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Abstract

In a typical tactical asset allocation setup managers generally make their
choices with the aim of beating a benchmark portfolio. In this context
the pure Markowitz strategy does not take two aspects into account: asset
returns often show changes in volatility and managers’ decisions depend on
private information.

This paper provides an empirical model for large scale tactical asset
allocation with multivariate GARCH estimates, given a tracking error con-
straint. Moreover, the Black and Litterman approach makes it possible
to tactically manage the selected portfolio by combining information taken
from the time varying volatility model with some personal “view” about
asset returns.
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Multivariate GARCH Models and
Black-Litterman Approach for Tracking
Error Constrained Portfolios: An Empirical
Analysis∗

Giulio Palomba

1 Introduction

Nowadays, the task of beating a benchmark portfolio in terms of return
given a superior limit on tracking error is the key objective the crucial point
if the manager wants to increase the value of her investment. Tactical asset
allocation (hereafter TAA) strategies are based on an approach according
to which the manager is induced to maximise her active return, also known
as “alpha”, taking its volatility under control. This intuition moves from
the traditional optimisation proposed by Markowitz (1959) and shifts the
problem from global mean-variance trade-off to the space spanned by active
risk and active return.

The performance of tactically managed portfolios is obviously strictly
related to the one of a prespecified benchmark: the fundamental assumption
is that the optimal portfolio is composed of three separate components,
being minumum variance, strategic and tactical portfolios1. Given that the
strategic mix, or benchmark, is the sum of the first two components, the
tactical component derives from the manager’s perception about expected
returns that can be different from equilibrium. This leads her to maximise
the expected utility by selecting a portfolio that is a function of her degree of
relative risk tolerance, the covariance matrix and the deviations of expected
returns from their equilibrium.

The aim of this work is to show how it is possible to make a portfolio
optimisation, in presence of a large number of assets, by combining two
different types of information: the first is given by the estimation of a time
varying volatility, and the second is private information that derives from
the manager’s bets about the evolution in time of asset excess returns.

∗I wish to thank Luca Fanelli, Riccardo “Jack” Lucchetti and Eduardo Rossi for their
helpful comments and suggestions.

1A tactical approach to asset allocation allows for opportunistic moves between various
asset classes in an attempt to provide additional return by taking advantage of changing
market conditions. For a detailed review about the TAA see for example Lee (2000).
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From an analytic point of view Roll (1992) has shown that the active
portfolio is not a global mean-variance efficient one, because it has a sis-
tematically higher element of risk compared to the benchmark, from which
it is also independent; this leads one to consider an additional constraint
on his correlation with the benchmark termed “tactical beta”. This fact is
also supported by the empirical work of Jorion (2002). Subsequently, Jorion
(2003) tries to solve the problem by inserting a constraint on the total port-
folio risk and Corvalán (2005) summarizes some literature contributions by
suggesting a model in which the TAA portfolio is the sum of an alpha port-
folio, selected to have excess return on the benchmark, and a beta portfolio
to hedge total risk.

The reminder of the paper is organized as follows: section 2 is a short
summary on the mean-variance efficient frontier and the restricted frontier
achieved by imposing a tracking error constraint, while section 3 reviews the
main aspects of the Black and Litterman approach. The empirical model is
the subject of section 4: in sections 4.2 and 4.3 the attention is focused on the
estimation and forecasting of the expected returns vector and the covariance
matrix, while section 4.4 is dedicated to optimal portfolio allocation. Section
4.5 consists of an application of the Black and Litterman model. Finally,
section 5 concludes and provides some suggestions for further research.

2 Portfolio frontiers

This section reviews some useful results about the portfolio frontiers in the
space spanned by the absolute expected return and its variance. Given the
n-dimensional vector of asset excess returns R and the covariance matrix
Ω, the manager’s portfolio P is the portfolio selected. Its expected excess
return and its variance are given by the scalars RP and σ2

P , while the vector
ω contains all the portfolio weights. The symbols RB, σ2

B and ωB refers to
the benchmark portfolio B.

In sections 2.1 and 2.2, the absence of a riskfree asset is assumed to
preserve the traditional hypherbolic form of the efficient frontier. Another
important hypothesis is that regarding the possibility of net-short sales; this
assumption guarantees a closed-form solution for the manager’s optimisation
problem, even if it allows for negative portfolio weights2.

2.1 Mean-variance efficient frontier

The mean-variance efficient frontier in the total return and absolute risk
space is derived from the traditional Markowitz (1959) framework. When

2In a recent paper, for example, Jagannathan and Ma (2003) argue that imposing non-
negativity constraints to weights surprisingly improves the efficiency of optimal portfolios
constructed using sample moments.
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there is no riskfree asset, for each value of expected portfolio return RP , its
equation solves the problem

8><
>:

Min σ2
P =

1
2
ω′Ωω

s.t. RP = ω′R
ι′ω = 1,

(1)

where ι is a n× 1 vector of ones. The efficient frontier equation is given by

σ2
P = −1

d
[aR2

P − 2bRP + c], (2)

with a = ι′Ω−1ι, b = ι′Ω−1R, c = R′Ω−1R and d = b2 − ac. In the space
spanned by the portfolio mean and variance it represents a parabola, thus
it is an hyperbola in the (σP , RP ) space.

2.2 Constant TE frontier

If managers want to impose a fixed tracking error constraint to portfolio
optimisation in the mean-variance space, the problem of asset allocation
implies the decomposition of the vector ω in the sum of the strategic mix
portfolio (q) and the tactical portfolio (x). Following Jorion (2003), the
optimisation problem is8>><

>>:

Max x′R
s.t. x′ι = 0

x′Ωx = TE
σ2

P = (q + x)′Ω(q + x),

(3)

where the constraints respectively set the sum of tactical portfolio weights
to zero, impose the fixed value TE to the tracking error and finally force
the portfolio variance to a given value of σ2

P .
The solution of the model (3) is given by those portfolios which satisfy

the equation3:

kσ2 + 4∆2R
2
T − 4∆1σRT − 4TE(k∆2 −∆2

1) = 0. (4)

The variable RT of equation (4) is defined as the tactical portfolio return
RT = RP − RB and σ is given by the difference σ = σ2

P − σ2
B − TE. The

parameters

∆1 = RB − b

a
= RB −RC

and
∆2 = σ2

B − 1
a

= σ2
B − σ2

C ,

3See Jorion (2003) for a detailed analytical derivation of the tracking error constrained
efficent frontier.
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are respectively the differences between the benchmark and the minimum
variance (portfolio C) regarding the means and the variances, where k =
−d/a and a, b, c, d are those defined in section 2.1.

The parameter ∆2 is always positive by definition, with the only excep-
tion provided by the case B ≡ C, while ∆1 ≥ 0 should be true for portfolios
located under the efficent frontier in the (σP , RP ) space.

The quadratic equation (4) thus shows the relationship between the ex-
pected return and the variance for a fixed value for TE, and it represents an
ellipse when the condition

4(k∆2 −∆2
1) > 0

is satisfied4. This ellipse gets somewhat distorted in the absolute expected
return-risk space as Figure 1 shows.

Moreover, Jorion (2003) provides the following properties and theorems
about the elliptical frontier in (σ2

P , RP ) space:

1. RB is the vertical center and σ2
B + TE is horizontal center of the

ellipse. If the value of TE is augmented, the center moves to higher
risk regions;

2. maximum and minimun expected excess returns are given by

RP = RB ±
√

k · TE; (5)

3. maximum and minimum risk are given by

σ2
P = σ2

B + TE ± 2
È

TE(σ2
B − σ2

C); (6)

4. the ellipse and the efficient frontier may intersect. The necessary con-
dition to have curves that pass through at least one common point in
the (σ2

P , RP ) space is

(RP −RB)2 = k · TE − k ·∆2 + ∆2
1. (7)

Setting Ψ = k · TE − k · ∆2 + ∆2
1, there are three possibilities: first,

if Ψ < 0, curves do not have common points because equation (7) has
no solutions. Second, when Ψ = 0, the first contact occurs if

TE = ∆2 −∆2
1/k. (8)

From equation (7) it is evident that this is true for RP = RB. Third,
when Ψ > 0, there are always two contact points given by

RP = RB ±Ψ1/2.

4The proof of this result derives from the property of equations of the type Ax2+By2+
Cxy + D = 0; if the term AB − (1/4)C2 is strictly greater than zero, such relationship
represents an ellipse.
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As TE increases Ψ is augmented and RP moves along the hyperbola,
hence all the constrained tracking error portfolios lie inside the area
between the efficient frontier and the right arc formed by the two
intersections;

5. the minimum possible risk of the constant tracking error frontier is
σ2

C , and is achievable only for TE = ∆2;

6. when TE = 4(∆2 −∆2
1/k) the ellipse passes through B;

7. when TE = 4∆2 the risk of the benchmark portfolio is the minimum
level risk achieved by the ellipse.

3 The Black and Litterman model

The Black and Litterman (1991, 1992) approach (hereafter BL) was intro-
duced to make portfolio optimisation more useful in practical investment
situations. As shown in Michaud (1989), the mean-variance model often
leads to irrelevant portfolios because errors are optimised5, and it can suffer
from instability due to the fact that small changes in inputs dramatically
change portfolio weights. Black and Litterman (1991, 1992) also try to solve
the problem of negative portfolio weights, especially in situations in which
managers can not take short positions.

The BL model is a way to incorporate investor’s views into the asset
allocation process; it uses a Bayesian method to combine the investor’s views
about expected asset returns with the prior information given by the vector
containing the implied equilibrium returns6; the posterior information is
provided by a distribution whose mean is the mixed estimate of expected
returns, and whose variance is a function of the covariance matrix of implied
returns and of a diagonal matrix in which the confidence in the manager’s
views are set.

The starting point of the model are the equilibrium returns defined as
5The critique in Michaud (1989) is based on the use of sample means in place of ex-

pected returns which contribute to the generation and the maximisation of errors. Follow-
ing the Markowitz (1959) approach managers tend to overweight assets with high expected
returns and negative correlation, without taking into account the uncertainity associated
with the estimated inputs.

6The implied equilibrium returns vector is the neutral starting point of the model.
See, for example, Idzorek (2002) or He and Litterman (1999) for details. In Bevan and
Winkelmann (1998) this vector is given by the benchmark.
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the market-clearing returns7, while expected returns follow the equation

µ ∼ N(R̄, γΩ). (9)

The scalar γ is the weight-on-views parameter used to make covariances
proportional to the matrix Ω. The investor’s views about the market are
expressed according to the equation

Pµ = V + η, (10)

with η ∼ N(0, S). The (k × n) matrix P contains the weights of the assets
of the investor’s views, the column vector V represents the estimated ex-
pected returns in each view, and k is the number of views. The subjective
probability excess returns vector is provided by the Theil (1971) estimator

R̂BL = [(γΩ)−1 + P ′S−1P ]−1[(γΩ)−1R̄ + P ′S−1V ], (11)

where S is a diagonal covariance matrix about the uncertainity of the views
which are assumed to be mutually independent.

The aim of the BL model is to insert uncertain personal views into
the equilibrium returns to modify portfolio weights in the direction of the
manager’s hypothesised scenarios.

Nowadays this approach has been revised by taking two drawbacks into
account: one empirical and the other conceptual. The first problem is due to
the joint normality assumption of the prior information and the investor’s
views, and this is in contrast with the empirical regularities about asset
returns8. In a recent work of Fabozzi, Giacometti, Bertocchi and Rachev
(2005), the standard hypothesis of Gaussian distribution of asset returns is
relaxed in favor of heavy-tailed distributions such as α-stable and t-Student:
they find that information depends on how the different distributions impact
the optimal portfolio. This is true for marginal distributions of expected
returns. As it will be shown in section 4.2, this paper deals with distributions
conditional on the information set Ft−1, so the normality assumptions can
be mantained.

The second problem depends on the Bayesian nature of the model, ac-
cording to which the manager’s views invest the market parameters instead
of the market realisations: Meucci (2005) solves this problem by using a
copula and opinion-pooling methodology to determine the posterior market
distribution. Moreover, he claims that his extension to BL model can be
applied to any market distribution and non-normal views.

7In this paper the vector R̄ will be estimated via the model of section 4.2. In the original
contribution of Black and Litterman (1992), it is obtained by solving the unconstrained
maximization problem in which the investor utility function is quadratic with constant
risk aversion and normally distribuited returns. See also He and Litterman (1999) for
details.

8Especially for high frequency data, excess returns are very often characterized by
leptokurtosis, skewness or other properties that could make the normality assumption too
restrictive.
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4 The model

4.1 The data

The dataset is given by series included in the composition of the DJ Euro
Stoxx 50 index at the beginning of 2006; asset returns time series are calcu-
lated as 100 times the log difference transformation9. Table 6 in Appendix
A contains the complete list of the variables used in the model, with the re-
lated specifications about the country and the sector to which they belong,
and their weight in the DJ Euro Stoxx 50 itself. Considering this index as
the benchmark portfolio, the total number of variables is 50. Each time
series has 870 daily observations, taken from a sample which goes from the
3rd March 2003 through the 30th June 2006. The last week, corresponding
to 5 observations, is kept out of sample for forecasting.

4.2 The time-varying volatility model

It is well known that daily asset returns volatility often shows some empirical
regularities10, thus a time-varying volatility model should be chosen to es-
timate and forecast returns and covariances to insert in the TAA process11.
The use of this approach yields two benefits: first, modelling heteroskedas-
ticity explicitly leads to increased efficiency in the estimation of the para-
meters of the conditional mean; moreover, forecasting the covariance matrix
itself for different time horizons would be useful for TAA, especially because
the forecast of the conditional covariances is likely to be the main object of
interest.

For this reason several choices are available from the wide literature
about multivariate GARCH models: the first attempt to model multivariate
conditional covariances is the Vech Model introduced by Bollerslev, Engle
and Wooldridge (1988) together with its restricted formulation known as
Diagonal GARCH. The BEKK model proposed by Engle and Kroner (1995),
is a good choice to achieve a reasonable level of generality, but its counterpart
is represented by the total amount of parameters which becomes very large
for high dimensions of the number of time series n; in practice, from the
computational point of view the model estimation is rather prohibitive for
n ≥7, therefore this choice would be inappropriate for the present work.
Other relevant contributions are Factor GARCH by Engle and Ng (1993)

9Source for data: DATASTREAM. Series of Munch.Ruck (XET) is not available.
10A lot of stylised facts emerged from the empirical research in asset returns: the most

important are thick tailed distributions, volatility clustering, common movements and
persistence in volatilities. See Bollerslev, Engle and Nelson (1994) or Palm (1996) for
details.

11Litterman and Winkelmann (1998) provide a detailed survey about the covariance
matrices estimation, especially for situations such as asset allocation or risk hedging.
Voev (2004) instead compares the forecasting performances of different suitable models
for estimating large dimensional covariance matrices.

7



and Constant Conditional Correlations (CCC model) by Bollerslev (1990).
Most recently models like O-GARCH (Alexander and Chibumba, 1996) or
GO-GARCH (Van der Weide, 2002) based on principal components have
been suggested to solve the problem of estimation in presence of a great
number of time series and to achieve computational feasibility.

In this paper the forecast model used is the Flexible Dynamic Condi-
tional Correlations (FDCC) by Billio, Caporin and Gobbo (2006), a useful
generalisation of Engle’s (2002) DCC model.

Given the n-dimensional vector yt, the standard FDCC model has the
following representation

8>><
>>:

yt = µ + Πyt−1 + εt

E(εt|Ft−1) = 0
E(εtε

′
t|Ft−1) = Ωt

Ωt = D
−1/2
t RtD

−1/2
t ,

(12)

where Ft−1 is the information set available at time t−1, Ωt is the conditional
covariance matrix, and µ is a (n × 1) vector of constants. In the present
work the matrix Π has the form

Π = [0 0 . . . θ], (13)

where each element is a (n × 1) column of zeros, and θ contains all the
coefficients of the equations

yi,t = µi + θiBMKt−1 + εt, (14)

where i = 1, 2, . . . , n and BMKt−1 is the lagged value of the DJ Euro Stoxx
50 variable12.

The matrix Dt, estimated during the first step estimation of the model, is
diagonal and each element is given by the conditional variances hit, evaluated
via the standard GARCH(1,1) model,

hi,t = ω + αε2
i,t−1 + βhi,t−1. (15)

Several choices of univariate GARCH models are availables from the liter-
ature for the conditional variances estimation13. In this paper Bollerslev’s

12Even if in theory asset returns should be unpredictable using past information, the use
of the lagged value of the benchmark return as regressor in (14) is justified by results in
Table 8 in which BMKt−1 surprisingly captures the dynamics of several expected returns.
Moreover this allows to use the VAR(1) formulation in equation (12). Other values for
lags are been tried, but coefficients related to explanatory variables are not statistically
significant.

13In a previous version of their work, Billio, Caporin and Gobbo (2003) use the Glosten,
Jagannathan and Runkle (1993) or GJR specification in the first step estimation to take
into account for asymmetries.
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(1986) GARCH(1,1) has been selected14.
The block parameters structure of the FDCC is the main innovation: it

allows a more general model than the standard DCC, where the correlation
dynamics are simply given by15

Qt = (1− a− b)Q̄ + aut−1u
′
t−1 + bQt−1, (16)

where the parameters a and b are scalars. This formulation is a very re-
stricted version of Engle (2002)

Qt = (ιι′ −A−B)� Q̄ + A� ut−1u
′
t−1 + B �Qt−1, (17)

in which Q̄ is the historical correlation matrix of the standardised innova-
tions ut, A and B are square n × n matrices, ι is a vector of ones and the
symbol � represents the Hadamard product; the imposed scalar restrictions
solve the identification problem due to the fact that in equation (17) the
number of parameters becomes very large when the dimension is augmented.

As in the case of the standard DCC, the estimation of the FDCC model
proceeds in two stages: in the first step, parameters of the first equation in
(12) and those of (15) are estimated, while in the second step the subject of
inference is the dynamic correlations matrix.

Hence, the second stage equations are

Rt = Q̃−1
t QtQ̃

−1
t (18)

and
Qt = cc′ + aa′ � ut−1u

′
t−1 + bb′ �Qt−1 (19)

The matrix Q̃ = diag(√q11,t,
√

q22,t, . . . ,
√

qnn,t) guarantees that Rt satisfies
the property of a correlation matrix, while ut contains all the standardised
innovation estimated by the equation (15). Note that also the law of motion
of Qt follow a GARCH(1,1) as in the first step estimation.

The FDCC model instead generalises the model introduced by Franses
and Hafner (2003) and it can be easily estimated using the same two stages
approach of the standard DCC.

Focussing on the parameter structure in equations (19) and (17), it is
evident that cc′ = (ιι′ − aa′ − bb′) � Q̄, while A = aa′ and B = bb′: the
peculiarity of the FDCC is the way by which the n-dimensional column
vectors a and b are partitioned.

Assuming that n assets can be grouped upon their belonging to k dif-
ferent sectors with k < n, the dynamics of correlations are imposed to be

14Different alternative univariate GARCH models were used in first step estimation:
EGARCH (Nelson, 1991), APARCH (Ding, Engle and Granger, 1993) and IGARCH (En-
gle and Bollerslev, 1986) sometimes fail to achieve convergence, while GJR model shows
substantial asymmetries in a few cases.

15See for example Engle and Sheppard (2001).
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the same among variables of the same sector, while this in not true for the
whole correlation matrix. As a consequence, the vector a is partitioned as
follows16

a = [ a1ι
′
1 a2ι

′
2 . . . akι

′
k ]′ (20)

where the vectors ιj , with j = 1, 2, . . . , k, are vectors of ones with the number
of rows equal to the number of assets belonging to sector j. In the present
work the n = 50 variables are divided into k = 12 macro-sectors listed in
Table 7 of Appendix A. Given the equations (12), (15) and (19), 5n and
2k parameters have to be estimated in the two step estimation; the total
number of parameters in the whole model is therefore 5n + 2k = 274.

The use of the FDCC follows from the need to take into account different
important purposes: first, this is a parsimonious model because it allows to
use a large number of series without implying that the number of parame-
ters becomes explosive. Second, it is an efficient model for estimating and
forecasting time varying covariance matrices which are the fundamental in-
put required during the TAA process. Third, the FDCC specification makes
it possible to mantain the same GARCH dynamics of the DCC correlation
structure, but it relaxes the contraint of equation (16) for which all the cor-
relations have to follow the same pattern; from this point of view this model
represents a good generalisation of standard DCC. Finally, Qt is positive
definite by construction if the contraint

aiaj + bibj < 1 for i, j = 1, 2, . . . , k (21)

holds: according to Billio, Caporin and Gobbo (2006) this is a sufficient
condition to avoid explosive patterns.

Estimation results for the estimated FDCC model are reported in Ap-
pendix B: Table 8, shows that GARCH effects occur, because parameters of
the variance equation are statistically significant for each time series.

4.3 Forecasts

The model also provides the daily forecasts for the expected returns and
for all the unique elements of the Ωt. Once the manager has selected the
number τ of periods in which she would tactically manage her portfolio,
these results may be used to evaluate forecasts about total returns and
conditional covariances matrix at time τ .

The forecast return of asset i at time T + τ is given by the equation:

ŷi,T+τ = E (yT+τ |FT ) = p̂i,T+τ − pi,T , (22)

where p̂i,T+τ is the τ step-ahead forecast of the logarithm of the i-th asset
price.

16The partitions of vector b are exactly the same, therefore the related equation is
omitted for brevity.
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The forecasts of the covariance matrix of (22) for the periods, which goes
from time T + 1 to time T + τ , is provided by the following equation:

Ω̂T+τ = (I − Π̂)−1

2
4 τX

j=1

(I − Π̂τ−j+1)Ω̂T+j(I − Π̂τ−j+1)′
3
5 (I − Π̂′)−1, (23)

where Ω̂T+j is the daily forecast conditional covariance matrix estimated
through the last equation in (12) and equation (15). The proof of equation
(23), which represents the forecast of the covariance matrix and not the
covariance matrix of forecasts, is in Appendix C.

4.4 Portfolio selection results

Given the estimates of FDCC, the empirical analysis uses the forecasts about
expected returns and covariance matrices17 to build a few representative
portfolios.

In order to follow the definition of TAA as a short term strategy to
enhance a better return and/or less risk than the benchmark, the forecast
horizon is set to τ = 5 days. Short sales are allowed to make possible the
optimisation process without using any numerical method, and there are
no riskfree assets to preserve the traditional hyperbolic form of the efficent
frontier.

Table 1 shows the evolution in each period of the performances related
to five portfolios given respectively by

• the minimum variance portfolio (C),

• the Sharpe-optimal portfolio18 (M),

• the efficient portfolio (E) which has the same risk as the benchmark
and lies on the efficient frontier,

• the efficient constrained portfolio19 (J) which has a fixed tracking error
of 2%,

• the benchmark portfolio (B).

These performances, obtained from FDCC estimates, are evaluated in
terms of absolute and relative expected return-risk perspectives: portfolio

17Forecast portfolios, expected returns and covariance matrices are available upon re-
quest.

18This portfolio is the one for which the Sharpe (1994) ratio index is maximised.
19As shown in equations (5) and (6) the model by Jorion (2003) selects two portfo-

lios which lie on the constrained TE frontier. In this analysis only the more efficient is
considered.

11



alpha index is the excess return on the benchmark and its volatility, or
tracking error, is obtained using the formula

TEP = x′Ωx, (24)

where x is the active portfolio introduced in the last equation of (3). Given
that the manager can invest directly on the benchmark, x is the difference
between the vector of portfolio weights ωP and the n-dimensional vector q,
a basis in which the one is associated to the benchmark. The Information
Ratio is the natural counterpart of the Sharpe ratio in the relative return-
risk space and it is simply given by the ratio of alpha to tracking error. All
values in Tables are expressed as percentages.

For each period the tangency tracking error value (TA) is evaluated. It
is the minimum value for TE that provides the first intersection between
the efficient frontier and the constrained frontier, according to equation (8).
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Table 1: Forecast portfolio performances
Portfolios: C M E J B

period T+1 (TA: 1.1094)
Return 0.0256 0.4376 0.2637 0.3804 0.0652
Risk 0.4607 1.9053 1.1633 1.9635 1.1633
Sharpe Ratio 0.0555 0.2297 0.2267 0.1937 0.0560
Alpha -0.0396 0.3725 0.1985 0.3152 -
Tracking Error 1.1409 3.9022 1.9025 2.0000 -
Information Ratio -0.0347 0.0955 0.1043 0.1576 -

period T+2 (TA: 1.0903)
Return 0.0348 0.3192 0.2599 0.3737 0.0733
Risk 0.4684 1.4183 1.1587 1.9635 1.1587
Sharpe Ratio 0.0743 0.2250 0.2243 0.1903 0.0633
Alpha -0.0385 0.2458 0.1866 0.3004 -
Tracking Error 1.1232 2.4298 1.8619 2.0000 -
Information Ratio -0.0343 0.1012 0.1002 0.1502 -

period T+3 (TA: 1.0728)
Return 0.0333 0.3349 0.2559 0.3719 0.0728
Risk 0.4736 1.5030 1.1542 1.9651 1.1542
Sharpe Ratio 0.0702 0.2228 0.2217 0.1893 0.0631
Alpha -0.0396 0.2621 0.1830 0.2991 -
Tracking Error 1.1079 2.6086 1.8217 2.0000 -
Information Ratio -0.0357 0.1005 0.1005 0.1495 -

period T+4 (TA: 1.0570)
Return 0.0326 0.3430 0.2526 0.3704 0.0729
Risk 0.4779 1.5510 1.3221 1.9656 1.1498
Sharpe Ratio 0.0682 0.2212 1.1498 0.1885 0.0634
Alpha -0.0403 0.2702 0.2197 0.2976 -
Tracking Error 1.0937 2.7056 1.1797 2.0000 -
Information Ratio -0.0368 0.0999 1.7867 0.1488 -

period T+5 (TA: 1.0420)
Return 0.0320 0.3502 0.2497 0.3691 0.0729
Risk 0.4818 1.5933 1.1455 1.9656 1.1455
Sharpe Ratio 0.0665 0.2198 0.2180 0.1878 0.0636
Alpha -0.0408 0.2773 0.1769 0.2963 -
Tracking Error 1.0800 2.7943 1.7549 2.0000 -
Information Ratio -0.0378 0.0992 0.1008 0.1481 -
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Note that in Table 1 the tracking error of portfolios C and E is less
than 2%. This happens because of the property 4 of section 2.2 and the
independence of these portfolios from the desired TE; portfolio M instead
lies at the right of the curve, thus its tracking error is greater than 2%.

Figure 1 shows graphically all the forecast frontiers and portfolios of
Table 1. The forecast frontiers after T + 5 periods, obtained using expected
returns and covariance matrix evaluated from equations (22) and (23), is
represented in Figure 1 (f); all the evaluated portfolios are those in Table
2 where the frontiers do not intersect because TA=3.7977. In this case TA

is greater than 2%, hence all the tracking errors are also greater than 2%,
with the only obvious exception being the benchmark.

Table 2: Forecast portfolios after T + 5 periods
Portfolios C M E J B

Return 0.1642 1.4843 1.2070 1.1008 0.3571
Risk 0.8854 2.6618 2.1717 2.7845 2.1717
Sharpe Ratio 0.1855 0.5576 0.5558 0.3953 0.1644
Alpha -0.1929 1.1272 0.8499 0.7437 -
Tracking Error 3.9323 8.3922 6.4100 2.0000 -
Information Ratio -0.0490 0.1343 0.1326 0.3718 -

Tangency tracking error (TA): 3.7977

Table 3: Contacts of frontiers for different value of TE
TE 1 2 3 TA

Contacts 0 0 0 1
Ψ -0.7737 -0.4971 -0.2206 0.0000
Return - - - 0.3571
Risk - - - 0.9583
Sharpe Ratio - - - 0.3726
Alpha - - - 0.0000
Tracking Error - - - 3.7977
Information Ratio - - - 0.0000

TE 4 8 10
Contacts 2 2 2
Ψ 0.0559 1.1621 1.7152
Portfolios F F’ G G’ H H’
Return 0.5936 0.1206 1.4351 -0.7209 1.6667 -0.9526
Risk 1.2044 0.8892 2.5738 1.9018 2.9912 2.3009
Sharpe Ratio 0.4929 0.1356 0.5576 -0.3791 0.5572 -0.4140
Alpha 0.2365 -0.2365 1.0780 -1.0780 1.3096 -1.3097
Tracking Error 4.0000 4.0000 8.0000 8.0000 10.0000 10.0000
Information Ratio 0.0591 -0.0591 0.1348 -0.1348 0.1310 -0.1310

Figure 2 shows some curves corresponding to constrained frontiers evalu-
ated for different values of desired TE, together with the Markowitz efficent
set. This Figure refers to Table 3 which presents some scenarios; according
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Figure 2: Constrained frontiers for different TE values
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to equation (7), when TE < TA, it follows that Ψ < 0 and contact portfo-
lios do not exist because the constrained frontiers lie inside the hyperbola.
The curves are somewhat distorted in (σP , RP ) space around the benchmark
portfolio they are graphically represented by concentric areas.

The first contact (Ψ = 0) occurs in portfolio A which has the same
expected return as the benchmark and a tracking error of TA.

For TE greater than the tangency value, the curves have two intersec-
tions and Ψ > 0; the region between the efficient set and the right arc
defined by those common points, contains all possible constrained portfo-
lios. Figure 2 (a) illustrates the TE ≤ TA case, while Figure 2 (b) shows
curves obtained for 4% and non conventional 8% and 10% desired tracking
errors. For example, when TE = 4%, the frontiers have two contact points,
F and F ′, therefore portfolio C lies within the surface given by the efficient
set and right øFF ′ in which a tracking error of 3.7977 is allowed.

4.5 Blending the views

The empirical Bayesian nature of the BL approach leads to an estimate of
the vector of expected returns as a weighted average of equilibrium returns
and views, where weights depend upon differences of expected returns from
the equilibrium and on the manager’s confidence in views20.

When the investor has some views about the expected returns, she can
combine her private information with the information available from the
forecast model. In this analysis the following views about expected returns
are those formulated by the manager:

• all returns of assets belonging to Chemicals will change to 3% (3 ab-
solute views),

• all returns of assets belonging to Utilities will change to 2% (6 absolute
views),

• given the above scenario 3, the return of ENI equals that of DEB, the
return of REP equals that of BBV and the return TOT equals that of
AIB (3 relative views),

• AXA and ING outperform BMK by 2% (2 relative views).

Once the views are selected, implementing the BL approach requires
the specification of, on one hand, a suitable weight-on-views to calibrate
the confidence level of the prior belief γΩ and, on the other, the matrix S
containing the uncertainty of the views. Black and Litterman (1992) and
Lee (2000) suggest the first solution to this practical problem by imposing

20For different approaches on asset return predictability with incremental information
see for example Pesaran and Timmermann (1995), Avramov (2002, 2004) or the most
recent papers by Aiolfi and Favero (2005) or Rodriguez and Sosvilla-Rivero (2006).
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γ to be close to zero, because the uncertainty of the means is less than the
uncertainty of the expected returns. On the other hand Shi and Irwin (2005)
demonstrate that theoretically the parameter has to be equal to T−1, where
T is the number of observations of asset returns. Conversely, Satchell and
Scowcroft (2000) provide an analytical method which often sets γ = 1. In all
these contributions the uncertainty of views is given by the matrix S whose
diagonal elements are the inverses of each investor’s confidence in views.

In this paper the calibration used is that of He and Litterman (1999) in
which the covariance matrix S is assumed to be proportional to the variance
of the view portfolios, according to the equation

si

γ
= piΩp′i i = 1, 2, . . . , k. (25)

Variable si is defined as the i-th diagonal element in matrix S, piΩp′i is the
variance of the view portfolio and pi is the i-th row in matrix P .

The above specification leads to the following expression for the new
combining expected returns vector:

R̂BL = [Ω−1 + P ′〈PΩP ′〉−1P ]−1[Ω−1R̄ + P ′〈PΩP ′〉−1V ], (26)

where 〈PΩP ′〉 is a diagonal matrix whose diagonal elements are the same
as those of the product PΩP ′.

The advantage of this assumption is that γ does not affect the new
combined vector R̂BL because only the ratio (25) enters into its evaluation.
This implies that it is not necessary to assign any explicit confidence level
to views.

4.6 Portfolios

The optimistic views expressed in the previous section make R̂BL greater
than FDCC forecast expected returns, so they determine the surface en-
largement of both the efficient set and the constrained frontier. This means
that, after the blending process, the manager can invest in a higher number
of portfolios. Table 4 and Figure 3 respectively show the resulting port-
folios and frontiers updated according to mean-variance paradigm and the
manager’s views, with fixed TE = 2%.

Moreover, as shown in Table 10, the MSE associated to the BL model
is less than the MSE evaluated on both FDCC forecasts and sample mean
estimates.

Finally Table 5 reports expected returns and Alpha evaluated for port-
folios C, M , E, J and B using ωFDCC and ωBL which are respectively the
portfolio weights evaluated after the FDCC estimation and after the BL
blending. The first two columns compute performances using realized re-
turns taken from the out of sample period which goes from the 26th through
the 30th June 2006, while in the last two columns such returns are modified
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Table 4: Forecast portfolios using BL approach
Portfolios C M E J B

Return 0.9671 3.0078 4.1137 4.2384 1.9944
Risk 0.8854 1.5614 2.1717 2.9236 2.1717
Sharpe Ratio 1.0923 1.9264 1.8943 1.4497 0.9184
Alpha -1.0273 1.0134 2.1193 2.2440 -
Tracking Error 3.9323 3.9210 5.2969 2.0000 -
Information Ratio -0.2612 0.2585 0.4001 1.1220 -

Tangency tracking error (TA): 3.5131

Figure 3: Portfolios and frontiers after using the BL approach
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by the equation (26). This Table also shows that portfolios C and B are in-
dependent from manager’s choices and therefore from the vectors of weights
used.

Table 5: Out of sample real performances
Real Blending

Porfolios Return Alpha Return Alpha

C 0.8446 -1.8994 0.9671 -1.0273
B 2.7440 0.0000 1.9944 0.0000

M 4.4639 1.7199 2.7628 0.7684
ωFDCC E 3.7038 0.9598 2.3857 0.3913

J 4.7831 2.0391 3.0061 1.0117

M 2.4203 -0.3237 3.0079 1.0135
ωBL E 3.2742 0.5302 4.1137 2.1193

J 4.4767 1.7327 4.2384 2.2440

5 Concluding remarks and further research

This paper proposes a portfolio optimisation for large scale TAA that has
two key features: the first is that the model takes the changing volatility of
asset returns over time into account and the secondis that it provides the
possibility of using private information in the mean-variance paradigm. An
empirical work is proposed to tactically manage some portfolios of interest
in the space spanned by absolute risk and total expected return, using data
taken from the DJ Euro Stoxx 50 index.

The FDCC model by Billio, Caporin and Gobbo (2006) is useful for
solving the practical problems of forecasting the expected asset returns and
their covariance matrix; the ability of the model to group variables among
sectors permits the analysis of the persistence in volatility in a parsimonious
way and does not involve any computational drawbacks. Moreover, the BL
approach can instead present a good method for incorporating the manager’s
views about asset returns into the asset allocation process.

The whole analysis is carried out on different portfolios located along the
mean-variance efficient set (Markowitz, 1959) and the fixed tracking error
constrained frontier introduced by Jorion (2003).

This work is based on different assumptions which can be relaxed in
future research: the absence of a riskfree asset, the possibility of short posi-
tions and finally the estimation of a GARCH(1,1) model in the first step of
FDCC.

It is well known that the efficient frontier is not an hyperbola when
a riskfree asset is included into the optimisation, while the form and the
properties of the constrained tracking error frontier have to be explored.
This can dramatically modify the portfolio allocations in the (σp, RP ) space.
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The consequence of relaxing the second assumption is that the vector
of weights has its elements ωi ≥ 0; even if managers can not often make
short positions, this constraint implies that equations (1) and (3) may re-
turn corner solutions or solutions wich have no closed-form. Hence, some
numerical algorhithms are required and this can represent a drawback from
the computational point of view.

The last hypothesis is about first step estimation of the FDCC model; the
GARCH(1,1) in conditional variance equations does not take some aspects
into account, such as asymmetries, unit roots or varying exponents (see, for
example, APARCH model by Ding, Engle and Granger, 1993). The wide
literature provides many solutions which can lead to forecasts of expected
returns far from those obtained in this work.
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Appendix A: Assets and sectors

Table 6: List of assets selected in the model

N. CODE ASSET SECTOR WEIGHT COUNTRY

1 ABN ABN AMRO HOLDING Banks 0.0227 Holland

2 AEG AEGON Insurance 0.0113 Holland

3 AHO AHOLD KON. Retail 0.0056 Holland

4 AIR AIR LIQUIDE Chemicals 0.0096 France

5 ALC ALCATEL ‘A’ Technology 0.0078 France

6 ALL ALLIANZ (XET) Insurance 0.0287 Germany

7 AIB ALLIED IRISH BANKS Banks 0.0095 Ireland

8 AXA AXA Insurance 0.0232 France

9 BSC BANCO SANTANDER CENTRAL Banks 0.0377 Portugal

10 BAS BASF (XET) Chemicals 0.0188 Germany

11 BAY BAYER (XET) Chemicals 0.0142 Germany

12 BBV BBV ARGENTARIA Banks 0.0281 Spain

13 BNP BNP PARIBAS Banks 0.0318 France

14 CAR CARREFOUR Retail 0.0125 France

15 CAG CRÉDIT AGRICOLE Banks 0.0105 France

16 DAI DAIMLERCHRYSLER Automobiles & parts 0.0213 Germany

17 DAN DANONE Food & beverage 0.0122 France

18 DEB DEUTSCHE BANK (XET) Banks 0.0247 Germany

19 DTE DEUTSCHE TELEKOM (XET) Telecommunications 0.0209 Germany

20 END ENDESA Utilities 0.0118 Spain

21 ENE ENEL Utilities 0.0160 Italy

22 ENI ENI Oil & Gas 0.0342 Italy

23 EON E ON (XET) Utilities 0.0321 Germany

24 FOR FORTIS (AMS) Banks 0.0190 Holland

25 FTE FRANCE TÉLÉCOM Telecommunications 0.0210 France

26 GEN GENERALI Insurance 0.0169 Italy

27 IBE IBERDROLA Utilities 0.0100 Spain

28 ING ING GROEP CERTS. Insurance 0.0323 Holland

29 LAF LAFARGE Construction & materials 0.0073 France

30 LOR L’ORÉAL Personal & household goods 0.0104 France

31 LVM LVMH Personal & household goods 0.0109 France

32 NOK NOKIA Technology 0.0372 Finland

33 PHI PHILIPS ELTN.KON Personal & household goods 0.0183 Holland

34 REN RENAULT Automobiles & parts 0.0076 France

35 REP REPSOL YPF Oil & gas 0.0142 Spain

36 RWE RWE (XET) Utilities 0.0158 Germany

37 SGO SAINT GOBAIN Construction & materials 0.0097 France

————————
Continued on next page
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Table 6 — continued from previous page
N. CODE ASSET SECTOR WEIGHT COUNTRY

38 SAV SANOFI-AVENTIS Healthcare 0.0394 France

39 SPA SAN PAOLO IMI Banks 0.0072 Italy

40 SAP SAP (XET) Technology 0.0186 Germany

41 SIE SIEMENS (XET) Industrial goods & services 0.0311 France

42 SOG SOCIÉTÉ GÉNERALE Banks 0.0256 France

43 SUE SUEZ Utilities 0.0161 France

44 TIT TELECOM ITALIA Telecommunications 0.0150 Italy

45 TEL TELEFONICA Telecommunications 0.0310 Spain

46 TOT TOTAL Oil & gas 0.0718 France

47 UNC UNICREDITO ITALIANO Banks 0.0221 Italy

48 UNL UNILEVER CERTS. Food & beverage 0.0186 Holland

49 VIV VIVENDI UNIVERSAL Media 0.0152 UK

50 BMK DJ EUROSTOXX 50 Benchmark portfolio

Table 7: List of macro-sectors
N. SECTOR DIM. ASSETS INCLUDED

1 Automobiles 2 DAI, REN
2 Banks 11 ABN, AIB, BSC, BBV, BNP, CAG, DEB, FOR,

SPA, SOG, UNC
3 Chemicals 3 AIR, BAS, BAY
4 Constructions 2 LAF, SGO
5 Industrial 7 DAN, LOR, LVM, PHI, SAV, SIE, UNL
6 Insurance 5 AEG, ALL, AXA, GEN, ING
7 Oil & gas 3 ENI, REP, TOT
8 Retail 2 AHO, CAR
9 Technology 4 ALC, NOK, SAP, VIV

10 Telecommunications 4 DTE, FTE, TIT, TEL
11 Utilities 6 END, ENE, EON, IBE, RWE, SUE
12 Benchmark 1 BMK
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Appendix B: Estimation results

Table 8 reports the FDCC first step estimation of the univariate GARCH(1,1)
provided by equation (15); coefficients θ, α and β which have 5% statistical
signifiance are shown in bold.

Table 8: Univariate GARCH models (1st step estimation)

Asset µ θ ω α β

ABN 0.0678 -0.0812 0.0468 0.0736 0.8923
(0.0370) (0.0439) (0.0190) (0.0203) (0.0295)

AEG 0.0551 0.0705 0.0479 0.1125 0.8751
(0.0477) (0.0632) (0.0205) (0.0245) (0.0248)

AHO 0.0329 -0.0410 0.0329 0.0248 0.9662
(0.0658) (0.0762) (0.0132) (0.0061) (0.0076)

AIR 0.0654 -0.0608 0.0600 0.0894 0.8649
(0.0351) (0.0428) (0.0239) (0.0232) (0.0348)

ALC 0.0926 -0.0124 0.0444 0.1230 0.8527
(0.0335) (0.0369) (0.0273) (0.0390) (0.0516)

ALL -0.0177 -0.0481 0.5161 0.0851 0.8167
(0.0744) (0.0795) (0.1612) (0.0260) (0.0468)

AIB 0.0885 -0.0306 0.0478 0.0930 0.8904
(0.0471) (0.0597) (0.0196) (0.0214) (0.0234)

AXA 0.0970 0.0447 0.1092 0.0991 0.8587
(0.0482) (0.0599) (0.0400) (0.0230) (0.0316)

BSC 0.0486 0.0888 0.1083 0.1138 0.8172
(0.0375) (0.0447) (0.0434) (0.0275) (0.0480)

BAS 0.0918 -0.1172 0.0585 0.0905 0.8760
(0.0398) (0.0482) (0.0221) (0.0198) (0.0264)

BAY 0.1510 0.1345 0.1474 0.1708 0.8050
(0.0502) (0.0645) (0.0601) (0.0323) (0.0403)

BBV 0.0842 -0.0375 0.0342 0.0850 0.8909
(0.0349) (0.0435) (0.0141) (0.0196) (0.0247)

BNP 0.0681 -0.0380 0.0444 0.0799 0.8954
(0.0397) (0.0480) (0.0196) (0.0184) (0.0243)

CAR 0.0261 -0.0784 0.0377 0.0507 0.9252
(0.0399) (0.0454) (0.0175) (0.0140) (0.0214)

CAG 0.0905 -0.0550 0.0950 0.0615 0.8917
(0.0451) (0.0516) (0.0409) (0.0190) (0.0341)

DAI 0.0321 -0.0847 0.0959 0.0684 0.8914
(0.0489) (0.0555) (0.0343) (0.0194) (0.0293)

DAN 0.0685 -0.1079 0.0674 0.1017 0.8476
————————
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Table 8 — continued from previous page
Asset µ θ ω α β

(0.0339) (0.0372) (0.0204) (0.0206) (0.0290)

DEB 0.0871 -0.0987 0.0439 0.0565 0.9221
(0.0451) (0.0528) (0.0224) (0.0174) (0.0246)

DTE 0.0112 -0.1427 0.0557 0.0753 0.8873
(0.0381) (0.0450) (0.0191) (0.0212) (0.0287)

END 0.0801 -0.0814 0.1673 0.2442 0.6460
(0.0331) (0.0404) (0.0564) (0.0486) (0.0741)

ENE 0.0398 -0.1017 0.1517 0.0247 0.8265
(0.0342) (0.0343) (0.1109) (0.0214) (0.1230)

ENI 0.0838 -0.0788 0.1841 0.1073 0.7498
(0.0361) (0.0393) (0.0651) (0.0320) (0.0711)

EON 0.1071 -0.1351 0.0776 0.0797 0.8712
(0.0388) (0.0444) (0.0274) (0.0209) (0.0312)

FOR 0.1028 -0.0793 0.0622 0.1308 0.8358
(0.0360) (0.0461) (0.0178) (0.0247) (0.0276)

FTE -0.0157 -0.1036 0.0889 0.0402 0.9215
(0.0503) (0.0565) (0.0584) (0.0188) (0.0412)

GEN 0.0532 0.0127 0.0116 0.0678 0.9233
(0.0301) (0.0359) (0.0072) (0.0201) (0.0232)

IBE 0.0757 -0.1410 0.2565 0.2318 0.4206
(0.0267) (0.0282) (0.0788) (0.0606) (0.1430)

ING 0.1171 0.0336 0.0678 0.1262 0.8445
(0.0413) (0.0543) (0.0210) (0.0257) (0.0281)

LAF 0.0679 -0.1098 0.0660 0.0975 0.8806
(0.0450) (0.0564) (0.0210) (0.0219) (0.0230)

LOR 0.0397 -0.1514 0.1538 0.1320 0.7712
(0.0390) (0.0456) (0.0497) (0.0302) (0.0507)

LVM 0.1018 0.0069 0.0973 0.0847 0.8595
(0.0414) (0.0472) (0.0479) (0.0256) (0.0484)

NOK 0.0373 0.0239 0.0122 0.0106 0.9858
(0.0649) (0.0713) (0.0073) (0.0038) (0.0046)

PHI 0.0526 -0.0499 0.0325 0.0504 0.9386
(0.0522) (0.0625) (0.0161) (0.0136) (0.0159)

REN 0.0955 -0.0218 0.0564 0.0475 0.9279
(0.0498) (0.0562) (0.0405) (0.0206) (0.0357)

REP 0.0875 -0.0929 0.0658 0.0760 0.8728
(0.0357) (0.0370) (0.0254) (0.0192) (0.0318)

RWE 0.1415 -0.0975 0.1829 0.1250 0.7833
(0.0443) (0.0497) (0.0650) (0.0333) (0.0562)

SGO 0.0899 -0.0805 0.0591 0.1180 0.8560
————————
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Table 8 — continued from previous page
Asset µ θ ω α β

(0.0400) (0.0506) (0.0217) (0.0266) (0.0301)

SAV 0.0600 -0.1522 0.3079 0.1165 0.7361
(0.0448) (0.0503) (0.1185) (0.0366) (0.0836)

SPA 0.1034 -0.1095 0.0608 0.1126 0.8730
(0.0463) (0.0575) (0.0202) (0.0233) (0.0220)

SAP 0.0833 -0.0608 0.0266 0.0538 0.9321
(0.0418) (0.0487) (0.0171) (0.0221) (0.0278)

SIE 0.0771 -0.0866 0.0328 0.0551 0.9303
(0.0444) (0.0520) (0.0169) (0.0156) (0.0198)

SOG 0.0960 -0.0304 0.0526 0.0914 0.8841
(0.0406) (0.0501) (0.0231) (0.0250) (0.0309)

SUE 0.1333 -0.0951 0.2249 0.1873 0.7414
(0.0469) (0.0590) (0.0599) (0.0458) (0.0525)

TIT 0.0305 -0.1102 0.7105 0.0870 0.4129
(0.0406) (0.0388) (0.3415) (0.0432) (0.2596)

TEL 0.0672 -0.1032 0.1031 0.1297 0.7850
(0.0339) (0.0392) (0.0334) (0.0309) (0.0493)

TOT 0.0783 -0.1030 0.0451 0.0734 0.8939
(0.0366) (0.0427) (0.0216) (0.0204) (0.0314)

UNC 0.0404 -0.0026 0.0160 0.0640 0.9255
(0.0326) (0.0369) (0.0083) (0.0154) (0.0180)

UNL 0.0042 -0.0631 0.0156 0.0446 0.9454
(0.0350) (0.0447) (0.0091) (0.0196) (0.0220)

VIV 0.0775 0.0638 0.0193 0.0392 0.9518
(0.0472) (0.0547) (0.0108) (0.0100) (0.0119)

BMK 0.0773 -0.0814 0.0236 0.0860 0.8887
(0.0281) (0.0356) (0.0091) (0.0184) (0.0231)
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Table 9 shows the second step estimation of the FDCC model according
to equation (19); note that the equation (21) is not violated for any of the
estimated values of parameters a and b.

Table 9: Flexible DCC parameters (2nd step estimation)
“a” parameters

Sector Coeff. S.E. t-stat p-value
Automobiles 0.0478 0.0185 2.5744 0.0100
Banks 0.0769 0.0123 6.2330 0.0000
Chemicals 0.0679 0.0267 2.5450 0.0109
Constructions 0.0647 0.0197 3.2788 0.0010
Industrial 0.0526 0.0114 4.6248 3.7e-6
Insurance 0.0437 0.0159 2.7566 0.0058
Oil & gas 0.1047 0.0227 4.6196 3.8e-6
Retail 0.0770 0.0230 3.3502 0.0008
Technology 0.0678 0.0152 4.4644 8.0e-6
Telecommunications 0.0898 0.0212 4.2368 2.3e-5
Utilities 0.1104 0.0249 4.4419 8.9e-6
BMK 0.0915 0.0090 10.1340 0.0000

“b” parameters
Sector Coeff. S.E. t-stat p-value

Automobiles 0.9607 0.0387 24.8270 0.0000
Banks 0.8662 0.0479 18.0950 0.0000
Chemicals 0.7921 0.1889 4.1929 2.8e-5
Constructions 0.9442 0.0314 30.0490 0.0000
Industrial 0.9153 0.0310 29.5480 0.0000
Insurance 0.8945 0.0629 14.2200 0.0000
Oil & gas 0.9155 0.0390 23.5030 0.0000
Retail 0.9082 0.0500 18.1680 0.0000
Technology 0.9274 0.0287 32.3600 0.0000
Telecommunications 0.8129 0.1020 7.9671 0.0000
Utilities 0.8386 0.0801 10.4630 0.0000
BMK 0.7559 0.0459 16.4530 0.0000
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For each time series Table 10 provides:

• RT+5: sum of realized out of sample returns (5 observations);

• R̂T+5: estimated expected returns vector from the FDCC model, ac-
cording to equation (22);

• R̂BL: estimated Black and Litterman (1991) returns vector, according
to equation (26);

• R̄: 5 times sample means;

• h1/2: realized risk from out of sample observations;

• ĥ
1/2
T+5: estimated risk vector from the FDCC model, according to equa-

tion (23);

• σy: variance of forecasts computed on sample variances (s2) evaluated
as σy =

√
5s2;

Mean squared errors (MSE) for different estimated returns are also evalu-
ated.

Table 10: Expected returns and risks

Ticker RT+5 R̂T+5 R̂BL R̄ h1/2 ĥ
1/2
T+5 σy

ABN 1.6974 0.3097 1.3505 0.2050 2.5372 2.2793 3.0775
AEG 4.2787 0.3012 2.1992 0.1686 1.8464 4.0434 5.1395
AHO 0.7391 0.1496 1.9613 0.4756 4.2253 3.3916 5.5979
AIR 2.4594 0.3050 1.6622 0.2381 1.8645 2.1197 2.7094
ALC 3.3056 0.4587 1.9146 0.2464 1.3390 4.2966 2.6610
ALL -0.7032 -0.1061 1.4341 0.2318 2.2339 4.0536 5.1290
AIB 2.8495 0.4313 1.9663 0.4083 2.3091 3.6438 4.4323
AXA 7.2311 0.5013 2.4628 0.4499 0.5680 3.6199 4.0885
BSC 1.0821 0.2753 1.5583 0.3617 0.9897 2.5182 2.9018
BAS 3.0239 0.4165 2.8810 0.3401 2.8245 2.1685 3.3061
BAY 7.6505 0.8041 3.0012 0.6111 5.7134 4.3825 4.4777
BBV 3.4803 0.4076 2.1658 0.3900 1.6435 2.4351 2.9222
BNP 3.0521 0.3269 1.8542 0.3727 2.3785 2.9784 3.1727
CAR 3.2143 0.1021 0.9193 0.1349 1.7048 2.3008 3.1425
CAG 4.6440 0.4326 1.5973 0.4197 4.3784 3.3017 3.2468
DAI 2.0927 0.1295 1.4482 0.1657 2.6890 2.7672 3.6044
DAN 4.0046 0.3033 1.1725 0.3197 1.6828 2.3974 2.6958

————————
Continued on next page

31



Table 10 — continued from previous page

Ticker RT+5 R̂T+5 R̂BL R̄ h1/2 ĥ
1/2
T+5 σy

DEB 3.5981 0.3994 1.7870 0.4692 2.7270 2.8877 3.4727
DTE 0.4781 0.0042 0.7409 0.0924 1.3564 1.9698 3.1634
END 0.8495 0.3707 1.7299 0.5130 1.0562 1.9719 2.6659
ENE 1.6455 0.1621 1.9644 0.1570 1.4546 2.1361 2.2902
ENI 2.9077 0.3901 2.9082 0.2926 0.5057 2.5319 2.5731
EON 5.9278 0.4865 2.0037 0.4425 2.5496 2.5989 2.9230
FOR 2.6212 0.4854 1.9331 0.4128 2.6434 2.8052 3.9349
FTE 1.0766 -0.1161 0.6917 -0.0373 1.7420 2.7966 3.6937
GEN 2.6687 0.2706 2.9295 0.0969 2.3218 2.9275 2.6256
IBE 2.0256 0.3271 1.8311 0.3574 1.5652 1.5728 1.9105
ING 2.8720 0.5978 2.2691 0.5010 3.0793 3.1250 4.3182
LAF 3.3673 0.2998 2.9974 0.3550 2.6304 4.5464 3.8733
LOR 3.6543 0.1435 1.1936 0.0999 1.7491 2.3150 3.0274
LVM 4.6152 0.5114 2.3977 0.3812 1.9089 3.4588 3.0893
NOK 1.4516 0.1953 0.8678 0.1375 5.6542 3.5582 4.6797
PHI 2.6547 0.2449 2.1412 0.2484 6.5318 4.0331 4.3218
REN 0.5372 0.4698 1.7043 0.4371 4.6360 3.2206 3.7236
REP 4.7563 0.4036 1.7853 0.2868 0.8066 2.4268 2.5490
RWE 3.7563 0.6720 2.0135 0.6420 2.6582 2.3995 3.3102
SGO 3.9221 0.4203 2.1149 0.3763 3.9059 3.4834 3.4815
SPA 1.9187 0.2445 1.1504 0.2376 3.9018 2.6648 3.3564
SAV 0.7299 0.4774 1.4987 0.4321 1.8788 2.8126 4.0423
SAP 2.7861 0.3946 1.5679 0.4203 1.0836 2.3708 3.2256
SIE 0.1913 0.3538 2.4157 0.3544 2.3851 3.8621 3.3889
SOG 3.9917 0.4689 2.4278 0.4607 1.8513 3.5202 3.2974
SUE 5.1455 0.6321 2.0077 0.5481 3.6155 3.0365 4.4912
TIT -0.1377 0.1124 0.9655 0.0807 1.7739 2.2556 2.6822
TEL 0.8484 0.2984 1.2783 0.2470 1.0158 1.7767 2.5689
TOT 2.9388 0.3542 2.1805 0.2900 2.1825 2.9656 2.7325
UNC 0.7380 0.2009 1.7900 0.2835 3.4780 3.4702 2.6904
UNL 2.9187 -0.0020 0.8503 -0.0103 1.9032 2.2446 2.7393
VIV 1.5983 0.4108 1.4876 0.4225 0.9221 2.9824 3.7489
BMK 2.7440 0.3571 1.9944 0.2924 1.8357 2.1717 2.3837

MSE:
FDCC 20.4494
Black Litterman 12.7031
Sample mean 20.7464
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Appendix C: Proof of equation (23)

The starting point of this proof is the multivariate generalisation of the first
equation of equation (12) provided by equation (14). Focussing the atten-
tion upon the forecasts of the expected returns vector, after some recursive
substitutions, the model becomes:

τX
j=1

ŷT+τ = µ + Π
τX

j=0

(τ − j)Πj +
τX

j=1

ΠjyT +
τX

j=1

τ−jX
r=0

ΠrεT+j

Conditioning to the information set FT , the first and the second term of the
above summation are constant, therefore the covariance matrix forecasts
depend only upon the third one. Given the result

τX
j=0

Πj = (I −Π)−1(I −Πτ+1),

the forecast for the vector ŷT+τ conditional to the information set FT is
given by the following expression:

τX
j=1

ŷT+j | FT = (I −Π)−1
τX

j=1

(I −Πτ−j+1)εT+j

For the standard hyphotheses of the VAR(1) model, E(εt+jε
′
t+r) = 0 for all

j 6= r, hence, the conditional covariance matrix is

Ω̂T+τ = (I − Π̂)−1

2
4 τX

j=1

(I − Π̂τ−j+1)Ω̂T+j(I − Π̂τ−j+1)′
3
5 (I − Π̂′)−1

equal to equation (23).
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