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Abstract

In this paper we propose simulation-based techniques to investigate the finite
sample performance of likelihood ratio (LR) tests for the nonlinear restrictions
that arise when a class of forward-looking (FL) models, typically used in mone-
tary policy analysis, is evaluated with Vector Autoregressive (VAR) models. We
consider both ‘one-shot’ tests and sequences of tests under a particular form of
adaptive learning dynamics, where ‘boundedly rational’ agents use VARs recur-
sively to update their beliefs. The analysis is based on the comparison of the
likelihood of the unrestricted and restricted VAR, and the p-values associated
with the LR statistics are computed by Monte Carlo simulation. We also address
the case where the variables of the FL model are approximated as non-stationary
cointegrated processes. Application to the New Keynesian Phillips Curve in the
euro area shows that the FL model of inflation dynamics is not rejected once the
suggested simulation-based tests are applied. The result is robust to specifica-
tion of the VAR as a stationary (albeit highly persistent) or cointegrated system.
However, in the second case the imposition of cointegration restrictions changes
the estimated degree of price stickiness.
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Simulation-Based Tests of Forward-Looking
Models Under VAR Learning Dynamics∗

Luca Fanelli Giulio Palomba

1 Introduction

The class of forward-looking (FL) models typically employed in macroeconomics
and monetary policy analysis, imposes parametric restrictions on vector autore-
gressive (VAR) systems for the variables, see, inter alia, Sargent (1979), Campbell
and Shiller (1987), Baillie (1989) and Johansen and Swensen (1999). In many
cases, these restrictions are highly nonlinear, as shown in Pesaran (1987), Binder
and Pesaran (1995), Bekaert and Hodrick (2001) and Fanelli (2007b).

Tests in VAR models are usually based on linear restrictions and large-sample
approximations; however, it is well recognized that the use of asymptotic distri-
butions can lead to misleading inference, given the usual sample lengths available
to macroeconometricians. Furthermore, the presence of non-stationary such as
integrated processes can worsen reliability problems, as documented in Toda and
Yamamoto (1995), Johansen (1996) and Yamada and Toda (1998). Although a
great body of literature is currently devoted to envisaging the finite sample per-
formance of tests for linear restrictions (Dufour and Jouini, 2006), less attention
has been devoted to nonlinear restrictions, and in particular to the constraints
that arise under rational (model consistent) expectations (RE). It is well known
that RE impose tight restrictions on the models describing the data such as the
VAR, and that these restrictions are usually rejected, suggesting that FL models
are too simple to capture the complex probabilistic nature of the data.1

The contributions of this paper are twofold. First, compared to the exist-
ing literature where the finite sample evidence associated with linear (exclusion)
restrictions, such as Granger non-causality constraints, is explored in VAR sys-
tems, we extend the analysis to the nonlinear restrictions that arise when FL
models are tested under ‘VAR expectations’. This type of expectations does
not necessarily coincide with RE (Brayton et al., 1997), however, its use in the

∗We wish to thank Hashem Pesaran and Riccardo “Jack” Lucchetti for helpful comments
and suggestions on earlier drafts of the paper. We are responsible for all remaining errors.

1For this reason, many authors argue that the empirical evaluation of FL models (as well as
dynamic stochastic general equilibrium models) must be based on alternative criteria, including
Bayesian techniques, see Canova (2007).
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econometric practice is widespread and goes back to Sargent (1979), Hansen and
Sargent (1980) and Campbell and Shiller (1987). We investigate whether the
rejection of FL models can also be ascribed to the poor finite sample perfor-
mances of the employed tests, such as e.g. likelihood ratio (LR) tests. Indeed,
appealing to asymptotic critical values with relatively small samples might induce
over-rejection of the FL model; we address the issue through simulation-based
inference. Observe that we rely on LR tests rather than Wald tests, because
the latter are known to possess bad small sample properties in models involving
forward-looking behaviour, see Bekaert and Hodrick (2001) for a comprehensive
discussion.2

Second, we develop a method to analyze the finite sample performances of
sequences of LR tests for FL models that arise under a particular form of adaptive
learning dynamics, where VARs serve as agents’ perceived law of motion (PLM).
The idea is that at each time t, agents use a VAR to form their beliefs using
the available information;3 as the information set increases, agents update their
estimates through recursive methods, hence face a sequence of cross-equation
restrictions in correspondence with each t.

When dealing with sequences of LR statistics, conventional critical values
which do not take the recursive nature of the test into account are not suited;
indeed, by the law of iterated logarithms, the probability of rejecting the null is
asymptotically one (see Inoue and Rossi, 2005). Moreover, in this framework, the
empirical assessment of the FL model involves relatively small sample sizes, espe-
cially at the beginning of the agents’ learning process, challenging the reliability
of asymptotic theory. Also in this case finite sample simulation-based techniques
can deliver reliable inference.

The idea of the paper is to use the consistent (point) estimates of VAR param-
eters to implement local Monte Carlo (LMC) LR-type tests described in Dufour
(2006) and Dufour and Jouini (2006). In practice, LMC amounts to a ‘parametric
bootstrap’ (or ‘parametric Monte Carlo’) procedure, through which the p-value
associated with the LR statistic can be calculated by simulation.

We consider two possible approaches to the empirical evaluation of FL mod-
els. In the former, we address the situation in which the researcher’s objective is
simply testing the VAR coefficient restrictions, regardless of the possible presence
of unit roots. In the latter, it is explicitly recognized that in many circumstances
the variables of the FL model might be approximated as non-stationary cointe-
grated processes, hence a pre-test for unit roots and cointegration is implicitly

2Clearly, we do not use a GMM approach since the objective of the paper is testing the
cross-equation restrictions implied by FL models in a ‘full-information’ framework.

3The traditional approach to modelling ‘boundedly rational’ expectations assumes agents
form expectations by using adaptive updating rules, see e.g. Branch and Evans (2006). We refer
to e.g. Pesaran (1987), Ch. 3, Sargent (1999), and Evans and Honkapohja (1999, 2001) (see
also references therein) for a comprehensive discussion of the concepts of ‘bounded rationality’
and learning behaviour.
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assumed.
This paper provides an empirical illustration based on the New Keynesian

Phillips Curve (NKPC) for the euro area, using a VAR for the inflation rate,
the wage share and the interest rate to proxy agents’ expectations. Our results
show that the NKPC cross-equation constraints are not rejected when the LMC
LR-type tests are computed, while they are rejected using the standard chi-
squared distribution; this finding supports the idea that, in finite samples, tests
based on asymptotic critical values may falsely lead one to reject the FL model.
Furthermore, the estimated forward-looking parameter dominates in magnitude
the estimated backward-looking parameter, indicating that learning dynamics
might represent a potential source of euro area inflation persistence (Milani, 2005
for the US economy, and Fanelli, 2007a for the euro area).

The empirical analysis also highlights that detecting the presence/absence of
unit roots and cointegration in the VAR before estimating and testing the FL
model is an important aspect of the empirical modelling strategy. Indeed, if the
inflation rate and the wage share are modelled as I(1) cointegrated processes, the
estimated magnitude of the parameter that governs the pass-through of marginal
costs into inflation reflects an higher degree of price stickiness, compared to the
case where time-series are treated as stationary processes.

The paper is organized as follows. Section 2 introduces the FL model and
derives the cross-equation restrictions with the VAR. Section 3 extends the anal-
ysis to the case where the variables of the system are cointegrated. Section 4
describes how the simulation-based LMC LR-type tests work with FL models,
and Section 5 deals with a simple MC experiment. Section 6 consists of an em-
pirical illustration relative to the NKPC for the euro area. Proofs and technical
details are summarized in the Appendix.

2 Forward-looking model and VAR restrictions

We focus on the following class of FL models

ỹt = γEtỹt+1 + δyt−1 + κ w̃t + ρt (1)

w̃t = m(ỹt−1, w̃t−1, ...) + et , (2)

where ỹt is a scalar endogenous variable, Etỹt+1 = E(ỹt+1 | Ft) is the expected
value of ỹt+1 conditional on the sigma-field Ft, Ft ⊆ Ft+1, w̃t is an explanatory
(driving) variable, m(·) is a linear function whose arguments are a finite number
of lags of ỹt and w̃t, respectively, associated with a given set of parameters,
ξt = (ρt, et)

′ a 2× 1 martingale difference sequence (MDS) with respect to Ft+1,
and ζ = (γ,δ,κ)′, 0 < γ < 1, 0 < δ < 1, κ > 0, is the vector of structural
parameters.

The specification (1)-(2) covers many of the FL models typically used in mon-
etary policy analysis, see Section 6. In this context, the symbol ‘˜’ over variables
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denotes that time-series do not embody any deterministic component. We have
deliberately left the equation for w̃t in (2) not fully unspecified; knowledge of
the structure of the process generating w̃t is crucial to compute the RE solu-
tion of the model and to envisage whether the model has a determinate (unique,
non-explosive) solution or not, with consequences on the identifiability of struc-
tural parameters, see Mavroeidis (2005) for a comprehensive discussion. Such
an approach, which is widespread in the literature, is based on the maintained
assumption that the data generating process (DGP) belongs to the RE solution
of the FL model.

Our approach, based on ‘VAR expectations’, takes a different perspective. It
posits that the agents in the economy form their expectations from a VAR serving
as the statistical forecast model for the data they face. The maintained assump-
tion is that if such a reduced form is correctly specified, in the sense of capturing
the dynamics and persistence of variables sufficiently well, the DGP must belong
to the VAR, irrespective of whether the theory holds or not; consequently, if for
a given m(·) the FL model (1)-(2) really holds, its (unique) RE solution must be
nested within the statistical model. The method of undertermined coefficients
allows to retrieve the implied cross-equation restrictions.

Let Xt = (yt, wt, u
′
t)
′ be the p × 1 vector of observable variables, where ut

is an q × 1 (p = 2 + q) sub-vector of ‘additional’ variables that might enter
agents’ information set. The vector Xt collects the variables whose dynamics
is potentially affected by deterministic components (constant, trend, dummies,

etc.); X̃t = (ỹt, w̃t, ũ
′
t)
′ is the corresponding vector of variables net of determinist

components, hereafter called the ‘detrended’ process.
Given the sigma field Ht = σ(X1, ..., Xt) ⊆ Ft, it is assumed that Xt is

generated by the finite-order VAR processes of the form

Xt = X̃t + dt , A(L)X̃t = εt , A(L)dt = µ+ ΘDt (3)

where
A(L) = Ip − A1L− · · · − AkL

k,

L is the lag operator, Ai, i = 1, 2, ..., k are p × p matrices of parameters, k ≥ 2,
d is a p × 1 constant, Dt is a f × 1 vector containing other deterministic terms
(trend, dummies, etc.) with associated p × f matrix of parameters, Θ, and εt

is a MDS with respect to Ht, with p × p covariance matrix Σε, and Gaussian
distribution. The quantities X0, X−1, ..., X−1+k are fixed. It is further assumed
that the roots, z, of det[A(z)] = 0 are such that | z |≥ 1, hence explosive solutions
are ruled out.

Henceforth the VAR system in equation (3) will read as agents’ expectations
generating system, or PLM. This means that the agents in the economy use
(3) and the information set Ht to form their beliefs over time. Since X̃t =

Xt − dt = (ỹt, w̃t, ũ
′
t)
′ is expressed as A(L)X̃t = εt, the first-order companion
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form representation of the detrended process is given by

X∗
t = AX∗

t−1 + ε∗t

where X∗
t = (X̃ ′

t, X̃
′
t−1, · · · , X̃t−k+1)

′ and ε∗t = (ε′t, 01×p(k−1))
′ are pk× 1, and A is

the n× n companion matrix

A =


A1 · · · Ak

Ip 0p×p

. . .

0p×p · · · Ip

 .
At time t − 1, agents’ j-step ahead forecast of ỹt and w̃t, net of deterministic
components, are given by

E(ỹt+j | Ht−1) = s′yE(X∗
t+j | Ht−1) = s′yA

j+1X∗
t−1 (4)

E(w̃t+j | Ht−1) = s′wE(X∗
t+j | Ht−1) = s′wA

j+1X∗
t−1 (5)

where sy and sw are respectively pk × 1 selection vectors such that s′yX
∗
t = yt

and s′wX
∗
t = wt.

Using the law of iterated expectations (Ht−1 ⊆ Ht ⊆ Ft) and the MDS
property of ρt, the FL equation (1) can be re-written as

E(ỹt | Ht−1) = γE(ỹt+1 | Ht−1) + δỹt−1 + κ E(w̃t | Ht−1)

so that using the forecasts (4)-(5) one has

s′yAX
∗
t−1 = γs′yA

2X∗
t−1 + δs′yX

∗
t−1 + κs′wAX

∗
t−1.

As X∗
t 6= 0 a.s. for each t, rearranging terms above gives rise to the following set

of nonlinear cross-equation restrictions

s′yA(Ipk − γA)− δs′y − κs′wA = 01×pk. (6)

The two propositions that follow discuss the conditions which ensure that the
VAR in equation (3) is locally identifiable under the restrictions (6), and the
explicit form representation of these restrictions, respectively.

Proposition 1 Given the VAR system (3) and the cross-equation restrictions
(6), let a′y = s′yA = (ay,1, ay,2, ..., ay,pk), a

′
w = s′wA = (aw,1, aw,2, ..., aw,pk) and

au = vec(Au)
′, Au = s′uA be the 1 × pk, 1 × pk and 1 × qpk vectors containing

the parameters associated with the yt, wt and ut marginal equations of the VAR,
respectively, with s′u a q × n selection matrix such that s′uX

∗
t = ut. Define the

[pk(q + 1) + 3] × 1 vector v = (a′y, a
′
u, ζ)

′. If pk ≥ 4 and ay,2 6= −(κ/γ) in a
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neighbourhood of ‘true’ parameter values, then the following conditions hold: (i)
the restrictions (6) can be uniquely expressed in the form

aw = g(v) (7)

where g : T → Rpk is a differentiable function with T open set of Rpk(q+1)+3; (ii)
c = pk − dim(ζ) is the number of over-identifying restrictions; (iii) the informa-
tion matrix of the VAR under the restrictions (7) is non-singular.

Proof : see Appendix.

Proposition 2 Given the VAR system (3), assume for simplicity that q = 1 (ut

is a scalar),4 so that p = 3 and ay = (ay,1, ay,2, ..., ay,pk)
′, aw = (aw,1, aw,2, ..., aw,pk)

′

and au = vec(Au) = (au,1, au,2, ..., au,pk)
′. Under the conditions of Proposition 1,

the restrictions (7) take the form

aw,1 =
ay,i − γ(ay,1ay,i + ay,pau,i + ay,p+i)− δ

γay,2 + κ
, i = 1 (8)

aw,i =
ay,i − γ(ay,1ay,i + ay,pau,i + ay,p+i)

γay,2 + κ
, 1 < i ≤ p(k − 1) (9)

aw,i =
ay,i − γ(ay,1ay,i + ay,pau,i + ay,p+i)

γay,2 + κ
, p(k − 1) < i ≤ pk. (10)

Proof : see Appendix.

Proposition 1 ensures that it is generally possible to compute a LR test of
the FL model by estimating the unrestricted VAR, and the VAR subject to
c = (2+ q)pk− [(1+ q)pk+3] = pk− 3 (over-identifying) restrictions of the form
(7), where 3 is the dimension of the vector ζ. ‘One-shot’ tests of the FL model
can be therefore computed by estimating the sysyem over the whole sample of
available observations.

When the VAR in (3) is treated as agent’s PLM within the adaptive learning
framework, the expectations-generating system at each time t is obtained by
replacing the forecasts (4)-(5) by the quantities

E(ỹt+j | Ht−1) = s′yA
j+1
Ht−1

X∗
t−1

E(w̃t+j | Ht−1) = s′wA
j+1
Ht−1

X∗
t−1,

where the symbol AHt−1 here means that the estimation of the model used to
forecast is based on the information available at time t − 1, Ht−1. This also
means that since agents test the validity of the FL model at each t, the following
sequence of restrictions arise:

s′yAHt−1(In − γAHt−1)− δs′y − κs′wAHt−1 = 01×pk , t = T0, T0 + 1, ... (11)

where T0 is the ‘first monitoring’ time.

4Proposition 2 can be easily extended to the case q > 1.
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3 Cointegrated variables

Researchers dealing with FL models often find that the variables they are mod-
elling display high persistence. This happens even when these variables are con-
structed as (log) deviations from their steady states, as it is the case with the
equations comprising dynamic stochastic general equilibrium models. In these
circumstances, a crucial decision for the purpose of reliable inference, is to estab-
lish whether time-series are better approximated as stationary (albeit persistent)
processes, or as I(1), possibly cointegrated, processes, see Johansen (2006) and
Fanelli (2007b).

The cross-equation restrictions derived in Section 2 have been obtained with
reference to stationary processes, or considering situations where researcher’s
objective is testing the VAR coefficient restrictions, ignoring the possible presence
of unit roots. In this section we extend the method to the case where the empirical
analysis of the FL model is addressed after that the number of unit roots in the
system has been opportunely fixed.

Two parameterizations of the FL model (1) are worth discussing when vari-
ables are I(1) and cointegrated.5 The former is given by

∆ỹt = ψEt∆ỹt+1 − ω(ỹt − φw̃t) + ρ∗t (12)

where

ψ = γ/δ, (13)

ω = (1− δ − γ)/δ, (14)

φ = κ/(1− δ − γ) (15)

and ρ∗t = ρt/δ, and holds upon the condition that δ + γ 6= 1. The latter parame-
terization is based on the restriction δ + γ = 1, and is obtained by manipulating
equation (1) in the form

∆ỹt =
1− δ

δ
Et∆ỹt+1 +

κ

δ
w̃t + ρ∗t (16)

which emphasizes that w̃t behaves as the driving variable of ∆ỹt. Both formu-
lations are consistent with the case where the variables of the FL model are
I(1) and possibly cointegrated; however, whereas (12) is based on the hypothesis
that ỹt and w̃t are driven by a common stochastic trend, (16) requires that w̃t

corresponds to a (trivial) cointegrating relation.
Consider the Vector Equilibrium Correction (VEqC) representation of the I(1)

‘detrended’ process X̃t = Xt − dt = (ỹt, w̃t, ũ
′
t)
′

∆X̃t = αβ′X̃t−1 +
k−1∑
j=1

Γi∆X̃t−j + εt (17)

5If the variables entering the FL model are I(1) and not cointegrated, the procedure described
for stationary variables can be applied to a version in first differences of both the FL model
and the VAR system.
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where αβ′ = −(Ip −
∑k

i=1Ai), α and β are p × r full rank matrices, and Γi =

−
∑k

j=i+1Ai, i = 1, ..., k−1, see Johansen (1996) for details. If yt and wt are coin-
tegrated and conform to (12) and there are no additional cointegration relations
in the system,

β′ = (1,−φ, 01×q) (18)

implying that r = 1, and that there are q over-identifying restrictions on β. On
the other hand, if (16) is the ‘correct’ FL model, then

β′ = (0, 1, 01×q) (19)

implies that there are q+1 over-identifying restrictions on β. If the cointegration
matrix of the VEqC does not match neither the structure (18) nor (19), agent’s
PLM is at odds with the long-run empirical implications of the FL model.

Suppose that β complies with (18), so that ot = β′X̃t = ỹt−φw̃t (r = 1) mea-

sures deviations from equilibrium. Define the p× 1 process Wt = (X̃ ′
tβ,∆X̃

′
tτ)

′,
where τ is a p× (p− r) selection matrix such that det(τ ′β⊥) 6= 0; Paruolo (2003),
Theorem 2, shows that the VEqC (17) can be written in terms of a VAR process

for Wt = (X̃ ′
tβ,∆X̃

′
tτ)

′ without loss of information, i.e.6

B(L)Wt = ε0
t (20)

where ε0
t = (ε′tβ, ε

′
tτ)

′ is a MDS with respect to Ht, and

B(L) = Ip −B1L− · · · −Bc
kL

k , Bc
k = (B1k, 0p×(p−r)),

with the coefficients in Bi, i = 1, ...k which depend opportunely on VEqC coeffi-
cients α, Γ1,..., Γk−1. The VAR (20) can be cast in companion form, and agents’
j-step ahead conditional forecast of ∆yt and ot can be computed as

E(∆ỹt+j | Ht) = s′yB
jW ∗

t

E(ot+j | Ht) = s′oB
jW ∗

t

where sy and so are selection vectors, B is the pk × pk companion matrix and
W ∗

t = (W ′
t ,W

′
t−1, ...,W

′
t−k+1)

′ is the n× 1 state vector.
By the same route of Section 2, the cross-equation restrictions between the

VAR (20) and the FL model (12) can be written as

s′yB(Ipk − ψB) + ωs′oB = 01×pk (21)

hence their recursive counterpart is given by

s′yBHt−1(Ipk − ψBHt−1) + ωs′oBHt−1 = 01×pk , t = T0, T0 + 1, ... (22)

6Johansen (1996) shows that the VEqC (17) can be written in terms of the process Wt =
(X ′

tβ,∆X
′
tβ⊥)′; Paruolo (2003) extends this result to a more general set-up.
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where T0 is the first monitoring time, and BHt ≡ Bt denotes the companion
matrix of (20), whose parameters have to be estimated on the basis of the infor-
mation available at time t.

Proposition 1, opportunely adapted, can be still applied.7 The problem in
this case, however, is that when considering the recursive tests, the cointegration
matrix β in Wt = (X̃ ′

tβ,∆X̃
′
tτ)

′, must be known a priori, or must be estimated
super-consistently on the basis of information HT0−1.

8 Clearly, the analysis based
on Wt requires that there are no structural breaks characterizing β from T0 to
Tmax.

A remarkable feature of the cointegrated FL model (12) is that due to the
mapping (15), one of the structural parameters is directly related to β. For
example, given β′ = (1,−φ, 01×q) and γ and δ, the value of κ can be retrieved
from (15).

4 Simulation-based tests

In this section we consider the problem of testing the cross-equation restrictions
implied by the FL model through simulation-based techniques. For easy of refer-
ence, we shall refer to the system (3) and the restrictions (6) and their recursive
counterpart (11); concepts, however, can be natually extended to the system (20)
and the implied restrictions (21) and their recoursive counterpart (22).

In principle, for a fixed t, one can estimate the unrestricted VAR, and the
VAR subject to the cross-equation restrictions, and compute LR statistics of the
form

LRt = 2(logL(θ̂t)− logL(θt)) (23)

where L(·) is the likelihood function, θ̂t is the vector containing the maximum
likelihood (ML) estimates of the unrestricted VAR parameters based on the infor-
mationHt, and θt is the vector containing the constrained ML (CML) estimates of
the system based on the information Ht. The unrestricted estimates are given by
θ̂t = (â′t, π̂

′
t, ξ̂

′
t)
′, where ât = (â′yt, â

′
wt, â

′
ut)

′, π̂t = (µ̂′t, vec(Θ̂t)
′)′ and ξ̂t = vech(Σ̂εt),

whereas the constrained ones are given by θt = (v′t, π
′
t, ξ

′

t), vt = (a′yt, a
′
ut, ζ

′
t)
′,

πt = (µ′t, vec(Θt)
′)′, and ξt = vech(Σεt). With ‘one-shot’ tests, the time index t

in (23) is equal to t = Tmax; in the adpative learning framework t ranges from
the first monitoring time T0 onwards.

In the presence of stationary processes, comparing each LRt with the χ2
1−η(c)

quantile, where according to Proposition 1, c = pk − dim(ζ) = pk − 3 is the
number of over-identifying restrictions and η the nominal level of the test, will

7In this case, the number of over-identifying restrictions is given by c = pk − (p − r) − 2,
where 2 = dim(ψ, ω), and r is the cointegration rank of the system, see Fanelli (2007b).

8Another possibility is represented by the recursive updating of the estimator of β. This
issues is the subject of future research.
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imply a rejection frequency for the null which approaches the nominal level for
each fixed but large value of t, but which will result in severe size distortions if the
quantile χ2

1−η(c) is kept fixed through the entire sequence t = T0, T0 + 1, ..., Tmax.
Indeed, by the law of iterated logarithms it follows that

lim
t→∞

P [LRt ≥ χ2
1−η(c)] = 1

also under the null, see e.g. Inoue and Rossi (2005).
Thus if ‘one-shot’ LR tests for the cross-equation restrictions (6) may exhibit

size distorsions due to finite sample issues (i.e. when Tmax is not large enought),
their sequential counterparts are inherently size distorted if the fixed quantile
χ2

1−η(c) is used for the increasing values of t. Inoue and Rossi (2005) propose a
general asymptotic theory to account for these situations, however, in our set-up
asymptotic critical values might not suited at the beginning of agents’ learning
process, i.e. when the values of t = T0, T0 +1, ... are relatively small. Also in this
case finite-sample simulated-based inference, along the lines of Dufour (2006) and
Dufour and Jouini (2006), seems a reasonable solution to control the level of the
test.

The algorithm for computing the LMC p-values associated with each LRt

statistics in (23) can be described as follows:

1. compute, for fixed k and t, the test statistic LRt based on the observed data,
LRt = LRs

t : this requires the unrestricted and constrained estimation of
the VAR(k) in equation (3) with data until time t;

2. generate the sequence of M iid vectors ε1
1, ε

2
2, ..., εM

t drawn from the Gaus-

sian distribution N(0,Σεt), and given the CML estimates θt = (v′t, π
′
t, ξ

′

t)
obtained in the step 1, construct the M pseudo-samples of lenght t:

A(L) Xm
j = µt + ΘtDj + εm

j , m = 1, 2, ...,M , j = 1, 2, ..., t

where the elements of the matrices in A(L) depend on θt (in particular on
vt), and Xm

0 = X0, X
m
−1 = X−1, ... and Xm

−1+k = X−1+k are fixed at the
initial sample values;

3. for each of the M simulated pseudo-samples of lenght t, estimate the unre-
stricted VAR(k) and the VAR(k) subject to the restrictions (7), and com-
pute M independent LR statistics LRm

t , m = 1, 2, ...,M ;

4. compute the LMC p-value associated with LRs
t as

p̂(LRs
t , θt) =

M · ĜM(LRs
t ) + 1

M + 1
, ĜM(LRs

t ) =
1

M

M∑
m=1

I {LRm
t − LRs

t}
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where the notation p̂(LRs
t , θt) reflects that the simulated p-value depends

on the consistent point estimates of the restricted VAR; if p̂(LRs
t , θt) > η,

the LMC test is not significant at level η;9

5. for the sequential (recusive) version of the test repeat the steps 1-4 for
t = T0 + 1, T0 + 2, ..., Tmax.

The LMC power associated with each LRt statistics can be obtained similarly,
by simply generating the pseudo-samples in the step 2 from the unconstrained
ML estimates θ̂t = (â′t, π̂

′
t, ξ̂

′
t)
′. The procedure described above can be viewed

as a degenerate version of the maximized Monte Carlo (MMC) tests proposed
in Dufour (2006): instead of maximizing a simulated p-value function over a
consistent set estimator of the VAR nuisance parameters, simulations in step 2
are based on consistent point estimates.

The ‘price to pay’ with the LMC procedure, compared to MMC techniques, is
that stronger assumptions are required to yield asymptotically valid tests under
general conditions. However, albeit LMC-type tests are computer intensive, they
are still feasible compared to MMC-type techniques which require the maximiza-
tion of a simulated p-value function over the entire nuisance’s parameter space.
Moreover, the simulation experiment we discuss in Section 5 shows that the sug-
gested LMC procedure results in LR tests displaying empirical rejection frequency
substantially close to the nominal level, under the null that the cross-equation
restrictions hold, and reasonable power against the hypothesis of a backward-
looking model with variables generated by I(1) cointegrated processes.

CML estimates in the steps 1 and 3 can be computed by combining standard
Newton-like methods with a grid search for the three structural parameters ζ =
(γ,δ,κ)′ as in Fanelli (2007b). This choice, followed in Section 5 and Section 6,
can be computationally demanding but has the advantage that obvious a priori
bounds characterizing γ, δ and κ suggested by the theory, can be easily accounted
for.10 However, in this case a balancing is required between computation costs
and the necessity of specifying a sufficiently fine grid in a way that estimation
and testing procedures do not turn out to be distorted.

5 Simulation experiment

In this section we present simulation evidence on the performance of LMC LR-
type tests for the FL nonlinear restrictions discussed in Section 4. We consider a

9Strictly speaking, p̂(LRs
t , θt) ≤ η, is not sufficient to reject the null hypothesis at level η.

Indeed, as explained in Dufour and Jouini (2006), the rejection of the null should be based on
the maximized p-value: p̂MMC = sup {p̂M (LRs

t , θ), θ ∈ Ω0}, where Ω0 is the parameter space
restricted by the null hypothesis, or a consistent set restricted estimator.

10Alternatively, suitable parameter transformations can be implemented as described in De-
jong and Dave (2007), Chapter 8.
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simple DGP, represented by a VAR process with p = 2 variables and k = 2 lags.
Results are reported in Table 1.11

Data are generated from the DGP under the null that the VAR companion
matrix A is subject to the nonlinear cross-equation restrictions (6) (see Propo-
sition 1), and setting the structural parameters of the FL model at the values
ζ∗ = (0.70, 0.20, 0.15)′.12 In order to mimic the typical time-series persistence re-
searchers face empirically, the eigenvalues of the (constrained) companion matrix
A are specified such that the highest root is close to unity.

The nominal level of the test is 0.05. LMC LR-type tests are based on
M =100 replications (pseudo-samples), while the number of trials used for evalu-
ating rejection frequencies is 1000.13 Since our emphasis is on the typical sample
lengths available to macroeconometricians, we consider samples of length T=50
and T =100, respectively.

The first and second columns of Table 1 summarize the percentages of rejec-
tions of the FL model under the null that the cross-equation restrictions hold.
The number of over-identifying restrictions in the LR tests is c = pk − dim(ζ) =
1, see Proposition 1. CML estimates are obtained by combining Newton-like
methods with a grid search for ζ; the grid is constructed around the point
ζ∗ = (0.70, 0.20, 0.15)′, using ±0.02 as increment; ζupper = (0.74, 0.24, 0.19)′ and
ζ lower = (0.66, 0.16, 0.11)′ are taken as the upper and lower bounds of the grid,
respectively.

Power in the third and forth columns of Table 1 is obtained under the al-
ternative that the process is generated by the unrestricted VAR in (20), where
Wt = (X ′

tβ,∆X
′
tτ)

′ is equal to Wt = (X1t −X2t − 0.2,∆X2t)
′; the cointegration

matrix is hence fixed at β′ = (1,−1,−µ0) and β′ = (1,−1, 0,−µ0), respectively,
where µ0 = 0.2 is a constant restricted to lie in the cointegration space (Johansen,
1996).14 This choice of the alternative reflects the situation where the FL restric-
tions are not supported by the data, and the variables entering the model are
cointegrated.

Rejection proportions in Table 1 are expressed in percentages. They show that
when the nonlinear FL cross-equation restrictions hold, asymptotic tests based
on standard critical values display non-negligible overrejection rates (for example,
0.215 instead of 0.05). This simple simulation confirms that the rejection of FL
models may be partly ascribed to the use of asymptotic critical values in finite

11The simulation experiment has been performed through Ox 4.0. All codes, including those
relative to the estimates of Section 6 are available upon request.

12Gaussian disturbances with covariance matrices having 1 on the diagonal and 0.5 as off-
diagonal elements are used. Observe that in this experiment as well as in Section 6, we consider a
parametric version of the LMC procedure (parametric bootstrap, also known as MC bootstrap);
in principle, however, also a non-parametric version of these procedures might be implemented.

13Results very similar to those reported in Table 1 can be obtained by increasing both M
and the number of trials used to evaluate rejection frequencies.

14The highest root of the VAR companion matrix of the Wt process is 0.67 for DGP1, and
0.90 for DGP2.
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samples. In this respect, the LMC procedure seems to control the level of the
test satisfactorily, even when the VAR roots are close to unity. Interestingly, the
power of the LMC LR-type tests against the alternative of a backward-looking
specification with I(1) cointegrated processes, appears reasonable.

6 Application to the New Keynesian Phillips

curve

The NKPC can be regarded as the most prominent FL model of inflation dyan-
mics that currently dominates the debate in moneary policy. It reads as a special
case of the equation (1), where ỹt is the inflation rate and w̃t a measure of firms’
real marginal costs. In the Calvo (1983) formulation, the structural parameters
in ζ = (γ,δ,κ)′ are related to other ‘deep parameters’ through the mapping

γ =
%ϑ

ϑ+ τ [1− ϑ(1− %)]
(24)

δ =
τ

ϑ+ τ [1− ϑ(1− %)]
(25)

κ =
(1− τ)(1− ϑ)(1− ϑ%)

ϑ+ τ [1− ϑ(1− %)]
(26)

where % is firms’ discount factor, τ the fraction of forward-looking firms, and
(1 − ϑ)−1 is the average time upon which prices are kept fixed, see Gaĺı and
Gertler (1999) and Gaĺı et al. (2001). Using a generalized method of moments
approach, Gaĺı et al. (2001) find support for the NKPC in the Euro area over
period 1971-1998. Other existing studies based on model consistent expectations
(B̊ardsen et al., 2004) and ‘VAR expectations’ (Fanelli, 2007b), reject the NKPC
for the euro area using the same data set as Gaĺı et al. (2001).

6.1 Data

We consider quarterly data for the euro area, using the last release of the Area-
wide Model (AWM) data set described in Fagan et al. (2001). Variables cover
the period 1971:1-2005:4. To measure inflation we use the GDP deflator, i.e.
yt = 4× 100(pt − pt−1) = πt, where pt is the log of the GDP deflator. The GDP
deflator is YED in the AWM data set. Firms’ average marginal costs are proxied
by the wage share (log of real unit labour costs), wt = wst. The wage share (real
unit labour costs) is computes as wst = 100 × log(WINt/Y ERt), where WIN
is ‘Compensation to Employees’ (in real terms) and YER is real GDP. A short
term interest rate, ut ≡ it (qu = 1), is included in the system. As a proxy of it,
we have used the short-term interest rate, which is STN in the data set.
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The estimation and testing procedure under the VAR-based adaptive learning
dynamics described in Section 2 and Section 4 relies on the sub-sample 1971:1-
1983:4 to produce initial estimates of VAR parameters, and uses the sub-period
1984:1-2005:4 to evaluate the NKPC recursively.15 In terms of the notation of the
previous sections, T0 =1984:1 is the first monitoring period, and Tmax =2005:4
is the last available observation. Clearly, ‘one-shot’ tests are carried out over the
entire period 1971:1-2005:4.

6.2 Results

We consider a VAR for Xt = (πt, wst, it)
′ with three lags (k = 3) and a costant

(i.e. A(L)dt = µ, Θ ≡ 0, Dt ≡ 0). The constant is restricted to lie in the coin-
tegration space (µ = αµ0, where µ0 is the intercept entering the cointegratign
relation) when we perform the cointegration rank test, since the data do not show
any linear trend in the variables. Table 2 reports the estimated roots of compan-
ion matrix, the LR cointegration trace test, and the cointegrating relations, over
both the sub-period 1971:1-1983:4, and the whole sample 1971:1-2005:4. Results
based on the entire sample of observation refer to the ‘one-shot’ analysis of the
NKPC, while results based on the sub-period 1971:1-1983:4 read as agents’ initial
beliefs in the adaptive learning framework.

Table 2 shows that the highest estimated root of VAR companion matrix is
close to unity, emphasizing that the system is highly persistent. Actually, the
LR trace test for cointegration rank suggests that the hypothesis of unit roots
is highly supported by the data; moreover, inflation and the wage share seem to
co-move in the euro area, confirming the finding in Fanelli (2007b), based on a
previous release of the AWM data set.

Although the evidence in Table 2 remarks that the system comprising euro
area inflation, the wage share and the short term interest rate might be reason-
ably approximated as an I(1) cointegrated VAR, we recognize that the power of
the cointegration rank test might be poor against the alternative of an highly
persistent but stationary process in finite samples. For this reason, we take an
‘agnostic’ view on the issue, and consider two possible specifications of agents’
expectations generating system: in the former, discussed in Subsection 6.2.2, the
VAR in levels is used to investigate the NKPC along the lines of Section 2, with-
out imposing the cointegration restrictions; in the latter, discussed in Subsection
6.2.3, the nonstationarity and cointegration restrictions of the system are fully
incorportated in the econometric analysis, as outlined in Section 3.

In both approaches, the estimation of the constrained VAR is achieved by
combining Newton-like methods with a grid search for the structural parame-

15Fanelli (2007a) provides a detailed explanation of why 1984:1 can be chosen as the first mon-
itoring time. The results of this section, however, are robust to changes in the first monitoring
time, and are available upon request.
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ters of the NKPC; the next Subsection explains how the grid for the structural
parameters had been constructed.

6.2.1 The grid

CML estimation is carried put by combining like-Newton methods with a grid
search for ζ = (γ,δ,κ)′. This method, already used in Fanelli (2007b), is in this
context feasible because the dimension of ζ is not large, and allows to consider
values for the structural parameters which are a priori consistent with the Calvo
set-up, see the equations (24)-(26).

The grid used in Subsection 6.2.2 is constructed as follows: starting from
γ = 0.05, δ = 0.05 and κ = 0.05, 0.01 is used as incremental value for γ and
δ, and 0.05 is used as incremental value for κ. The following constraints and
bounds are imposed: γ > 0, δ > 0, γ + δ < 1, 0 < κ ≤ 0.4, obtaining a grid
comprising 8280 points. The restriction γ + δ = 1 is ruled out, since preliminary
computations reveal that the data do not comply with a formulation of the NKPC
of the form (16), see Section 3; the upper bound for κ is motivated by theoretical
considerations.

The mapping (13)-(14) and the grid for ζ are then used in Subsection 6.2.3
to construct a grid for ψ and ω when the cointegrated version of the NKPC is
estimated and tested; for fixed ψ and ω and β (see in particular equation (18)),
the mapping (15) provides values for κ.16

6.2.2 Model in levels

For t = T0, T0 + 1, ..., Tmax, a VAR(3) for Xt = (πt, wst, it)
′ is estimated re-

cursively under the cross-equation restrictions (8)-(9), and unrestrictedly. The
CML estimates show that, for all t, except t =1984:1, the restricted log-likelihood
is maximized in correspondence of the structural parameters vector ζ̂t = ζ∗ =
(0.93, 0.05, 0.40)′.17 In terms of the Calvo parameterization provided by equa-
tions (24)-(26), the counterparts of these estimates are %∗ = 0.98 (discount fac-
tor), τ ∗ = 0.028 (fraction of backward-looking firms) and (1−ϑ∗)−1 ≈ 2 (average
number of quarters over which prices are kept fixed).

The upper-panel of Figure 1 plots the entire sequence of LR statistics; the
graph also reports the 95% quantile taken from a χ2

0.95(6). Using this quantile,

16Preliminary estimates have shown that, in practice, computation time can be firmly re-
duced without affecting estimation and testing results, by considering only a limited number
of grid points (50 points). In particular, the region of (structural) parameter space where the
magnitude of γ (forward-looking parameter) dominates that of δ (backward-looking parameter)
seems to be preferred in terms of likelihood.

17For t =1984:1 we obtain ζ̂t = (0.87, 0.11, 0.40)′. Given that this estimate does not differ too
much from the (stable) one obtained over the period 1984:2-2005:4, in this section the analysis
will be developed by assuming that ζ̂t = (0.93, 0.05, 0.40)′ = ζ∗, all t.
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the FL model of inflation dynamics is sharply rejected for all t = T0, T0 + 1, ...,
Tmax. Hence for t = Tmax, the ‘one-shot’ test rejects the NKPC for the euro area.

The lower-panel of Figure 1 plots the sequence of simulated p-values associated
with each LR statistic, computed through the LMC procedure described in the
steps 1-5 of Section 4. More precisely, for each t = T0, T0+1, ..., Tmax we generated
M = 1000 pseudo-samples drawn from a VAR(3) with coefficients fixed at the

CML sample estimates θt = (a′yt, a
′
ut, ζ

′
t, µ

′
t, ξ

′

t), ξ
′

t = vech(Σεt). The lower-panel
of Figure 1 also plots the simulated rejection frequencies (power) associated with
each LR statistic; here, the pseudo-samples are generated from a VAR(3) with

coefficients fixed at the unrestricted sample estimates θ̂t = (â′yt, â
′
wt, â

′
ut, µ̂

′
t, ξ̂

′
t)
′,

ξ̂t = vech(Σ̂εt). The graph shows that using simulated p-values, each test in the
sequence is not significant at the 5% level.

Estimation suggests that agents form their beliefs consistently with the theo-
retical restrictions implied by the NKPC over the period 1984:1-2005:4. Similarly,
the last LR test in Figure 1 remarks that when t = Tmax, the LMC ‘one-shot’
test of the NKPC does not reject the model, albeit marginally, at the 0.05 level
(simulated p-value equal to 0.053). This result differs from those obtained using
the standard χ2

1−η quantile.

6.2.3 Cointegrated model

Table 2 shows that the system Xt = (πt, wst, it)
′ can be approximated as an I(1)

cointegrated processes in the euro area, where in particular πt and wst comply
with (18), and the short term interest rate is weakly exogenous. Hereafter β̂′ =

(1,−φ̂, 0, µ̂0) with φ̂ = 0.5 and µ̂0 = 1.88 (µ0 is the restricted constant), will be
taken as the estimated cointegration vector.18

In this framework, the empirical analysis of the NKPC is based on the for-
mulation (12), and the cointegrated VAR for Xt = (πt, wst, it)

′ is re-specified in

the form (20), with β̂′Xt = ot = π̃t − 0.5w̃st + 1.88, and where the 3× 2 matrix

τ selects ∆πt and ∆it from ∆Xt (det(τ ′β̂⊥) 6= 0). The expectations generating
system is thus represented by a stable VAR(3) for the vector Wt = (ot,∆πt,∆it)

′.
For t = T0, T0 + 1, ..., Tmax, the system is estimated recursively under the

cross-equation restrictions (22), and unrestrictedly. The resulting CML estimates

are given by (ψ̂t, ω̂t)
′ = (ψ∗, ω∗)′ = (18.6, 0.4)′ for all t. According to (13)-(14) and

(15), the corresponding structural parameters are ζ̂t = ζ∗∗ = (0.93, 0.05, 0.01)′,

for all t. Note, in particular, that the value κ∗∗ = (1 − γ∗∗ − δ∗∗)φ̂ = 0.01 is
obtained by inverting the relation (15). Thus, it follows that two of the three
estimated structural parameters coincide with the estimates obtained through
the VAR in levels; in terms of the Calvo parameterization, the vector ζ∗∗ implies
%∗∗ = 0.98, τ ∗∗ = 0.048 and (1 − ϑ∗∗)−1 ≈ 11. In this context, compared to

18Note that a similar results is obtained in Fanelli (2007b) using a previous release of the
AWM data set.
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the estimates obtained in Subsection 6.2.2, the probability that firms are able to
change their prices across periods falls from (1− ϑ∗) ≈ 0.5 to (1− ϑ∗∗) ≈ 0.09.

The upper-panel of Figure 2 plots the entire sequence of LR statistics; the
graph also reports the 95% quantile taken from χ2

0.95(5).
19 Using this quantile,

the FL model of inflation dynamics is rejected from t =1999:2 onwards. Hence,
also in this case, for t = Tmax the ‘one-shot’ test rejects the (cointegrated) NKPC
as in Fanelli (2007b).

The lower-panel of Figure 2 plots the sequence of simulated p-values and
power associated with each LR statistic, computed through the LMC procedure.
It turns out that also the cointegrated version of the NKPC is supported by the
data, with reasonable power during the period 1984:1-2005:4. As with the VAR in
levels, when t = Tmax, the LMC ‘one-shot’ test for the cross-equation restrictions
rejects the NKPC only marginally at the 0.05 level (simulated p-value equal to
0.045).

To sum up, when the cointegration restrictions are incorporated in the agents’
expectations generatign system, the NKPC for the euro area is still supported
likewise the model in levels; however, in this case the magnitude of the estimated
κ parameter, which is directly related to the pass-through from marginal costs
to inflation, is remarkably lower, implying an higher degree of price stickiness.

7 Conclusions

In this paper we have proposed a method which allows to investigate the finite
sample performance of tests for the nonlinear cross-equation restrictions that
arise when FL models are tested against VAR systems. We consider two types
of LR tests: (i) ‘one-shot’ tests, where estimation involves the entire sample of
observations, and which are based on the comparison between the unrestricted
and constrained VAR likelihoods; (ii) sequences of tests obtained under the as-
sumption that ‘boundedly rational’ agents use the VAR recursively to update
their beliefs through the perpetual assessment of the FL model, also based on
the comparison of the unrestricted and constrained system likelihoods.

A simple simulation experiment highlights that the use of asymptotic critical
values taken from the chi-squared distribution may induce the researcher to falsely
reject FL models in finite samples. This result helps to explain why, beyond the
well-established idea that FL models are inherently misspecified representations
of the data, they receive poor (or marginal) empirical support in the literature.
We show that LMC LR-type statistics allow a substantial control of the level of
the test, even when the persistence of the modelled time-series is high; in addition,
LMC tests exhibit reasonable power against the alternative of a backward-looking
specification where the variables are generated by I(1) cointegrated processes.
Hence, at first glance, simulation-based inference can justify the practise of testing

19See footnote 6 for details.
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FL models against VARs with variables in levels, without pre-testing for unit
roots and cointegration. Nevertheless, our application to the NKPC for the euro
area over the period 1971-2005 shows that this is not always the case.

More precisely, our approach shows that, whereas tests based on asymptotic
critical values taken from the chi-squared distribution reject the model, both
‘one-shot’ and recursive LMC LR-type tests tend to support (albeit marginally
for the ‘one-shot’ tests) the nonlinear constraints that the NKPC imposes on the
VAR. Moreover, the magnitude of the forward-looking parameter of the NKPC
dominates that of the backward-looking parameter, confirming a well-established
finding of the econometric adaptive learning literature, where it is often argued
that learning mechanisms can replace those devices, such as indexation, contracts,
rules of thumb, etc., which are included to capture inflation persistence.

The euro area NKPC seems to be supported, using simulation-based infer-
ence, irrespective of whether the system is treated as a stationary, or as an I(1)
cointegrated system, where inflation and the wage share co-move over time. More
importantly, however, compared to the results obtained using the VAR in levels,
the imposition of cointegration restrictions changes the estimated magnitude of
one of the structural parameters, with remarkable consequences on the implied
degree of price stickiness.

In this paper we take an ‘agnostic’ position on whether agents’ expectations
generating system is better approximated as a stationary (but highly persistent),
or non-stationary cointegrated VAR; overall results, however, suggest that the
choice between these two options plays an important role in the empirical assess-
ment process.

Appendix

Proof of Proposition 2

Given the definition of sy, sw and su, observe that A′ = (ay, aw, Au,Ξ), where Ξ
is the sub-matrix of the companion form matrix containing 0 and 1 only, hence
vec(A′) = (a′, vec(Ξ)′)′, where a = (a′y, a

′
w, a

′
u)
′ and au = vec(Au). Define the

function
f(aw, ay, au, ζ) = f(aw, v) = (In − γA′)ay − δsy − κ aw

where f : S → Rn, n = pk, S is an open set in R(q+2)n+3, 3 = dim(ζ), and
v = (a′y, a

′
u, ζ

′)′. Under the null that the restrictions (6) hold, one has

f(a0
w, v

0) = 0n×1 (27)

where a0
w and v0 denote the ‘true’ parameter values of aw and v, respectively, and

(a0
w, v

0) is an interior point of S. The function f is twice differentiable at (a0
w, v

0).
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The n× n Jacobian J(aw, v) = ∂f(aw, v)/∂a
′
w is given by

∂f(aw, v)

∂a′w
=
∂ {(In − γA′)ay}

∂a′w

In

− κ
∂aw

∂a′w

In

= −γ ∂ {A
′ay}

∂a′w
− κIn = −γ ∂vec(A

′ay)

∂a′w
− κIn

= −γ(a′y ⊗ In)
∂vec(A′)

∂a′w
− κIn = −γ(a′y ⊗ In)

 0n×n

In
0[n(n−2)]×n

− κIn

= −γ(ay,1In, ay,2In, ..., ay,nIn)

 0n×n

In
0[n(n−2)]×n

− κIn

= −(γay,2 + κ)In. (28)

It turns out that J(aw, v) is non-singular at (a0
w, v

0) iff a0
y,2 6= −(κ0/γ0). Hence,

if a0
y2 6= −(κ0/γ0), by the implicit function theorem there exists an open set T

in R(q+1)n+3 containing v0, and a unique differentiable function g : T → Rn, such
that

a0
w = g(v0) (29)

and f(g(v), v) = 0n×1 for all v ∈ T.
The number of free parameters of the VAR under the null is (1+q)n+3, hence

the number of over-identifying restrictions is c = (2+ q)n− [(1+ q)n+3] = n−3.
This implies that pk ≥ 4 for the restrictions to be binding, i.e. for c ≥ 1. This
proves (i) and (ii).

Given the function (29), the mapping between the parameters of the uncon-
strained VAR and the parameters of the restricted VAR can be written in explicit
form as

a = h(v)

where, given the partion a = (a′y, a
′
w, a

′
u)
′, the function h(·) has the following

structure:

ay = hy(v) = ay

aw = hw(v) ≡ g(v)

au = hu(v) = au.

Let logL be the log-likelihood of the VAR. Using the chain rule of derivatives the
score associated with v is given by

∂logL

∂v′
=

∂logL

∂a′

1×[(2+q)n]

× ∂h(v)

∂v′

[(2+q)n]×[(1+q)n+3]
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where (∂logL/∂a) is the score associated with the parameters of the unrestricted
system, and the Jacobian is defined as

∂h(v)

∂v′
= D(v) =

 In 0n×nq 0n×3

Dg,ay Dg,au Dg,ζ

0nq×nq Inq 0qn×3

 ≡ [D1(v) , D2(v) , D3(v)] (30)

whereDg,ay = ∂g(v)/∂a′y is [(1+q)n+3]×n,Dg,au = ∂g(v)/∂a′u is [(1+q)n+3]×nq,
and Dg,ζ = ∂hw/∂ζ

′ is [(1+q)n+3]×3. The matrix D(v) in (30) has full column
rank (1 + q)n+ 3 at v = v0 if and only if D3(v

0) has full column rank 3, and the
columns of the sub-matrices D1(v

0), D2(v
0), D3(v

0) are linearly independent. It
can be noticed that by construction the columns of D1(v) can not be expressed
as linear combination of the columns of D2(v) and D3(v), whereas the columns of
D2(v) can not be expressed as linear combinations of the columns of D1(v) and
D3(v). Similarly, the columns ofD3(v) can not be obtained as linear combinations
of the columns of D1(v) and D2(v). Finally, observe that D3(v) has full column
rank 3 at v = v0 iff Dg,ζ(v

0) = ∂g(v0)/∂ζ ′ has column rank 3. More precisely,

Dg,ζ =
∂g(v)

∂(γ, δ, κ)′
=

 ∂g(v)

∂γ
n×1

,
∂g(v)

∂δ
n×1

,
∂g(v)

∂κ
n×1

 (31)

where the g(·) function in (29) is such that ∂g(v)/∂γ = −(γay,2 + κ)−1[r(v) −
ay,2g(v)] with r(·) continuous function, r : R(1+q)n+3 → Rn, ∂g(v)/∂δ = −(γay,2+
κ)−1i1, where i1 is a n×1 vector with 1 as its first element and zero elsewhere, and
∂g(v)/∂κ = −(γay,2 + κ)−1g(v). Moreover, g(v0) 6= i1, r(v

0) 6= i1, g(v
0) 6= r(v0)

and r(v0) − ay,2g(v
0) 6= λi1 for each scalar λ. Accordingly, each column of the

matrix (31) evaluated at v = v0 is linearly independent on the other two columns.
It turns out that Dg,ζ(v

0) has rank 3, implying that the Jacobian D(v0) in (30)
has rank (1 + q)n+ 3.

Under standard regularity conditions, the [(1+q)n+3]×[(1+q)n+3] left-upper
block of the information matrix of the restricted VAR is given by

R(v) = E

[
∂logL

∂v
× ∂logL

∂v′

]
= D(v)′R(a)D(v),

where R(a) = E
[

∂logL
∂a

× ∂logL
∂a′

]
is the left-upper block of the information matrix

of the unrestricted VAR, which is non-singular. R(v0) is non-singular as D(v0)
has rank (1 + q)n+ 3. This proves (ii) and completes the proof.�

Proof of Proposition 2

Given p = 3, and trasposing both sides of (6) gives rise to the following system
of equations
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γ(ay,1ay,1 + ay,2aw,1 + ay,3au,1 + ay,p+1)− ay,1 + δ + κaw,1 = 0

γ(ay,1ay,i + ay,iaw,i + ay,3au,i + ay,p+i)− ay,p+i + κaw,i = 0 , i = 2, ..., pk

where ay,p+i = 0 if i > p(k − 1). The structure of the system is such that each
aw,i, i = 1, ..., pk can be expressed as unique function of the 2n + 3 parameters
ay = (ay,1, ay,2, ..., ay,pk)

′, au = (au,1, au,2, ..., au,pk)
′ and ζ = (γ,δ,κ)′, consistently

with equation (7). The solution of the system with respect to each element of
aw = (aw,1, aw,2, ..., aw,pk)

′ amounts to the equations (8)-(10) reported in the text.
This completes the proof. �
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Figures

Figure 1: Upper panel — sequence of LR statistics for the restrictions implied
by the NKPC under learning dynamics (VAR in levels), with corresponding esti-
mates of structural parameters ζ = (γ, δ, κ)′, and χ2

0.95(6) quantile; Lower panel
— LMC simulated p-values and 0.95 powers.
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Figure 2: Upper panel — sequence of LR statistics for the restrictions implied by
the cointegrated NKPC under learning dynamics, with corresponding estimates
of structural parameters ζ = (γ, δ, κ)′, and χ2

0.95(6) quantile; Lower panel — LMC
simulated p-values and 0.95 powers.
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Tables

Table 1: Rejection frequencies (percentages) of asymptotic and LMC LR-type
tests for the cross-equation restrictions implied by the FL model (1) with struc-
tural parameters ζ = (γ, δ, κ)′ = (0.70, 0.20, 0.15)′ on the VAR.

DGP: bivariate VAR(2) (p = 2 , k = 2)
Highest eigenvalue of (restricted) companion matrix A: 0.989

Level Power
ASYLR LMCLR ASYLR LMCLR

T=50 27.9 3.5 77.7 41.5
T=100 21.5 2.9 97.6 83.7

Note: the nominal level of the tests is η=0.05; ASYLR stays for the asymptotic (chi-squared
distributed) test based on the LR statistic, while LMCLR is the corresponding LMC test.
Power is obtained under the alternative of variables generated by I(1) cointegrated processes,
see Section 5 for details. Rejection frequencies are based on 1000 replications and simulated
p-values and powers are computed using M=100, see Section 4.
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Table 2: LR trace test for cointegration rank and estimated cointegrating relation
and adjustment coefficients.

VAR(3): Xt = (πt, wst, it)
′ 1971:1- 1983:4

*1971:1-2005:4*
Highest eigenvalues of companion matrix: 0.92± 0.066i

*0.977± 0.027i*
Cointegration rank test

H0 : r ≤ j Trace p-value
j = 0 43.74 0.004

*53.18* *0.000*
j = 1 13.66 0.321

*14.29* *0.276*
j = 2 4.79 0.318

*1.64* *0.839*
Estimated cointegrating relation and adjustment coefficients

β̂′Xt = ot = πt − 0.491
(0.089)

wst + 1.88
(0.357)

, α = (−0.54
(0.20)

, 0.05
(0.22)

, 0)′

*β̂′Xt = ot = πt − 0.515
0.043

wst + 1.98
0.170

, α = (−0.25
0.08

, 0.15
0.03

, 0)′∗

Numbers by asterisks, * *, are computed on the entire sample 1971:1-2005:4. Standard errors
in parentheses, p-values in brackets.
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