technically, it is called the elimination matrix. See (Magnus, 1988), chapter 5.
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the second-step loglikelihood also depends on the first-step parameters π̂ through
the first-step residuals.

We need do compute V (θ̃) through the logic explained, among others, in
Wooldridge, section 12.5.2. In short, the idea is based on the first-order expansion

s(θ̃ , π̂) = 0 = s(θ0,π0)+ Ḧ(θ̃ −θ0)+ F̈(π̂−π0),

where s(·) is the total score for the second step, H is the Hessian of the second-step
loglikelihood evaluated somewhere between θ̃ and θ0, while F is ∂ s(θ ,π)

∂π
evaluated

somewhere between π̂ and π . This leads to

1√
n

s(θ0,π0) =−
1√
n

[
Ḧ(θ̃ −θ0)+ F̈(π̂−π0)

]
which is an Op(1) quantity by the customary score properties. By consistency of
θ̃ and π̂ , Ḧ and F̈ can be replaced by consistent estimators H̄ and F̄ to yield

√
n(θ̃ −θ0) =−H̄−1

[
1√
n

s(θ̃ , π̂)−
√

nF̄(π̂−π0)

]
+op(1)

Since π̂ is simply an OLS estimate, from the theory of extremum estimators we
have

√
n(π̂−π0) =

1√
n

n

∑
i=1

ri +op(1),

where ri =

[(
W ′W

n

)−1
Wi⊗ ûi

]
. Hence,

√
n(θ̃ −θ0) =−

1√
n

H̄−1

[
n

∑
i=1

si(θ̃ , π̂)+ F̄
n

∑
i=1

ri

]
+op(1)

so a consistent estimator of the asymptotic covariance matrix for θ̃ can be obtained
as

V̂ (θ̃) = H̄−1

(
n

∑
i=1

gig′i

)
H̄−1,

where
gi = si(θ̃ , π̂)+ F̄ri.

In the next subsections, analytical expressions for Hi and Fi will be derived, so
estimation of F̄ and H̄ is simply a matter of computing sample moments.
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B.1 Preliminary definitions
Upon defining

ûi = Yi−ΠWi = Yi− (W ′i ⊗ Im)π

and ŷi, Ei and ei as in equations (10–9), we have the following partial derivatives:

∂ ûi

∂π
=−(W ′i ⊗ Im)

∂ ŷi

∂β
= Y ′i

∂ ŷi

∂γ
= û′i

∂ ŷi

∂ ûi
= γ
′

∂Ei

∂ ŷi
=

∂ei

∂ ŷi
=− 1

σ

∂Ei

∂β
=

∂Ei

∂ ŷi

∂ ŷi

∂β
=− 1

σ
Y ′i

∂ei

∂β
=

∂ei

∂ ŷi

∂ ŷi

∂β
=− 1

σ
Y ′i

∂Ei

∂γ
=

∂Ei

∂ ŷi

∂ ŷi

∂γ
=− 1

σ
û′i

∂ei

∂γ
=

∂ei

∂ ŷi

∂ ŷi

∂γ
=− 1

σ
û′i

∂Ei

∂σ
=−Ei

σ

∂ei

∂σ
=−ei

σ

The second-stage loglikelihood is:

`i = ln [Φ(Ei)−Φ(ei)]

B.2 The score
For a start, define µi as

∂`i

∂ ŷi
=

1
Φ(Ei)−Φ(ei)

[
ϕ(Ei)

∂Ei

∂ ŷi
−ϕ(ei)

∂ei

∂ ŷi

]
=

1
σ

ϕ(ei)−ϕ(Ei)

Φ(Ei)−Φ(ei)
≡ µi;

note that σ ·µi can be interpreted as E(z|ei < z < Ei) where z ∼ N(0,σ). Hence,
ei < σ ·µi < Ei.

By a reasoning akin to section A, the score is:

sβ

i =
∂`i

∂β
=

∂`i

∂ ŷi

∂ ŷi

∂β
= µiY ′i (15)

sγ

i =
∂`i

∂γ
=

∂`i

∂ ŷi

∂ ŷi

∂γ
= µiû′i (16)

sσ
i =

∂`i

∂σ
=

1
Φ(Ei)−Φ(ei)

[
ϕ(Ei)

∂Ei

∂σ
−ϕ(ei)

∂ei

∂σ

]
=

=
1
σ

ϕ(ei)ei−ϕ(Ei)Ei

Φ(Ei)−Φ(ei)
≡ λi (17)
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B.3 The Hessian
Start from

Hββ

i =
∂ sβ

i
∂β

= Yi
∂ µi

∂β
= Yi

[
∂ µi

∂Ei

∂Ei

∂β
+

∂ µi

∂ei

∂ei

∂β

]
and

∂ µi

∂β
=− 1

σ

(
∂ µi

∂Ei
+

∂ µi

∂ei

)
Y ′i ;

note that

∂ µi

∂Ei
=

1
σ

1
[Φ(Ei)−Φ(ei)]2

[ϕ(Ei)Ei[Φ(Ei)−Φ(ei)]−ϕ(Ei)[ϕ(ei)−ϕ(Ei)]] =

=
1
σ

ϕ(Ei)Ei−ϕ(Ei)µi

Φ(Ei)−Φ(ei)
(18)

∂ µi

∂ei
=

1
σ

1
[Φ(Ei)−Φ(ei)]2

[−ϕ(ei)ei[Φ(Ei)−Φ(ei)]+ϕ(ei)[ϕ(ei)−ϕ(Ei)]] =

=− 1
σ

ϕ(ei)ei−ϕ(ei)µi

Φ(Ei)−Φ(ei)
(19)

Observe that (18) can also be written as 1
σ

ϕ(Ei)
Φ(Ei)−Φ(ei)

(Ei−µi) (should be pos-
itive).

Using (18) and (19) yields

∂ µi

∂Ei
+

∂ µi

∂ei
=

1
σ

{
ϕ(Ei)Ei−ϕ(ei)ei

Φ(Ei)−Φ(ei)
+

[ϕ(ei)−ϕ(Ei)]
2

[Φ(Ei)−Φ(ei)]2

}
= σ µ

2
i −λi (20)

So in the end

Hββ

i =−
(

µ
2
i −

λi

σ

)
YiY ′i

By a similar reasoning

Hβγ

i =
∂ sβ

i
∂γ

= Yi
∂ µi

∂γ
= Yi

[
∂ µi

∂Ei

∂Ei

∂γ
+

∂ µi

∂ei

∂ei

∂γ

]
so

∂ µi

∂γ
=− 1

σ

(
∂ µi

∂Ei
+

∂ µi

∂ei

)
û′i

and

Hβγ

i =−
(

µ
2
i −

λi

σ

)
Yiû′i.
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So by analogy,

Hγγ

i =−
(

µ
2
i −

λi

σ

)
û′iû
′
i.

It only remains to evaluate the elements pertaining to σ :

Hβσ

i =
∂λi

∂β
=

∂λ

∂Ei

∂Ei

∂β
+

∂λ

∂ei

∂ei

∂β

but since ∂Ei
∂β

= ∂ei
∂β

=− 1
σ

Y ′i , the expression above becomes

Hβσ

i =− 1
σ

[
∂λi

∂Ei
+

∂λi

∂ei

]
Y ′i

so we only need the derivatives of λi wrt Ei and ei and their sum:

∂λi

∂Ei
=

1
σ

1
[Φ(Ei)−Φ(ei)]2

×

×
[
ϕ(Ei)(E2

i −1)[Φ(Ei)−Φ(ei)]−ϕ(Ei)[ϕ(ei)ei−ϕ(Ei)Ei]
]

(21)
∂λi

∂ei
=

1
σ

1
[Φ(Ei)−Φ(ei)]2

×

×
[
−ϕ(ei)(e2

i −1)[Φ(Ei)−Φ(ei)]+ϕ(ei)[ϕ(ei)ei−ϕ(Ei)Ei]
]

(22)

from which

∂λi

∂Ei
+

∂λi

∂ei
=

1
σ

{
ϕ(Ei)(E2

i −1)−ϕ(ei)(e2
i −1)

Φ(Ei)−Φ(ei)
+

+
[ϕ(ei)−ϕ(Ei)][ϕ(ei)ei−ϕ(Ei)Ei]

[Φ(Ei)−Φ(ei)]2

}
=

= σ µiλi−νi (23)

where

νi ≡
1
σ

ϕ(ei)(e2
i −1)−ϕ(Ei)(E2

i −1)
Φ(Ei)−Φ(ei)

;

as a consequence,
Hβσ

i =
[

νi

σ
−µiλi

]
Y ′i ; (24)

a parallel line of reasoning yields

Hγσ

i =
[

νi

σ
−µiλi

]
û′i. (25)
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The last element of the Hessian is a bit more cumbersome:

Hσσ
i =−λi

σ
+

1
σ

∂

∂σ

ϕ(ei)ei−ϕ(Ei)Ei

Φ(Ei)−Φ(ei)
;

by using the chain rule again,

∂

∂σ

ϕ(ei)ei−ϕ(Ei)Ei

Φ(Ei)−Φ(ei)
=

∂
ϕ(ei)ei−ϕ(Ei)Ei

Φ(Ei)−Φ(ei)

∂Ei

∂Ei

∂σ
+

∂
ϕ(ei)ei−ϕ(Ei)Ei

Φ(Ei)−Φ(ei)

∂ei

∂ei

∂σ
=

=−
∂

ϕ(ei)ei−ϕ(Ei)Ei
Φ(Ei)−Φ(ei)

∂Ei

Ei

σ
−

∂
ϕ(ei)ei−ϕ(Ei)Ei

Φ(Ei)−Φ(ei)

∂ei

ei

σ
=

=−(ϕ(Ei)(E2
i −1))[Φ(Ei)−Φ(ei)]−ϕ(Ei) [ϕ(ei)ei−ϕ(Ei)Ei]

[Φ(Ei)−Φ(ei)]2
Ei

σ
+

− (−ϕ(ei)(e2
i −1))[Φ(Ei)−Φ(ei)]+ϕ(ei) [ϕ(ei)ei−ϕ(Ei)Ei]

[Φ(Ei)−Φ(ei)]2
ei

σ

which can be re-arranged as

∂

∂σ

ϕ(ei)ei−ϕ(Ei)Ei

Φ(Ei)−Φ(ei)
=− 1

σ

{
ϕ(Ei)(E3

i −Ei)

Φ(Ei)−Φ(ei)
− ϕ(Ei)Eiσλi

Φ(Ei)−Φ(ei)
+

−
ϕ(ei)(e3

i − ei)

Φ(Ei)−Φ(ei)
+

ϕ(ei)eiσλi

Φ(Ei)−Φ(ei)

}
=

=− 1
σ

ϕ(Ei)(E3
i −Ei)−ϕ(ei)(e3

i − ei)

Φ(Ei)−Φ(ei)
−σλ

2
i

So finally

Hσσ
i =−λi

σ
− 1

σ2
ϕ(Ei)(E3

i −Ei)−ϕ(ei)(e3
i − ei)

Φ(Ei)−Φ(ei)
−λ

2
i (26)

B.4 The F matrix
By using the results of the previous section, the calculation of F is relatively
simple: the first results we need are

∂ ŷi

∂π
= γ

′∂ ûi

∂π
=−γ

′(W ′i ⊗ Im) =−[vec(γW ′i )]
′ =−(W ′i ⊗ γ

′)

∂Ei

∂π
=

∂ei

∂π
=− 1

σ

∂ ŷi

∂π

∂ µi

∂π
=

∂ µi

∂Ei

∂Ei

∂π
+

∂ µi

∂ei

∂ei

∂π
.
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so
∂ µi

∂π
=

1
σ

(
∂ µi

∂Ei
+

∂ µi

∂ei

)
γ
′(W ′i ⊗ Im)

and using (20) again we have

∂ µi

∂π
=

(
µ

2
i −

λi

σ

)
γ
′(W ′i ⊗ Im)

Moreover,

∂λi

∂π
=

∂λi

∂Ei

∂Ei

∂π
+

∂λi

∂ei

∂ei

∂π
=− 1

σ

[
∂λi

∂Ei
+

∂λi

∂ei

]
γ
′(W ′i ⊗ Im)

so using (23) again, we have

∂λi

∂π
=
(

µi

σ
−µiλi

)
γ
′(W ′i ⊗ Im)

In order to evaluate F , we need the derivatives of the score (15)–(17) with
respect to π . Hence:

∂ sβ

i
∂π

=Yi
∂ µi

∂π
= Yi

(
µ

2
i −

λi

σ

)
(W ′i ⊗ γ

′) (27)

∂ sγ

i
∂π

=µi
∂ ûi

∂π
+ ûi

∂ µi

∂π
=−µi(W ′i ⊗ Im)+ ûi

(
µ

2
i −

λi

σ

)
γ
′(W ′i ⊗ Im)

=ûi

(
µ

2
i −

λi

σ

)
(W ′i ⊗ γ

′)−µi(W ′i ⊗ Im) (28)

∂ sσ
i

∂π
=
(

µi

σ
−µiλi

)
(W ′i ⊗ γ

′) (29)
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