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Abstract

This article considers a Cournot duopoly under an isoelastic demand function
and cost functions with built-in capacity limits. The special feature is that
each firm is assumed to operate multiple plants, which can be run alone or
in combination. Each firm has two plants with different capacity limits, so
it has three cost options, the third being to run both plants, dividing the
load according to the principle of equal marginal costs. As a consequence,
the marginal cost functions come in three disjoint pieces, so the reaction
functions, derived on basis of global profit maximization, as well can consist
of disjoint pieces. We first analyze the case in which the firms are taken
as identical, and then the generic case. It is shown that stable Cournot
equilibria may coexist with several other stable cycles. Then we compare
the coexistent periodic attractors in terms of the resulting profits. The
main property is the non-existence of unstable cycles. This is reflected in a
particular bifurcation structure, due to border collision bifurcations, and to
particular basin frontiers, related to the discontinuities.
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Cournot Duopoly with Capacity Limit Plants∗

Fabio Tramontana Laura Gardini Tönu Puu

1 Introduction

In what follows we consider Cournot duopoly where each of the competitors
has the option of utilizing several plants. For simplicity suppose each of the
firms has only two plants. However, as the firms can either operate each of
the plants separately, or both in combination, dividing production between
the plants according to the principle of equal marginal costs, it follows that
whenever there are two plants, the firms actually have three cost options.
Typically, the option chosen depends on output. Suppose we can classify the
plants according to their optimal scale of operation; then at a small output
the small scale plant will be chosen, with increasing output the choice will
shift to the plant appropriate for larger scale production, and eventually both
plants will be taken in use, the combination representing the largest scale of
all.

Obviously, a constant returns to scale production function will not do.
A case suitable for the present discussion is one where capacity limits are
explicitly accounted for, as suggested by one of the present authors in several
recent publications. See Puu 2005, 2007a,b. To this end one only needs a
traditional CES function:

q−ρ = k−ρ + l−ρ, (1)

assuming ρ > 0, and k fixed through an act of investment. Normally, the CES
function is formulated with more coefficients, but they can all be dispensed
with, using some suitable linear change of scale for output q, and capital and
labour inputs k,l. As we are only interested in qualitative properties of the
model, which is topologically invariant for all ρ > 0, we put ρ = 1, so (1)
transforms to

q =
kil

ki + l
(2)

Next, substituting for l = kiq/ (ki − q) from (2) in the cost function

Ci(q) =
{
rki + wl if q > 0

0 if q = 0

∗We wish to thank an anonimous referee for his/her useful comments. we are responsable
for all remaining errors.
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we have

Ci(q) =

{
rki + w kiq

ki−q if q > 0
0 if q = 0

The first term represents ”fitting up” or ”setup” costs that an idle equipment
needs when it is put in operation1. It is different from the concept of rate
of return of the capital, that we do not consider here2. The second term
represents the variable labour cost. The latter obviously becomes infinite as
q → ki, so ki is the capacity limit.

Notably, most Cournot dupoly models have a unique equilibrium, which
may become unstable and give way to more conplex orbits. Palander 1939,
however, proposed several situations where multistability could occur. One
was the case of a piecewise linear Robinson type demand function where the
elasticity increased drastically when price was lowered. Then the marginal
revenue function came in discontinuous pieces with jumps, and the corre-
sponding reaction function as well consisted in several pieces. The reaction
functions of the dupolists could then also intersect in several points (Cournot
equilibria), giving rise to multistability. This case was studied in detail by
two of the present authors. See Puu et al. 2002.

Another case elaborated by Palander was where each firm could operate
several production plants, some suitable for small scale production (low fixed
costs, high marginal costs), other suitable for large scale production (high
fixed costs, low marginal costs). In this case it was the marginal cost function
that was discontinuous, and, again, multistability could occur. To our knowl-
edge this model was never yet further studied. Like the kinked demand case,
Palander based his study on linear functions. We prefer to skip the linear
format, using an isoelastic demand function, and non-linear cost functions
with built in capacity limits.

We find that reaction functions having one or more discontinuity points,
lead to a dynamic behavior which is still associated with stable cycles, but in
a situation of multistability. This means that the firms must pay particular
attention to their states, i.e. in terms of dynamical systems, to their initial
conditions, which determine the dynamic evolution towards one situation or
a another, which may also be more profitable.

1One of the authors once visited a factory for making window glass in France. While the
polishing machine for the final processing was in repair, he could see the absurd picture of a
huge machine that produced glass sheets which were crushed by workmen with big hammers,
and then driven back to the other end of the machine and inserted anew. Obviously, it was
too expensive to shut down the machine; it was better to run it until the polishing machine
was repaired. Little reflection is needed to convince onself that this is a rather common
situation in industry.

2In our work ”setup” costs (rsi) are made up by two component: a fixed one (r) and
another one, variable with the dimension of the plant (si = f(ki)). For example, the reader
can think about electricity costs. In particular, we consider the simple case si = ki.
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The paper is organized as follows: In section 2 we introduce the model,
considering the special case in which the two firms are identical (use identical
plants in terms of the capacity limits); in section 3 we derive the reaction
functions of the duopolists. The model leads to a two-dimensional map M ,
which reduces to a symmetric map T when the firms are identical, and thus
have the same reaction function φ(q). In section 4 we give the rules to detect
all the existing cycles of the duopoly, starting from the cycles of the reaction
function φ(q), showing that all the properties of T can de deduced by the one-
dimensional function φ(q). Local stability analysis is performed, though the
cycles never become unstable, because they ”disappear” when still stable. In
section 5 we compare the profits of the various coexisting attractors, showing
several different situations, leading to a ”selection problem”. In section 6 we
deal with the global properties of the two-dimensional map T in presence of
multistability: As no unstable cycles exist, we face the problem of the frontiers
of the different basins of the coexistent attractors. The basin frontiers are
strictly related to the discontinuities of the reaction functions, and we show
how to detect them. A second problem is considered, related to changes in the
parameter values, and thus to the bifurcations occurring in the cycles of the
duopoly. We give numerical evidence that all the bifurcations occurring in the
parameter region considered are due to border collision. Section 7 is devoted
to the generic case, the duopoly with non-identical firms operating plants with
differents capacity limits, and we show that all the main properties discussed
in the symmetric case for T persist also for the map M . That is, multistability
is a known result, but further, we have no cycle destabilization, just border
collision involving stable cycles, and we show that the basin structure is still
determined by the discontinuities of the map M, and how to detect these.
Some conclusions are drawn in the last section.

2 The model

Suppose that a firm has two plants of limited capacities k1 and k2, and k2 >
k1. Obviously, it can also operate both plants at once, dividing the load of
production according to the principle of equal marginal costs. We have

q = q1 + q2

Then, minimizing total production cost

C (q) = rk1 + w
k1q1
k1 − q1

+ rk2 + w
k2q2
k2 − q2

(3)

with respect to q1, q2 and keeping q fixed, we obtain{
q1 = k1

k1+k2
q

q2 = k2
k1+k2

q
,

which, substituted back in (3), yield

C (q) = r (k1 + k2) + w
(k1 + k2) q

(k1 + k2)− q
.
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Denoting this function C3 (q), and defining k3 = k1+k2, we have automatically
a ”third plant” to operate, the options are

Ci(q) = rki + w
kiq

ki − q
i = 1, 2, 3 (4)

with k3 = k1 + k2 > k2 > k1. (Similarly, with three plants the firm will have
seven different options to choose among, and so forth.) The choice between
the presently three options depends on total costs, as we will see. Graphically
the situation is shown in Fig.1, where q∗ denotes the output for which the
costs for the two plants operated alone break even.

Figure 1: Total Costs

Solving the equation C1(q∗) = C2(q∗), i.e., rk1 + w k1q∗

k1−q∗ = rk2 + w k2q∗

k2−q∗ we
get:

q∗ =
r(k1 + k2)−

√
r2(k1 + k2)2 − 4(r − w)rk1k2

2(r − w)
. (5)

Similarly q∗∗ denotes the output for which the cost for using the larger ca-
pacity plant alone breaks even with using both in combination. Solving the
equation C2(q∗∗) = C3(q∗∗), i.e., rk2 +w k2q∗∗

k2−q∗∗ = r(k1 +k2) +w (k1+k2)q∗∗

k1+k2−q∗∗ , we
get

q∗∗ =
r(k1 + 2k2)−

√
r2(k1 + 2k2)2 − 4(r − w)r(k1 + k2)k2

2(r − w)
. (6)

Let us define the following intervals for the quantity of product: J1 =]0, q∗[,
J2 =]q∗, q∗∗[, J3 =]q∗∗, (k1 + k2)[. If the optimal choice q belongs to Ji then
Ci(q) applies. The cost function of the model is given by

C(q) =
{
Ci(q) = rki + w kiq

ki−q if q ∈ Ji, i ∈ {1, 2, 3} (7)
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The three different total cost functions give rise to three different marginal
cost functions:

MC(q) =
{
MCi(q) = dCi(q)

dq = w
k2

i

(ki−q)2
if q ∈ Ji, i ∈ {1, 2, 3} (8)

Graphically they are shown in Fig.2. Clearly at q∗ and q∗∗ we have disconti-
nuity points for marginal cost MC. Assuming an isoelastic demand function

p =
1

Q−1 + q
,

where Q−1 denotes residual market supply (not under control of the firm
itself), total revenue becomes:

R(q) =
q

Q−1 + q
, (9)

from which marginal revenue is:

MR =
Q−1

(Q−1 + q)2
(10)

It is a decreasing function with respect to q, and an example is also added in
Fig.2.

We look for the maximum profit (so as to obtain the reaction function of
the firm). From the function Π(q) = R(q)−C(q), in order to satisfy the first
order conditions we have to equate marginal revenue to marginal cost, which
is a discontinuous function. Depending on the parameters of the model we
may have one, two or even three intersections (an example of which is shown
in Fig. 2). From the second order conditions it is easy to see that they are all
local maxima. The number of intersection points of MR and MC depends on
the position of the marginal revenue curve, which may also change over time
periods, as it is a function of Q−1.
Analytically the intersection points are obtained solving

Q−1

(Q−1 + q)2
= w

k2
i

(ki − q)2
(11)

and when we have an intersection belonging to Ji then the value of the inter-
section point is:

q∗i = ki

√
Q−1

w −Q−1

ki +
√

Q−1

w

if q∗i ∈ Ji (12)

Considering several competitors, the simplest case is duopoly, either with
different plant capacities, or, even simpler, identical firms. We first study this
latter case, and then the more general.
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Figure 2: Marginal Cost and Marginal Revenue.

As we always keep to duopoly, we switch to a simpler notation, letting
x and y denote the outputs produced by the duopolists in time period t.
Focusing the first producer, its best reply for the next time period (t+ 1) is

x∗i (y) = kx,i

√
y
w − y

kx,i +
√

y
w

if 0 < y < 1/w i = 1, 2, 3 (13)

x∗4(y) = 0 if y ≥ 1/w (14)

where kx,i denotes the capacity limit of the i:th plant for the first dupolist
(and similarly ky,j denotes the capacity limit of the j:th plant for the second
dupolist). By construction, as kx,1 < kx,2 < kx,3 = (kx,1 + kx,2) and q∗x < q∗∗x ,
we also have x∗1 < x∗2 < x∗3 and at each time period (or iteration) the choice
among the three values is the one which gives the maximum profit.

3 The reaction functions

As the decision for production in time period (t+ 1) is taken on the basis of
the maximum profit, we have to compare the profits in the three cases, given
by:

Πx,i(y) =
x∗i (y)

y + x∗i (y)
− rkx,i − w

kx,ix
∗
i (y)

kx,i − x∗i (y)
i = 1, 2, 3

Denoting maximum profits of the first firm Πx, i.e., Πx = max {Πx,i(y),
i = 1, 2, 3}, we have

x′ =
{
x∗i (y) which gives Πx if 0 < y < 1/w

0 if y ≥ 1/w
(15)
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Similarly, for the other competitor we have the best reply:

y∗j (x) = ky,j

√
x
w
− x

ky,j +
√

x
w

if 0 < x < 1/w j=1,2,3

y∗4(y) = 0 if x ≥ 1/w
(16)

so comparing these profits:

Πy,j(x) =
y∗j (x)

x+ y∗j (x)
− rky,j − w

ky,jy
∗
j (x)

ky,j − y∗j (x)
j = 1, 2, 3 (17)

we obtain:

y′ =
{
y∗j (x) which gives Πy if 0 < x < 1/w

0 if x ≥ 1/w
(18)

where Πy = max {Πy,j(y), j = 1, 2, 3} is the maximum profit for the second
duopolist.

In the simple duopoly case (15) and (18) are the reaction functions. It is
important to stress that the reaction functions may have discontinuities. A
discontinuity happens when, increasing or decreasing the output of the com-
petitor, a different plant operation becomes more profitable than the previous.
All reaction branches defined above can hence contribute to the final reaction
curve.

The competitors, of course, can be assumed to face the same market prices
for capital and labour, but there is no reason to assume that their capacity
limits kx,i, ky,j are the same. The competitors may not even need to have an
equal number of plants to operate, and we extend our analysis to the generic
case in section 7.

Even if the reaction function corresponding to a particular plant operation
is part of the final reaction function, this does not mean that the firm will
actually use that plant, because it depends on the dynamic behavior, i.e., the
values corresponding to the related branch may not be obtained dynamically.
Anyhow, the final reaction function is the important one, in order to under-
stand to which branch the attractors of the dynamic system (formed by eq.s
15 and 18) belong.

In the next section we analyze the coexistence of cycles of the system.

4 Emergence of multistability

In duopoly games, we have interdependence between firms, i.e., the optimal
output of a firm is a function of the expected production of the competitor:
x = φ(ye). Every time period the firms form their expectations, and when
they are static, yet+1 = yt, the problem admits a unique solution for every
choice by the competitor, than we obtain a dynamic system of this kind:

M :
{
xt+1 = φ1(yt)
yt+1 = φ2(xt)

(19)
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Figure 3: Reaction Curves.
In (a) the final reaction curve corresponds to a unique plant operation, and is obtained with
the following values of the parameters: k1 = 0.397, k2 = 0.518, r = 0.78, w = 0.15. In
(b) the final reaction curve is formed by branches of two different reaction curves, and is
obtained with the following values: k1 = 0.122, k2 = 0.233, r = 0.65, w = 0.559. In (c) the
final reaction curve includes branches from all the three reaction curves, and is obtained
with the following values: k1 = 0.1, k2 = 0.322, r = 0.452, w = 0.134. The three basic
curves are drawn in different gray tonalities.

The time evolution of this class of maps (having the second iterate which is
a separate system in x and y) has been studied in Bischi et al. 2000 (see also
Lenci et al. 1997) in which the authors show that, in the case of continuous
reaction functions, multistability emerges easily and they demonstrate that a
complete understanding of all the cycles of the two-dimensional map and their
stability properties are given by one of these one-dimensional maps (correlated
to each other):

F (x) = φ1 ◦ φ2(x) ; G(y) = φ2 ◦ φ1(y) (20)

In our case, the model is generally described by discontinuous reaction func-
tions. However, it is easy to prove that several properties stated in Bischi et al.
2000 also holds in the discontinuous case, specially those associated with the
existence and coexistence of cycles, while this is not true for the bifurcations
related with the cycles and the structure of the basin boundaries.

The system formed by (15) and (18), where the parameters kx,i and ky,i are
the same for the two firms (i.e. identical firms, or symmetric case) corresponds
to the particular case of (19) with φ1 = φ2 = φ, so that in the symmetric case
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we are interested in a two-dimensional map having the following structure:

T :
{
xt+1 = φ(yt)
yt+1 = φ(xt)

(21)

Thus, in the case of identical firms we can reduce the study of T to that of
the one-dimensional map φ(x). Indeed in such a case we have F = G and
F (x) = φ2(x), and the properties of φ2(x) only depend on those of φ(x). As
already stated above, some results associated with this class of maps (with
separate second iterate) are not limited to the case of continuous reaction
function, but also extend to the case in which the reaction function φ(x)
is piecewise smooth, with one or more discontinuity points. Let us start
with some simple results for the symmetric case. Due to the unique reaction
functions, we have that the diagonal of the phase space is mapped into itself,
and the restriction of the two-dimensional map T on this invariant set reduces
to the one-dimensional map r(x), moreover, the usual property of symmetric
systems holds, as stated in the following:

Proposition 1 In a duopoly game with identical reaction functions ( φ1 =
φ2 = φ) then:

• (a) the diagonal ∆ (the straight line x = y) is a trapping set (i.e.
T (∆) ⊆ ∆),

• (b) any invariant set I of the phase plane (i.e. such that T (I) = I),
either is symmetric with respect to ∆, or the symmetric one is also
invariant.

Proof. The proof of (a) is immediate: let (x, x) ∈ ∆ then T (x, x) =
(φ(x), φ(x)) ∈ ∆. To prove (b) let us denote by S the symmetric oper-
ator such that S(a, b) = (b, a), then, from the definition of T, we have
S(T (x, y)) = T (S(x, y)). Now let I be an invariant set of T , so that T (I) = I,
then S(T (I)) = T (S(I)) = S(I) holds. It follows that either S(I) = I (i.e. I
is invariant) or I ′ = S(I) is invariant (being I ′ = T (I ′)).

In Bischi et al. 2000 it is demonstrated that to each n-cycle of F :
{x1, ..., xn} there corresponds a conjugate n-cycle of G given by: {y1, ..., yn} =
{φ2(x1), ..., φ2(xn)} and if we consider all the periodic points of F (and their
conjugates) then the Cartesian product {x1, ..., xn}× {y1, ..., yn} gives all the
periodic points of the map in (19). This property, which continues to hold also
in the discontinuous case, i.e. for the map M in (19), for the two-dimensional
map T in (21) becomes:

Proposition 2 Let {xi} be the set of all the periodic points of the map φ(x),
then the set of conjugate points is the same set {xi} , and the points of the
Cartesian product {x1, ..., xn} × {x1, ..., xn} give all the periodic points of the
map T in (21).
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These two Properties are very useful because we can obtain the coordinates
of the periodic points of T (belonging to the Cartesian product) considering
only the dynamics on the diagonal ∆ (where the map reduces to φ(x)). Sum-
marizing, we only need to study φ(x) to know the number and the coordinates
of all the cycles of our two-dimensional map T , knowing that:

φ(x) =

ki
√

x
w − x

ki +
√

x
w

if 0 < x < 1/w

0 if x ≥ 1/w
(22)

where i is so chosen that the profit is a maximum. Thus, as we have seen,
φ(x) may be formed by several disjoint pieces of the reaction functions of the
three production plant choices.

4.1 From φ(x) to T

In this subsection we describe the properties which allow to study the map T
by analyzing only the one-dimensional map x′ = φ(x) , where φ(x) is defined
in (22). Let us consider the action of the map as:

T (x, y) = (φ(y), φ(x))

and let {x1, x2, ..., xn} be a cycle of φ(x) of first period n ( xi+1 = φ(xi) and
φn(xi) = xi for i = 1, ..., n ), and consider the points of the Cartesian product
{x1, ..., xn}×{x1, ..., xn} . Then one can immediately compute the iterates by
T which are as follows:

T k(xi, xj) =
{

(φk(xj), φk(xi)) if k is odd
(φk(xi), φk(xj)) if k is even

(23)

If i = j we have a point on ∆ and thus the first integer giving a cycle is
k = n; (and we get the n−cycle on ∆), while for i 6= j we have a point
(xi, xj) external to ∆, and the first integer giving a cycle depends on the
period n. If n is odd then the first integer giving a periodic point in (23) is
k = 2n so that (xi, xj) belongs to a cycle of T external to ∆ of first period
2n. Such distinct cycles must equal (n2 − n)/(2n) = (n − 1)/2 in number.
If n is even, then the first integer giving a periodic point in (23) is k = n
so that (xi, xj) is certainly periodic of period n, external to ∆, and at most
(n2−n)/n = (n− 1) distinct cycles of period n can exist. However the prime
period may be less than n. This happens only when n is even and n/2 is odd,
and the periodic points belonging to two distinct cycles of period n/2 are
(xi, xi+n/2) and (xi+n/2, xi). We have thus proved the following proposition
which classifies the cycles which we shall call singly-generated because their
existence for the map T is a direct consequence of the existence of one cycle
for φ(x):

Proposition 3 ( singly-generated cycles) Let {x1, x2, ..., xn} be a cycle of
φ(x) of first period n ≥ 1,

10



• if n is odd then T has:

(a) one cycle of the period n (on ∆)

(b) (n− 1)/2 cycles of period 2n (external to ∆)

• if n is even and n/2 is also even then T has:

n cycles of period n (one on ∆ and (n− 1) external to ∆)

• if n is even and n/2 is odd then T has:

(a) 2 cycles of period n/2 (external to ∆)

(b) (n− 1) cycles of period n (one of which on ∆)

Now let us consider the case in which two or more cycles of φ(x), of
any pair of periods, coexist. Without loss of generality let us consider a
cycle of period n, n ≥ 1, say {x1, ..., xn} , and a cycle of period m, m ≥ 1,
say {y1, ..., ym} . Then it is clear (from Proposition 3) that n × n points of
the type (xi, xj) belong to singly-generated cycles of T , and as well m ×m
points of the type (yi, yj) belong to singly-generated cycles of T, but in the
Cartesian product {x1, ..., xn, y1, ..., ym} × {x1, ..., xn, y1, ..., ym} we also have
other periodic points. Such points belong to cycles which we shall call doubly-
generated, because each point of the cycles has the coordinates belonging to
two different cycles of φ(x), so that their existence for the map T is a direct
consequence of the existence of a pair of cycles of φ(x). To see this let us
consider the iterates by T which are as follows:

T k(xi, yj) =
{

(φk(yj), φk(xi)) if k is odd
(φk(xi), φk(yj)) if k is even

(24)

and let us define
S = lcm(n,m)

where ”lcm” stands for ”least common multiple”. Then it is clear that when
S is odd (which can occur only when both n and m are odd), then the least
integer giving a periodic point in (24) is k = 2S, and we get a cycle of T of
period 2S. Such cycles may be 2(n ·m)/(2S) = n ·m/S in number. When S is
even (which occurs when n or/and m are even), then the least integer giving
a periodic point in (24) is k = S, so that we get a cycle of T of period S, and
such cycles may be in number 2(n ·m)/S. We have so proved the following
proposition which classifies the doubly-generated cycles associated with a pair
of cycles of φ(x):

Proposition 4 ( doubly-generated cycles) Let {x1, ..., xn} be a cycle of φ(x)
of first period n ≥ 1, and {y1, ..., ym} a cycle of φ(x) of first period m ≥ 1,
and let S be the least common multiple between n and m, then the cycles of
T of type doubly-generated are as follows:

• if n and m are odd then T has n·m
S cycles of period 2S

11



• if n or/and m are even then T has 2n·m
S cycles of period S.

Particular attention must be paid to the fixed points of T . Clearly (x∗, y∗)
is a fixed point of T if and only if T (x∗, y∗) = (φ(y∗), φ(x∗)) = (x∗, y∗). If
x∗ is a fixed point of φ(x), then (x∗, x∗) is a fixed point of T (of singly-
generated type) belonging to the diagonal ∆. When we have two fixed points
of T , say x∗ and y∗ then T has two fixed points (of singly-generated type,
(x∗, x∗) and (y∗, y∗)) belonging to the diagonal ∆. Further, by Proposition 4
a 2−cycle of T of doubly-generated type external to ∆ is get (with periodic
points {(x∗, y∗), (y∗, x∗)}) . When x1 and x2 are the points of a 2−cycle of
φ(x), then the related singly-generated cycles of T are (by Proposition 3) a
2−cycle {(x1, x1), (x2, x2)} on ∆, and two fixed points external to ∆ (given
by X∗ = (x1, x2) and Y ∗ = (x2, x1)). It is worth noting that in the symmetric
case it is not possible to get only one fixed point of T external to the diagonal
(as otherwise also the symmetric one must exist, by Proposition 1), while for
the generic map M in (19) this is possible. In fact, a fixed point must be an
intersection point of the two reaction functions, so that it is characterized by
x∗ = φ1(y∗) and y∗ = φ2(x∗), and we may also have a single fixed point of M
not belonging to the diagonal.

We have not yet said a word about the stability/instability of the cycles
of T . In the case in which the reaction function φ(x) is piecewise smooth,
with one or several discontinuity points, we shall assume that the considered
cycles of φ(x) have periodic points in which the function is differentiable,
that is, for now we are not considering the bifurcations related to the ap-
pearance/disappearance of such cycles, which in our case mainly occurs by
border-collision bifurcations. Here we are only interested in their local stabil-
ity, once they exist. As we have shown above, any cycle of T is related to
one (if singly-generated) or two (if doubly-generated) cycles of φ(x), and it
is very easy to see, considering the Jacobian matrix of T , that the following
proposition holds:

Let X = {x1, ..., xn} be a cycle of φ(x) of first period n ≥ 1, and Y =
{y1, ..., ym} a cycle of r(x) of first period m ≥ 1, then

• if X is asymptotically stable (resp. unstable) for φ(x) with eigenvalue
λ, |λ| < 1 (resp. |λ| > 1) then all the singly-generated cycles associ-
ated with X are asymptotically stable (unstable), star nodes for T with
eigenvalues ζ1 = ζ2 = λ;

• if X and Y are both asymptotically stable for φ(x), with eigenvalues λ
and µ (|λ| < 1, |µ| < 1), then all the doubly-generated cycles associated
with X and Y are asymptotically stable nodes for T with eigenvalues
ζ1 = λ, ζ2 = µ;

• if X or Y is unstable for φ(x), with eigenvalues λ and µ, |λ| < 1 and
|µ| > 1, then all the doubly-generated cycles associated with X and Y
are unstable for T , of saddle type, with eigenvalues ζ1 = λ, ζ2 = µ;
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• if X and Y are both unstable for φ(x), with eigenvalues λ and µ (|λ| > 1,
|µ| > 1), then all the doubly-generated cycles associated with X and Y
are unstable nodes for T , with eigenvalues ζ1 = λ, ζ2 = µ.

As an example, consider the map T with parameters: k1 = 0.2, k2 = 0.54,
r = 0.518, w = 0.15. The one-dimensional map has a stable 3−cycle with
coordinates {x1, x2, x3} which corresponds to a 3−cycle on the diagonal for
T (Fig. 4). The Cartesian product {x1, x2, x3} × {x1, x2, x3} is formed by 9
points, and the related cycle with points outside the diagonal ∆ is obtained
from Proposition 3 so that we find that they must form a 6−cycle (external
to ∆ in Fig.4).

Figure 4: Two coexisting attractors of the map T .
This is the set of parameters used: k1 = 0.2, k2 = 0.54, r = 0.518, w = 0.15: A stable
3−cycle on the diagonal ∆ and a symmetric 6−cycle external to ∆.

5 Profits of the firms and the market: Interesting situations

In this section we are going to analyze the profits which are obtained by the
firms and the market, when the dynamics have reached the asymptotic states.
During the iteration process the first firm ”assumes” that the other one keeps
the quantity of the previous period (say yt) and decides its own production
(say xt+1) in a process which selects maximum profit. Similarly for the second
firm. But we did not compute, dynamically, the actual profits of the firms.
So let us define private profit Px(A) of the first firm in a point A = (x, y), i.e.,
the profit of the firm when the outputs of the duopolists are the coordinates
of the point A. We have

Px(A) =
x

x+ y
−Cx where Cx = rkx,i−w

kx,ix

kx,i − x
for i ∈ {1, 2, 3} , (25)

and similarly for the second firm:

Py(A) =
y

x+ y
−Cy where Cy = rky,j−w

ky,jy

ky,j − y
for j ∈ {1, 2, 3} . (26)

The parameters kx,i and ky,j depend on the branches of the reaction func-
tions involved, which may also be different. We also define the private profit
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P
(m)
x (A) as the sum of the private profits of the first firm in the m periods of

the trajectory starting from A. Similarly for P (m)
y (A). Finally, we are inter-

ested in the total profit TP (A) in a point A = (x, y), which is the sum of the
private profits of both the firms in A, that is, for some suitable i, j ∈ {1, 2, 3}:

TP (A) =Px(A) + Py(A) = 1− (Cx + Cy) = (27)

= 1− r(kx,i + ky,j)− w
(

kx,ix

kx,i − x
+

ky,jy

ky,j − y

)
(28)

and the total profit TP (m)(A) is the sum of the total profits in the m periods
of the trajectory starting from A.

Clearly in a point on ∆ we have Px(A) = Py(A) because x = y and kx,i

= ky,i, so that we also have P (n)
x (A) = P

(n)
y (A) = 1

2TP
(n)(A) for each n > 0.

If we consider a point B = (x, y) which does not belong to the diagonal, its
private profits Px(B) and Py(B) are different, and if we take the symmetric
point B′ = (y, x) we clearly have Px(B′) = Py(B) and Py(B′) = Px(B),
because in B the first (resp. second) firm produces the same quantity (and
uses the same plant capacities) as the second (resp. first) firm in B′. It follows
that the total profit in symmetric points is the same:

TP (B) =Px(B) + Py(B) = 1− (Cx + Cy) = (29)
=Py(B′) + Px(B′) = TP (B′) (30)

Moreover, in symmetric points both firms have the same sum of private profits,
which also is the same value as the total profit:

Px(B) + Px(B′) = Py(B′) + Py(B) = 1− (Cx + Cy) (31)

For example, from an economic point of view it is quite interesting to notice
that in the case shown in Fig. 4 the private profit of both firms after 6 periods
is the same in both the different attractors. In fact, let A = (x1, x1) be a point
of the 3-cycle on ∆. Then we know that P (n)

x (A) = P
(n)
y (A) = 1

2TP
(n)(A)

for each n > 0. Further let B = (x1, x2) be a point of the 6-cycle outside
∆. The 6-cycle is formed by 3 pairs of symmetric points, in each pair of
which the sum of the private profits is the same, and after 6 periods every
point is visited once, so that the total profit after 6 periods is equidistributed:
P

(6)
x (B) = P

(6)
y (B) = 1

2TP
(6)(B). But it can be proved that these values

are equal, i.e. TP (6)(A) = TP (6)(B) and TP (3)(A) = 1
2TP

(6)(B), so that
P

(6)
x (B) = P

(6)
y (B) = P

(3)
x (A) + P

(3)
y (A). This comes from the following:

Proposition 5 Let X = {x1, ..., xn} be a cycle of φ(x) of first period n > 1,
and s = n(n− 1), then

• the sum of the total profits of the s periodic points of T singly generated
from X (and external to ∆) is equal to TP (s)(x1, x1), i.e. (n− 1) times
the total profit TP (n) on the n-cycle X on the diagonal;
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• the sum of the total profits of each firm (first and/or second) of the
s periodic points of T singly generated from X (and external to ∆) is
equal to P (s)

x (x1, x1) = P
(s)
y (x1, x1) = 1

2TP
(s)(x1, x1).

Proof. As already noted above, for A ∈ ∆ we have P (k)
x (A) = P

(k)
y (A) =

1
2TP

(k)(A) for each k > 0, and from TP (n)(A) = n − 2
∑n

i=1Cxi we have
TP (s)(A) = (n− 1)n− (n− 1)2

∑n
i=1Cxi .

Now we know (from Proposition 1) that the periodic points external to the
diagonal are symmetric with respect to ∆, so that we have s/2 = n(n− 1)/2
pairs of points external to ∆, and for each pair, say B = (xi, xj) and B′ =
(xj , xi), we have Px(B) + Px(B′) = Py(B′) + Py(B) = 1 − (Cxi + Cxj ), so
that, summing up for all pairs, and taking in account that we have only n
distinct values, we obtain Px(total) = Py(total) = n(n−1)

2 − (n−1)
2 (

∑n
i=1Cxi +∑n

j=1Cxj ) = n(n−1)
2 − (n − 1)

∑n
i=1Cxi for the sum of the total profits of

the singly generated periodic points. As the total profit is the sum of the two
values, we get the same as TP (s)(A).

Moreover, whichever is the period n (odd or even), from the explicit for-
mulas written above we have also obtained that Px(total) = Py(total) =
n(n−1)

2 − (n− 1)
∑n

i=1Cxi = 1
2TP

(s)(A),which completes the proof.
Coming back to the case shown in Fig. 4, with a 3-cycle on ∆ and a

6-cycle outside, after 6 periods we get the same total profit, both starting
from a periodic point on ∆ and starting from a periodic point outside the
diagonal. But, in general, a situation in which the total profit is equal in
all the coexistent cycles is quite rare. Indeed the case n = 3 is particular,
because it is the unique period for which we have only one singly generated
cycle outside the diagonal. In general, outside ∆ there are more coexisting
singly-generated cycles, and total profit on different cycles differs (although
globally Proposition 5 above holds).

Moreover, we may have coexisting cycles on the diagonal (and this may
also be considered as generic in our model). In such cases, when m cycles
(with m > 1) belong to ∆, outside the diagonal we have not only singly-
generated cycles, but also doubly-generated cycles, and we can find two kinds
of interesting situations in terms of ecomomics:

• Different profits for the firms: occur when we can find at least one
cycle of period k say, with periodic point (x, y), in which the cumulative
profit of one firm (P (k)

x (x, y) or P (k)
y (x, y)) is higher than the cumulative

profit of other firm (so that, for example, if P (k)
x (x, y) > P

(k)
y (x, y) then

P
(kn)
x (x, y) > P

(kn)
y (x, y) for each n ≥ 1).

• Different profits for the market : occur when among the coexisting cycles
there exists one cycle (at least), with periodic point (x, y), having the
highest total profit TP (m)(A), where m is the least common multiple of
all the periods of the cycles of T .
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To illustrate the different kinds of behaviors, we propose three examples.
The first (in the next subsection) shows a situation of different profits for
the firms. In subsection 5.2, the second example seems, at first sight, similar
to the first, whereas it represents a case of different profits for the market.
The third and last example shows a more complicated (and generic) case of
different profits for the market, in which 10 different attractors coexist.

5.1 Different profits for the firms

Let us consider the situation with parameters: k1 = 0.024, k2 = 0.562,
r = 0.78, w = 0.15. In this example, the one-dimensional map x́ = φ(x)
has a stable 2-cycle {x1, x2}. Using the rules given in the previous section
(Proposition 3) we know that the map T has an attracting 2-cycle on the
diagonal, and two stable and symmetric singly-generated fixed points outside
∆: A = (x1, x2) and B = A′ = (x2, x1) (both shown in Fig. 5).

Figure 5: Different Profits for the Firms.
This is the set of parameters used: k1 = 0.024, k2 = 0.562, r = 0.78, w = 0.15. A stable
2-cycle on ∆ and two stable symmetric fixed points singly-generated outside ∆, A and B.

Proposition 5 states that TP (2)(x1, x1) = TP (A) + TP (B). We also know
that TP (A) = TP (B) because they are symmetric, so that TP (2)(x1, x1) =
2TP (A) = TP (2)(A) = 2TP (B) = TP (2)(B). This means that the total
profit after two periods is always the same, in each of the three cycles of
the system, and thus for the market. This, however, does not mean that
this equal total profit is distributed in the same way between the firms. If
the system converges to the 2-cycle on the diagonal ∆, as we have already
remarked, the two firms obtain the same profit each period (made up of the
values Px(x1, x1) = Py(x1, x1) = 0.1117 and Px(x2, x2) = Py(x2, x2) = 0.496).
As already remarked, in the 2-cycle we have P (n)

x = P
(n)
y for each n > 0. In

the fixed point A the firm which produces more than the other obtains an
higher profit as well: Py(A) = 0.5242463 versus Px(A) = 0.0835145. In B
we have the same situation but in favour of the other firm, because of the
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symmetry. So, P (2)
y (A) = 1.04849, whereas P (2)

x (A) = 0.167, which clearly
give TP (2)(A) = 1.215519, showing that in the fixed point A the second firm
takes 86% of total profit. Similarly, mutatis mutandis, in the fixed point B
this behavior holds.

Summarizing, after two periods, total profit in the 2-cycle is equidis-
tributed (P (2)

x (x1, x1) = P
(2)
y (x1, x1) = 1

2TP
(2)(x1, x1) = 0.6077), whereas

in the fixed points one of the duopolists takes 86% of total profit. Let us
remark that this occurs in a duopoly where the two firms are of different
”size” in terms of the operated plants. In each fixed point one firm uses a low
capacity limit and the other a higher one. In the next subsection we shall see
a different case, in which the two fixed points belong to the diagonal, which
means that either both choose a low capacity limit or both use a higher one.

5.2 Different attractors for the market

Figure 6: Different Profits for the Market (1).
Three coexisting attractors of the map T with parameters: k1 = 0.322, k2 = 0.958, r = 0.1,
w = 0.236: two stable fixed points A and B on ∆, and a symmetric 2−cycle doubly-generated
outside ∆. In (b): The basins of attraction of the 2−cycle, and the fixed points A and B,
are shown in white, dark gray and light gray, respectively.

The situation shown in Fig. 6a, obtained with the set of parameters
k1 = 0.322, k2 = 0.958, r = 0.1, w = 0.236, at a first sight looks quite similar
to the previous case (shown in Fig. 5), while it is not. Now φ(x) has two
asymptotically stable fixed points, so that (by Proposition 4) the two fixed
points of T are on the diagonal, A = (x1, x1) and B = (x2, x2), and a stable 2-
cycle doubly-generated, outside ∆ and symmetric, exists: {(x1, x2), (x2, x1)}.
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In each of the fixed points we have that P (n)
x = P

(n)
y for any n > 0 because

they are located on ∆. The points of the 2-cycle are symmetric with respect
to ∆ so we also know that every 2 periods in the cycle the total profit is
equidistributed: P

(2n)
x (x1, x2) = P

(2n)
y (x1, x2) = 1

2TP
(2n)(x1, x2). Thus we

are not analyzing a situation of different profits for the firms.
We also have TP (A) 6= TP (B), more specifically TP (A) = 0.7252 >

TP (B) = 0.508, with TP (2)(A) = 1.4504, TP (2)(B) = 1.016. The total profits
of the points of the 2-cycle are the same (because they are symmetric) and
both equal to 0.6153, so that TP (2)(x1, x2) = 1.2306. This means that even
if the total profit is equidistributed in all the coexistent attractors, the total
profit changes on the different cycles, and every two periods it is highest in
the fixed point A. This is what we have called a situation of different profits
for the market.

Probably this happens whenever φ(x) has more than one cycle, and es-
pecially coexisting attractors (because there is no reason to suppose that the
coexisting cycles have the same total profit).

A second example in which we stress this difference of behaviors is related
with the set of parameters k1 = 0.039, k2 = 0.3, r = 0.923, w = 0.04222.
Now the one-dimensional map x́ = φ(x) has two coexisting 2-cycles, both
asymptotically stable, which correspond to two coexisting attracting 2-cycles
on the diagonal for the map T, whose coordinates are A = {(x1, x1), (x2, x2)}
and B = {(y1, y1), (y2, y2)} (see Fig. 7), and we expect two different total
profits in these 2 cycles. In fact, after two periods we have TP (2)(y1, y1) >
TP (2)(x1, x1). Then the Cartesian product is formed by other twelve points,
all belonging to attracting cycles of T of periods 1 or 2. In fact, by Proposi-
tions 3 and 4 we have two fixed points singly-generated by A, A1 = (x1, x2)
and Á1 = (x2, x1), whose total profit after 2 periods is the same as that of the
generating cycle A, i.e. TP (2)(A1) = TP (2)(Á1) = TP (2)(x1, x1), and simi-
larly we have two fixed points singly-generated by B, B1 = (y1, y2) and B́1 =
(y2, y1), whose total profit after 2 periods satisfies TP (2)(B1) = TP (2)(B́1) =
TP (2)(y1, y1). Finally we have four distinct doubly-generated 2-cycles: CA,B =
{(x1, y1), (y1, x1)} and CB,A = {(x2, y2), (y2, x2)} which are both symmet-
ric, and, in addition, the two symmetric ones C1,2 = {(x1, y2), (y1, x2)} and
C2,1 = C ′1,2 = {(x2, y1), (y2, x1)}, also reported in Fig. 7. In all these four
different 2−cycles total profit lies between total profits of the cycles on ∆ (in
particular, lower than the maximum one). In Table 1 we summarize the total
profits of the market, on the 10 coexisting attractors of T, after two periods:
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Figure 7: Different Profits for the Market (2).
10 coexisting attractors of the map T with parameters: k1 = 0.039, k2 = 0.3, r = 0.923,
w = 0.04222.

Cycle Period Total profit after two periods
A 2 1.392
A1 1 1.392
Á1 1 1.392
B 2 1.466
B1 1 1.466
B́1 1 1.466
CA,B 2 1.4291
CB,A 2 1.4291
C1,2 2 1.4292
C2,1 2 1.4292

Table 1: Total profits

We can see (as in the first example of this subsection) that after two periods
the singly-generated cyles give the same total profit of the ”generating cycles”,
whereas from the doubly-generated cycles after two periods we get, from Table
1, a total profit which is between the total profits of each the two generators,
leading to a situation of different profits for the market.

We remark that in general the cycles (attractors) in which the total profit
is highest or lowest may also be external to the diagonal, and of doubly-
generated types (even if our two examples do not suggest this).

6 Global Analysis

In all the examples considered up to now, we have seen the phenomenon of
multistability. Indeed the shape of φ(x) far from the origin is ”quite flat” and
the periodic points of the one-dimensional function φ(x) are all in branches
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of the function such that |φ′(x)| < 1.
From Proposition 5 it follows that all the coexisting cycles of T are asymp-

totically stable. In particular T cannot have saddle cycles (nor repelling nodes,
and we recall that complex eigenvalues cannot occur in the class of maps hav-
ing separate second iterate). This is the main difference in comparison to the
class of maps in the continuous case. This means: All the existing cycles are
asymptotically stable and their basins fill in the phase-plane.

A natural question then arises: Having no unstable cycles (the stable set
of which usually give the frontier of different basins), what are the frontiers?
As we shall see, the answer to this question, related with the global dynamic
behavior, comes from the discontinuity points.

As it is well known, in presence of multistability, the attractor to which
the system converges depends on the initial conditions. A small change in the
initial conditions, or in the value of an exogenous parameter of the system,
may drastically change the final situation for the duopolists. The first problem
is related to the ”basins of attractions” of the cycles in the phase plane,
whereas the second is related to the bifurcations of the cycles which, in our
model, are mainly (probably only) ”border-collision bifurcations”. In the first
subsection we consider the first problem, showing how the frontiers of the
basins are formed, and in the second subsection we shall briefly introduce the
second problem, showing how the periodic points change, via border-collision
bifurcations.

6.1 Basins of attraction

In order to detect the basins, the asymptotic behavior of the points of the
phase plane of T can be better analyzed using the second iterate (i.e. the
map T 2).

As remarked above, in our model it happens that all the existing cycles are
asymptotically stable, it follows that the critical points of the function φ(x),
or φ2(x), do not have dynamic relevance, because such critical points converge
to some stable cycle. Of primary importance are the discontinuity points of
the function φ2(x), which depend on those of φ(x). In fact the discontinuity
points of φ2(x) consist in all the discontinuity points of φ(x) and in all their
rank-1 preimages (when existing). We recall that a discontinuity point, say
x = ξ, of the reaction function φ(x) corresponds to the discontinuity line of
equation x = ξ in the phase plane for the two-dimensional map T and, due
to the symmetry, also y = ξ is a discontinuity line.

In general, at each discontinuity of the reaction function φ(x), say at
x = ξ, we have to consider the two values associated with the ”jump” of the
function, say φl(ξ) (lower value) and φu(ξ) (upper value), and in the study
of discontinuous maps the discontinuity points and their lower/upper values
take the role of the ”critical points” in the Julia sense, as considered in Mira
et al 1996. If the asymptotic behavior of the two values φl(ξ) and φu(ξ) is the
same, then the vertical line x = ξ (discontinuity for T ) plays no role in the
basin frontiers. Viceversa, if the asymptotic behavior of the two values φl(ξ)
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and φu(ξ) are different, then the vertical line x = ξ is a frontier of basins.
This is clearly due to the fact that all the points in a right/left neighborhood
of the discontinuity at x = ξ have the same asymptotic behavior of the two
values φu(ξ) and φl(ξ), or φl(ξ) and φu(ξ) (depending on the graph of the
function). Such behaviors are to be considered in the function φ2(x), for
which x = ξ is still a discontinuity point, and thus φ2

l (ξ) and φ2
u(ξ) the values

at the jump.
Moreover if x = ξ is a discontinuity point of φ(x) which is a separator

of different basins, then also any one of its rank-1 preimages is a separators
of basins, because points in a suitable right/left neighborhood of a preimage
of x = ξ, say at x = ξ−1

1 , are mapped in one iteration in a right/left (or
left/right) neighborhood of x = ξ, and thus have a different asymptotic be-
havior. The same reasoning can clearly be applied to the discontinuity points
of the function φ2(x). If one of the discontinuity points of φ2(x) is a frontier
of basins, then the same property holds for all the existing preimages, of any
rank.

The asymptotic behavior of x, determined by the function φ2(x) i.e. the
segments of basins for this one-dimensional function, may be associated to
the x−axis in our two-dimensional phase plane. In the symmetric case, for
the map T, we also have that the asymptotic behavior of y is determined by
the same function, so that the same segments of basins may be associated to
the y−axis. Then we form the Cartesian product, so that we get the basins
of the map T 2, from which we easily obtain those of T .

Regarding the points of the frontier itself, we confine the discussion to the
discontinuity points: In each discontinuity point x = ξ we have considered
the two values φl(ξ) and φu(ξ) without saying which one is considered to be
assumed in the discontinuity point ξ. Thus a point in a vertical frontier x = ξ
may behave as a point in its right/left neighborhood, depending on which
value is taken at x = ξ. Similarly, in a horizontal frontier say y = ξ, we have
that any point of a frontier may belong to any one of the basins of which it
is a frontier, depending on the values associated at the discontinuity.

This generic description may be better understood by looking at the basins
of some of the examples already seen in the previous sections. Let us return
to the case represented in Fig. 5, where we have three coexisting attractors
of T (a 2-cycle on the diagonal, and two symmetric fixed points outside).
In Fig. 8a we show the graph of the function φ2(x) with the discontinuity
points at x = ξ1 and x = ξ2 as in the graph of φ(x) (see Fig. 5). Two more
discontinuity point of φ2(x) exist, at x = ξ−1

1 and x = ξ−1
2 , rank-1 preimage of

the discontinuity points x = ξ1 and x = ξ2, respectively, even if this last one
is too close to zero to be seen in the graph. However, in the enlargement we
show qualitatively that a sequence of preimages at x = ξ−3k

1 and at x = ξ−3k
2 ,

for k = 1, 2, ... must exist, rapidly approaching the origin.
From the graph of φ2(x) in Fig. 8a we can see that the two values φ2

l (ξ1)
and φ2

u(ξ1) (extrema at the jump in ξ1) have a different asymptotic behavior:
The lower value tends to x1, while the upper value converges to x2. Thus the
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Figure 8: Basins’ boundaries.
In (a) the graph of the function φ2(x) is shown. In (b): The basins of attraction of the
2−cycle, and the fixed points A and B, are shown in white, dark gray and light gray,
respectively.

line x = ξ1 is a frontier of basins. The same occurs at the discontinuity in its
rank-1 preimage, at x = ξ−1

1 . The frontiers of basins (though not discontinuity
points) are all preimages x = ξ−3k

1 for any k > 1 (even if these points are not
visible in Fig. 8 because they are too close to zero). The discontinuity at
x = ξ2 plays no role: the upper and lower values at x = ξ2 converge both to
the same point x2, and thus the same property holds at x = ξ−1

2 , and thus all
the other preimages ξ−3k

2 are not involved in the formation of frontiers.
Summarizing; on the x-axis we have intervals separated by ξ1, ξ−1

1 , ξ−3k
1 ,

the points of which tend alternatively (for φ2(x)) to x = x2 and x = x1. The
sameholds about the y−axis, with the same intervals and the same asymptotic
behaviors, so that the horizontal lines y = ξ1, y = ξ−1

1 , y = ξ−3k
1 approaching

zero, belong to frontiers of basins. The Cartesian product is made up by
rectangles, in which we can easily return to the basin for the map T (for
which the points on the diagonal belong to the same 2-cycle), as shown in
Fig. 8b (though the rectangles close to the coordinate axes are not visible).

Differing from this example, the one shown in Fig. 6a has a simpler
structure of the basins, as shown in Fig. 6b. In fact, in this example the
reaction function φ(x) has two discontinuity points at x = ξ1 and x = ξ2, and
none has any rank-1 preimages (thus also the function φ2(x) only has these
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two discontinuities). Moreover, it is immediately visible from Fig. 6a that the
upper and lower values at both discontinuity points have different asymptotic
behavior, so that both the lines x = ξ1 and x = ξ2 are frontiers, and no other
vertical line exists. The same holds for the y−axis: the lines y = ξ1 and
y = ξ2 are the only horizontal frontiers. Thus the rectangles shown in Fig.
6b give all the basins of the three coexisting cycles of T ; the white region is
the basin of the 2-cycle, the dark gray region the basin of the fixed point A
and the light gray region the basin of the fixed point B.

6.2 Border-collision bifurcations

Up to now we have only shown single examples, at fixed parameter values,
showing that all the periodic points of T always belong to asymptotically
stable cycles. This is a very strong property of our model, due to the fact that
the shape of the reaction function φ(x) in the periodic points is always very
flat. This is however very difficult to prove in general, but we can support it
by numerical evidence. Also in the case of only one fixed point of the duopoly
(which, in the symmetric case, is necessarily a point on the diagonal) we know
that in a wide range of significant values of the parameters, the fixed point
is globally attracting. But as the numbers of involved plants change, i.e. as
the parameters of the model are let to vary, we may have bifurcations, not
due to a change in the value of the eigenvalue (i.e. of φ′), but due to the
merging of the fixed point with a discontinuity (say at x = ξ, from which the
term ”border collision bifurcation”) after which the fixed point disappears
and something else happens to the trajectories, some other cycle appears, or
more cycles appear, all stable (because of the flatness of the shape of the
branches of the reaction function φ(x)).

Similarly, as the parameters are further changed, a stable cycle never
becomes ”unstable” due to its eigenvalue, while it may undergo a ”border
collision bifurcation”. This occurs when a periodic point of the cycle merges
with a discontinuity point, after which the cycle no longer exists, and some
other stable cycles appear. And so on. We cannot ”predict” what occurs at
a border collision bifurcation of a cycle; in general this depends on the kind
of discontinuity, from a low value to a higher one or viceversa (from an high
value to a lower one). It depends on the size ”jump” at the discontinuity, i.e.
on the magnitude of (φu(ξ)− φl(ξ)) at a discontinuity x = ξ.

This kind of bifurcations in discontinuous maps is a new research area, we
refer to in Avrutin and Schanz, 2006, and in Avrutin et al. 2006, for some
works related to a one-dimensional discontinuous normal form. Here we do
not enter in deeper detail inside this problem; in this applied context we have
simply verified numerically that several bifurcations of this kind occur in the
cycles of the discontinuous one dimensional reaction function φ(x) (from which
all the existing cycles of T can be obtained). In our model we have mainly
four parameters: r, w, and the values of ki. Fixing, for several different pairs,
the values of the ki, we have investigated the cycles existing on the diagonal
as the other two parameters vary in a suitable interesting interval.

23



This leads to a two-dimensional bifurcation diagram (or two-dimensional
orbit diagram, as it is often called, see Zhusubaliyev et al. 2007), an example
of which is shown in Fig. 9 (the initial condition is a point on the diagonal
and the numbers inside areas represent different periodicities of cycles). In
this figure the capacity limits are fixed at the values k1 = 0.039 and k2 = 0.3,
while w ∈ [0, 1.25] and r ∈ [0, 3]. (For enlargement we only show r ∈ [0, 2.65]).
Similar figures are also obtained for different values of ki. In Fig.9 a few arrows
can be seen: They indicate that thin regions of periodicity are not visible at
this scale. (They look as boundaries, but are regions with cycles of different
periods). In Fig. 9 different labels are also associated with fixed points

Figure 9: Two-dimensional orbit diagram in the (w, r) parameter plane.
We used k1 = 0.039, k2 = 0.3. Different labels denote an attracting cycle of φ(x) of
different periodicity, or belonging to different branches of the reaction functions (1h, 1m

and 1l denote the fixed point corresponding to the higher, middle and lower capacity limit
plant, respectively). The frontiers of the periodicity regions are curves of border-collision
bifurcations. A few arrows indicate that thin regions of periodicity are not visible at this
scale.

according to the plant selection used in the final attractor (according to which
of the branches of φ(x) includes the periodic points). In particular, we can see
three wide regions representing a fixed point, but belonging to three different
branches of the reaction function. It is worth noting that the orbit-diagram
is obtained using only one initial condition for φ(x) (or equivalently on the
diagonal for T ). Thus multistabilty in φ(x) is not represented here, however
we know that it occurs (we have shown above examples with two coexisting
stable fixed points and two coexisting stable two-cycles for φ(x)). The global
bifurcations occurring on the borders separating the different periodicity areas
represented in Fig. 9 are all border-collision bifurcations, due to the existence
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of discontinuity points of the map φ(x), and thus of T .
We leave this kind of analysis for future research. Here we prefer to show

that the dynamic properties analyzed are not peculiar for the symmetric case
alone, as they also occur in the generic case, with firms having plants with
different capacity limits, as briefly illustrated in the next session.

7 The generic case

In this section we extend the analysis to the generic case in which the duopolists
do not have identical plants, which is a more realistic situation, represented
by the map M in (19). To do this we start from a symmetric case, and then
change the capacity limits for the firms. This ”symmetry breaking” has no
particular effect: no ”drastic changes” occur. This is expected, because the
diagonal in phase space is no longer invariant, the only effect is that the at-
tractors on the diagonal move outside, and the symmetry with respect to ∆
is broken. However the map M is still a map with the properties of separate
second iterate and, as already remarked, many of the properties proved in
Bischi et al. 2000 still hold, although the maps F and G given in (20) are
piecewise smooth discontinuous functions. In particular, symmetry is trans-
formed into the property that if I is an invariant set for F (x) then φ2(I) is
invariant for G(y), so it is enough to study one of the one-dimensional maps,
say F , to get the properties of the two-dimensional map M . Clearly now
a discontinuity point, say x = ξ, of the reaction function F (x) corresponds
to the discontinuity line x = ξ for the two-dimensional map M in the phase
plane (x, y), and then y = φ2(ξ) is a discontinuity point of G(y) to which
corresponds the discontinuity line of equation y = φ2(ξ) in the phase plane,
for M .

Another immediate result, because the proof makes no use of the conti-
nuity of the functions, is the number and structure of the cycles of M given
the cycles of F . Assuming that the cycles do not have periodic points in
the discontinuity (i.e. the cycle is not at a bifurcation), then also the local
stability analysis is the same, so that multistability is still a peculiarity. But
it is clear that (as in the symmetric case, seen in the previous sections) the
bifurcations occurring to the cycles of F (and thus of M) are very different,
because they are associated with the merging of periodic points into the dis-
continuity points, so that they are ”border-collision bifurcations” occurring
in the one-dimensional map F (or in the discontinuity lines of M). This is
expected, as φ(x) in the symmetric case, now also the map F (x) has a ”flat”
shape, so that we observe only stable cycles. Thus, multistability and the
existence of only stable cycles show that also the properties of the basin fron-
tiers are still the same. This means that the frontiers are associated with the
discontinuity points of F (and thus G) and to the related preimages (when
they exist).

Let us show an example, starting from the situation represented in Fig.
5. If the capacity limits of a duopolist are such that 0.015 < kx,1 < 0.131 or
0.41 < kx,2 < 1.97, keeping fixed at the values of the other: ky,1 = 0.024 and
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ky,2 = 0.562, r = 0.78, w = 0.15, we still have a two-cycle which coexists with
two fixed points (see Fig. 10). The 2−cycle is no longer on the diagonal ∆,
and the fixed points A and B external to ∆ are no longer symmetric. The fixed
points are shown at the intersection of the two reaction functions in Fig. 10.
The coordinates of the cycles come from the periodic points of F (x), whose
graph is shown in Fig. 11a. The 2−cycle of M is thus {(x1, y1), (x2, y2)}
where x1 and x2 are the coordinates of the fixed points of F (x) (see Fig.
11a), y1 = φ2(x1) and y2 = φ2(x2), whereas A = (x1, y2) and B = (x2, y1)
are the two fixed points of M . Regarding to the basins of the three different

Figure 10: Coexistence in the generic case.
Three coexisting attractors of the map M (generic case) with parameters: kx,1 = 0.114,
kx,2 = 0.562, ky,1 = 0.024, ky,2 = 0.562, r = 0.78, w = 0.15: A stable 2−cycle and two
stable fixed points A and B.

attractors of M, we can reason exactly as in the symmetric case. Considering
the map M2 we can refer to the graph of F (x) (see Fig. 11a), where we
can see that two discontinuity points exist, at x = ξ1 and x = ξ2. In both
discontinuity points, the lower and upper values at the jump have different
asymptotic behavior; thus the vertical lines x = ξ1 and x = ξ2 in the phase
plane are frontiers of basins, and the same occurs for the horizontal lines
y = y1 (y1 = φ2(x1)) and y = y2 (y2 = φ2(x2)). Moreover, these two points
of discontinuity ξ1 and ξ2 have infinitely many preimages of any rank, ξ−n1

belonging to F−n(ξ1) and ξ−n2 belonging to F−n(ξ2) for n = 1, 2, ... which
approach the origin: Thus, although not visible in the basins shown in Fig.
11b (because they are too close to the coordinate axes), also the vertical lines
x = ξ−n1 and x = ξ−n2 in the phase plane are frontiers of basins, and the same
occurs for the horizontal lines y = φ2(ξ−n1 ) and y = φ2(ξ−n2 ).

We remark that now, the more the production opportunities of the firms
differ from the symmetric case, the more the relative profits of the two firms
can comparatively change, as compared to the case presented in the previous
sections. We also recall that for the map M the existence of only one stable
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Figure 11: Basins’ boundaries in the generic case.
In (a): The graph of the one-dimensional map F governing the dynamics of M in the case
shown in Fig.10. In (b): The basins of attraction of the 2−cycle, and the fixed points A
and B, are shown in white, dark gray and light gray, respectively.

fixed point, not on the diagonal is a possibility. We can see this as the effect
of a border-collision bifurcation occurring when we change the value of kx,1
or kx,2 further, exiting from the ranges given above. In fact, if we decrease
the value of kx,1 below 0.015, in the graph of F (x) the values of the fixed
points x1 and x2 decrease, approaching the discontinuity points ξ1 and ξ2,
so that the points of the 2−cycle of M as well as the fixed points, approach
the discontinuity lines of the map (which are x = ξ1, x = ξ2 y = φ2(ξ1) and
y = φ2(ξ2)). Thus a border-collision bifurcation occurs, whose effect, when
continuing to decrease the parameter kx,1, is to leave a fixed point in the plane
A of M as the unique, globally stable attractor, with coordinates (x∗, φ2(x∗)).
It is the unique intersection point of the reaction functions and is located in
the upper left side of the phase plane (close to the old point A).The effects
are similar if the value of kx,1 is increased above 0.131 : In the graph of F (x)
the value of the fixed points of F (x) approach the discontinuity points, so
that all the cycles of M undergo a border-collision bifurcation, whose effect,
continuing to increase the parameter kx,1, is to leave a fixed point B of M as
unique attractor, globally stable in the plane. Its coordinates are (x∗, φ2(x∗));
it is unique intersection point of the reaction functions, and is located in the
lower right side of the phase plane (close to the old point B). Also keeping
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kx,1 fixed and increasing or decreasing kx,2, exiting from the given ranges, we
get the same kind of border collision bifurcations, with the same effects as
those described above (when kx,1 is varied).

It is worth noting that in the symmetric case, when the two firms both
have identical capacity limits, a globally attracting fixed point necessarily
was located on the diagonal, i.e, both firms used identical plant operations,
and both firms had the same private profit. In this generic case, a globally
attracting fixed point is associated with firms having different capacity limits
and they differ in terms of private profits. The above example shows that the
position of the unique globally attracting fixed point is different depending
on the variation in the parameters.

8 Conclusions

In this work we have considered a Cournot duopoly under an isoelastic de-
mand function and cost functions with built-in capacity limits, which can be
derived from CES production functions. The special feature is that each firm
is assumed to operate multiple plants. Each firm has two plants with differ-
ent capacity limits, which may be used one by one (denoted numbers 1 and
2), or in combination (number 3). It has three cost options, the third being
to run both plants, dividing the production load according to the principle
of equal marginal costs. As a consequence the marginal cost functions come
in three disjoint pieces, so the reaction functions, derived on basis of global
profit maximization, can consist of several disjoint pieces. Thus we are faced
with discontinuous, piecewise smooth, reaction functions.

We first analyzed in detail the case of identical firms, characterized by
a symmetric two-dimensional map, under which several stable cycles may
coexist, and gave explicit formulations of how to detect all the cycles starting
from the reaction function. From any point of the phase space a trajectory
converges to some stable situation. Then it becomes fundamental to compare
the coexistent periodic attractors in terms of profits, and we have shown that
a unique ”best situation” may not always be found.

Also it becomes fundamental to know the basin structure, in order to
know what each initial state will converge to. A property of this map is
the total absence of unstable cycles We have shown that the frontiers of the
different basins (an example with 10 coexistent attractors was also given) are
related with the discontinuities of the reaction functions, explaining how to
detect the frontiers. Another feature of the duopoly model is that the changes
in the coexistent attractors never occur due to some stable cycle becoming
unstable, instead, all the bifurcations are due to border collision; merging of
some cycle with the discontinuity points. This is still an open research field,
and more analysis may be performed for this model. Briefly we have also
shown how all these properties persist in the generic case, both in terms of
coexistence of stable cycles, the structure of the basin boundaries, and border
collision bifurcations. We are conscious that also this generic case may be
better investigated, and we leave this as future research work.
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