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Abstract

Multivariate GARCH models constitute the workhorse of empirical applica-
tions in several fields, a notable example being financial econometrics. Un-
fortunately, ML (or quasi-ML) estimation of such models, although relatively
straightforward in theory, is often made difficult by the fact that available
software relies on numerical methods for computing the first derivatives of
the log-likelihood; the fact that these models often include several dozens of
parameters makes it impractical to estimate even medium-sized models. In
this paper, closed-form expressions for the score of the BEKK model of Engle
and Kroner (1995) are obtained, and strategies for efficient computation are
discussed.
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1 Introduction

Multivariate GARCH models constitute the workhorse of empirical applica-
tions in several fields, a notable example being the econometrics of portfolio
allocation. Unfortunately, maximum likelihood estimation of such models,
although relatively straightforward in theory, is often made difficult by the
fact that available software relies on numerical methods for computing the
first derivatives of the log-likelihood; apart from the inevitable loss in pre-
cision that this practice entails, the fact that these models often include
several dozens of parameters makes it impractical to estimate even medium-
sized models. Analytic derivatives for the GARCH log-likelihood have been
considered by Fiorentini et al. (1996); in that paper, however, only uni-
variate models without in-mean effects were considered. The present paper
overcomes both limitations.

The unavailability of algorithms for analytic derivatives makes estimation
of multivariate GARCH models slow and prone to numerical errors1. This is
one of the reasons that motivated several authors to consider models with a
reduced number of parameters. Various strategies have been developed for
reducing the number of parameters involved in multivariate GARCH models:
for example, Bollerslev et al. (1988), Diebold and Nerlove (1989), Bollerslev
(1990) and Giannini and Rossi (1999); Bollerslev et al. (1994) provide a fairly
complete exposition.

The most popular in the applied literature has proven the so-called BEKK
model, which balances generality with parsimony. In the original article
that put the BEKK model forward (Engle and Kroner (1995)), the issue of
analytic derivatives was issued, but not deemed to be worth pursuing in view

∗I would like to thank Eduardo Rossi and Carlo Giannini for their useful comments
without implicating them in whatever errors or inaccuracies might be in the paper.

1The general problem of using numerical rather than analytic derivatives in optimiza-
tion problems is discussed at length in Quandt (1983).
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of the algebraic complications; the authors advocated the use of numerical
derivatives instead. In this paper, closed-form expressions for the derivatives
of the log-likelihood for the BEKK model are obtained, and strategies for
efficient computation are discussed.

Enhancing the performance (both in terms of speed and accuracy) of
existing software for the estimation of multivariate GARCH models could
be crucial in several contexts: first, existing models could be estimated and
updated more easily: this may be particularly important in applied finance,
where multivariate GARCH models are used for asset allocation or risk man-
agement; larger models could be estimated (or equivalently, models with less
restrictions); finally, simulation-based techniques for inference on stochastic
volatility (SV) models, which have relied so far mainly on univariate GARCH
models, could benefit from the use of multivariate GARCH, as an auxiliary
model as shorter estimation times make massive simulation feasible2.

The plan of the paper is as follows: in section 2, the univariate GARCH
model is discussed, mainly to establish notation. Section 3 generalises to
the multivariate case. The extension to models with the variance entering
the conditional mean function (the so-called in-mean models) is analysed in
section 4. Section 5 contains a discussion of some practical issues for efficient
evaluation of the formulas given in section 4. Finally, section 6 ends the
paper.

2 The univariate case

In the univariate case, assume that an observable scalar stochastic process yt
is distributed, conditionally to an increasing sequence of σ-fields It−1 (hence-
forth referred to as the information set at time t− 1), as3

yt|It−1 ∼ N(µt, ht) (1)

In the GARCH model (put forward by Bollerslev (1986) building on work
by Engle (1982)) the expressions for the conditional mean and variance are

µt = x′tβ (2)

ht = c+ ae2
t−1 + bht−1 (3)

2A standard reference for simulation-based inference is Gourieroux and Monfort (1996);
for a recent contibution in the field of SV models estimation via simulation techniques,
see Andersen et al. (1999).

3Although various distributions have been suggested, only the case of normality will
be considered here.
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where xt is a vector of weakly exogenous observable variables, measurable
with respect to It−1. By using a sequential factorization argument, the log-
likelihood for the t-th observation in the sample can be written as

`t = const − 1

2

[
lnht +

e2
t

ht

]
(4)

where
et = yt − x′tβ (5)

The score vector is

st(θ) =
d `t
d θ

where the parameters β, c, a and b have been gathered (in this order) in the
vector θ. Explicit calculation of st(θ) is made easier by applying the chain
rule:

st(θ) =
∂`t
∂et

d et
d θ

+
∂`t
∂ht

dht
d θ

(6)

As will be seen, this expression not only is theoretically useful, but it also
leads to an advantageous computational strategy.

Let us consider the elements of (6) one by one: the derivatives of the
log-likelihood itself are

∂`t
∂et

= − et
ht

(7)

∂`t
∂ht

=
1

2ht

[
e2
t

ht
− 1

]
(8)

Derivatives with respect to the elements of the vector θ are more complex:
the first one is simple, since it is apparent from (5) that ∂et

∂β
= −xt, while

derivatives with respect to the other parameters are all 0. Calculation of dht
d θ

is not so straightforward, as the recursive nature of (3) must be taken into
account. Considering, for example, the parameter c, we have

∂ht
∂c

= 1 + b
∂ht−1

∂c

which, after defining hct ≡ ∂ht
∂c

, could be written as

hct = bhct−1 + 1 (9)

so that the “autoregressive” nature of the equation becomes evident; an
analogous argument leads to

hat = bhat−1 + e2
t−1 (10)
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hbt = bhbt−1 + ht−1 (11)

Computation of ∂ht
∂β

yields:

∂ht
∂β

= a
∂e2

t−1

∂β
+ b

∂ht−1

∂β
= −2aet−1xt−1 + b

∂ht−1

∂β

which can be written as

hβt = bhβt−1 − 2aet−1xt−1 (12)

so that one ends up with

hθt =


hβt−1

hct−1

hat−1

hbt−1

 = bhθt−1 +


−2aet−1xt−1

1
e2
t−1

ht−1

 (13)

and finally, combining all intermediate results into (6) yields:

st(θ) =


etxt
ht

0
0
0

+
1

2ht

[
e2
t

ht
− 1

]
hθt (14)

Obviously, since expression (14) contains a recursive term, an initialisa-
tion rule is required. Such a rule, however, is also made necessary for the
evaluation of the log-likelihood itself by the recursive term in (3). A common4

choice is initialising ht with the unconditional variance, ie letting

h0 =

∑T
t=1 e

2
t

T

In this case, initial values for the recurrence relations in (13) are simply

dh0

d θ
=

2
∑T
t=1 et

d et
d θ

T

by which

hθ0 =


−2

∑T

t=1
etxt

T

0
0
0

 (15)

4This choice is indeed common, although its asymptotic implications for the resulting
estimators are unclear.
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is obtained.
A second possibility is initialising ht by setting h0 at its lowest possible

value, h0 = c. This choice is probably less realistic, but it certainly is com-
putationally more effective. If the GARCH model is not integrated (which
happens if a + b < 1), this choice is inconsequential, as the sample size in-
creases, anyway. In this case, hθ0 does not depend on et (and therefore on β),
but is a function of c only, so that

hθ0 =


0
1
0
0

 (16)

Yet another possibility is choosing for h0 its unconditional value and
setting

h0 =
c

1− a− b
so that

hθ0 =
1

1− a− b


0
1
h0

h0

 (17)

This choice is by far the most attractive from a theoretical standpoint; how-
ever, in practice it may well happen that, whatever maximization algorithm
is used, the log-likelihood and its derivative get evaluated in a region of the
parameter space where a + b ≥ 1, and the expressions above (notably (17))
are inapplicable. It is chiefly for this reason that this choice is very rarely
made.

3 The BEKK case

In a multivariate setting, the observable process yt is a vector process with
n elements. This implies that extension of the univariate model must take
into account time variability not only of a vector of conditional means, but
also of the n×n covariance matrix Ht. While the conditional mean is almost
invariably parametrized as a linear function, several choices exist for the
covariance matrix. In this paper, we will only consider a special case of the
so-called BEKK parametrisation (see Engle and Kroner (1995)), which has
proved the most popular. In this model, the conditional variance matrix is
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specified as

Ht = CC ′ +
p∑
s=1

k∑
i=1

Aiet−se
′
t−sA

′
i +

q∑
s=1

k∑
i=1

BiHt−sB
′
i

where 1 ≤ k ≤ n2 is called the degree of generality of the model. This
formulation achieves several objectives: it retains high generality (several
other multivariate models are special cases of the BEKK model), while en-
suring positive semi-definiteness of the matrix Ht and identification of the
parameters under rather mild conditions that are easily checked in practice.

It can be shown that, for an appropriate choice of k, this parametrization
spans the whole space of positive semidefinite symmetric matrices. In what
follows, though, generality will be sacrificed for the sake of conciseness and
only the case where k = p = q = 1 will be analysed. On the other hand, it
is worthwhile noting that the extension to the general case is algebraically
messy but conceptually simple; moreover, the vast majority of empirical
applications uses the same setup as ours.

For the BEKK parametrisation, the (conditional) log-likelihood for the
t−th observation is

`t = const − 1

2

[
ln |Ht|+ e′tH

−1
t et

]
(18)

where
et = yt − Πxt (19)

Ht = CC ′ + Aet−1e
′
t−1A

′ +BHt−1B
′ (20)

and equation (20) can be written in vector form as follows:

ht = (C ⊗ C)vec I + (A⊗ A)(et−1 ⊗ et−1) + (B ⊗B)ht−1 (21)

where ht = vecHt. It is useful to define Pt = H−1
t and its vector form

pt = vecPt. Between ht and pt the following relation holds:

∂pt
∂ht

= −H−1
t ⊗H−1

t = −Pt ⊗ Pt

As in the univariate case, the parameters that have to be estimated are
Π, C, A and B, or, equivalently, their vectorised versions π, c, a e b. In this
notation, the log-likelihood for the t-th observation can be written as

`t = const − 1

2
[− ln |Pt|+ (e′t ⊗ e′t)pt] (22)
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Since for symmetric invertible matrices ∂ ln |A|
∂vecA

= vec (A−1)′ holds, we have

∂`t
∂et

= −e′tH−1
t = −u′t (23)

∂`t
∂ht

=
∂`t
∂pt

∂pt
∂ht

=
1

2
[(e′t ⊗ e′t)− h′t] (Pt ⊗ Pt) =

1

2
[(u′t ⊗ u′t)− p′t] (24)

where ut ≡ H−1
t et.

It is now possible to exploit the relations (19) and (20) in the same way
as in the univariate case, thus obtaining

∂et
∂π

= −x′t ⊗ I

with the other partial derivatives with respect to et are 0. Now, the rule5

∂vec (XAX ′)

∂vecX
= (I + >©)(XA⊗ I)

gives rise to
∂ht
∂c

= (I + >©)(C ⊗ I) + (B ⊗B)
∂ht−1

∂c
Actually, the last expression overlooks the fact that in the BEKK setup C
is a lower triangular matrix. This constraint, however, can be handled in a
straightforward way by writing

vecC = c = Dγ

where D is a matrix (sometimes known as the ‘elimination matrix’ — see
Magnus (1988)) with n2 rows and n(n + 1)/2 columns that deletes the su-
perdiagonal elements of C. As an example, for n = 2, D is equal to

D =


1 0 0
0 1 0
0 0 0
0 0 1


5The symbol >© is defined in Pollock (1979)) as the permutation matrix (called the

commutation matrix ) defined by the property

>©vecA = vecA′

An additional property of >© that will be used in what follows is that

>© (A⊗B) = (B ⊗A) >©

Other authors (for instance Magnus (1988) or Magnus and Neudecker (1988)) use the
symbol Kmp instead.
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Since ∂c
∂γ

= D, application of the chain rule yields

∂ht
∂γ

= (I + >©)(C ⊗ I)D + (B ⊗B)
∂ht−1

∂γ

In practice, this linear transformation boils down to selecting the appropriate
columns of ∂ht

∂c
. The same operation is unnecessary for A and B, which are

normally unrestricted n× n matrices.

∂ht
∂a

= (I + >©)(Aet−1e
′
t−1 ⊗ I) + (B ⊗B)

∂ht−1

∂a

∂ht
∂b

= (I + >©)(BHt ⊗ I) + (B ⊗B)
∂ht−1

∂b

It is possible to write these results in a more compact (and computation-
ally more covenient) way:[

∂ht
∂c

∂ht
∂a

∂ht
∂b

]
= (I + >©)

{[
C Aet−1e

′
t−1 BHt−1

]
⊗ I

}
+

+ (B ⊗B)
[
∂ht−1

∂c
∂ht−1

∂a
∂ht−1

∂b

]
(25)

where, again, ∂ht
∂γ

= ∂ht
∂c
D.

Computation of the derivative of ht with respect to π can proceed along
the following line: equation (21) makes it possible to write it as the sum of
two components, so that

∂ht
∂π

= (A⊗ A)
∂(et−1 ⊗ et−1)

∂π
+ (B ⊗B)

∂ht−1

∂π

and the only element left to evaluate is ∂(et−1⊗et−1)
∂π

; this can be done by
applying the chain rule again

∂(et−1 ⊗ et−1)

∂π
=
∂(et−1 ⊗ et−1)

∂et−1

· ∂et−1

∂π
= (I + >©)(et−1 ⊗ I) · (−x′t−1 ⊗ I)

and putting everything back together yields

∂ht
∂π

= −(I + >©)(Aet−1x
′
t−1 ⊗ A) + (B ⊗B)

∂ht−1

∂π
(26)

The complete score can now be written as

st(θ) =
∂`t
∂et

[
∂et
∂π

∂et
∂γ

∂et
∂a

∂et
∂π

]
+
∂`t
∂ht

[
∂ht
∂π

∂ht
∂c

∂ht
∂a

∂ht
∂b

]
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so that

st(θ) = −u′t
[
−x′t ⊗ I 0 0 0

]
+

1

2
[(u′t ⊗ u′t)− p′t]

[
∂ht
∂π

∂ht
∂c

∂ht
∂a

∂ht
∂b

]
(27)

where the derivatives of ht are evaluated recursively by using (25) and (26).
From a computational point of view, it might be advantageous to exploit the
following relations:

−u′t(−x′t ⊗ I) = vec (utx
′
t)
′ (28)

(u′t ⊗ u′t)− p′t = vec
(
utu
′
t −H−1

t

)′
(29)

The problem of initialising the recursions is analogous to that already
considered for the univariate case. Initialising H0 = CC ′ yields simply

∂h0

∂θ
=
[

0 (I + >©)(C ⊗ I)D 0 0
]

whereas settingH0 to the unconditional sample variance, given by T−1∑T
t=1 ete

′
t

leads to
∂h0

∂θ
=
[
− 1
T

(I + >©)(I ⊗∑T
t=1 etx

′
t) 0 0 0

]

4 GARCH in mean

In the GARCH-in-mean (GARCH-M) case things are more complex, since
the conditional mean function includes a term which accounts for the effects
of the contemporaneous variance matrix6.

As before, let us consider the univariate case first: in this case, equation
(5) includes a term htφ, while (3) remains unchanged; therefore:

et = yt − x′tβ − htφ (30)

ht = c+ ae2
t−1 + bht−1 (31)

Since (4) and the equations (6)–(8) are still valid, the recursive relations
for evaluating the derivatives of et and ht with respect to θ can be synthesized
in the following matrix equation:[

1 φ
0 1

] [
eθt
hθt

]
=

[
0 0

2aet−1 b

] [
eθt−1

hθt−1

]
+

[
−xt ∂β∂θ − ht

∂φ
∂θ

∂c
∂θ

+ e2
t−1

∂a
∂θ

+ ht−1
∂b
∂θ

]
6In the univariate case, the possibility of using the standard deviation instead of the

variance has also been explored. At this stage, however, considering the general case would
introduce unnecessary complications.
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Since [
1 φ
0 1

]−1

=

[
1 −φ
0 1

]
one easily obtains[

eθt
hθt

]
=

[
1 −φ
0 1

]{[
0 0

2aet−1 b

] [
eθt−1

hθt−1

]
+

[
−xt ∂β∂θ − ht

∂φ
∂θ

∂c
∂θ

+ e2
t−1

∂a
∂θ

+ ht−1
∂b
∂θ

]}
(32)

It should be noted that all the expressions like ∂·
∂θ

are selection matrices,
whose elements are 0 or 1. Although equation (32) may look messy, compu-
tational difficulties are limited, as will be discussed later.

The multivariate analogue to (19) is

et = yt − Πxt − ΦD′ht = yt − (x′t ⊗ I)π − (h′tD ⊗ I)φ (33)

where Φ is an n× n(n+1)
2

matrix whose identification is attained by inserting
the D matrix, as D′ht = vech (Ht); expressions (20) and (21) stay unmodi-
fied. The derivatives for the conditional mean and variance respectively are
therefore

∂et
∂θ

= −(x′t ⊗ I)
∂π

∂θ
− (h′tD ⊗ I)

∂φ

∂θ
− ΦD′

∂ht
∂θ

(34)

∂ht
∂θ

= (I + >©)(Aet−1 ⊗ A)
∂et−1

∂θ
+ (B ⊗B)

∂ht−1

∂θ
+ (35)

+ (I + >©)

[
(C ⊗ I)D

∂γ

∂θ
+ (Aet−1e

′
t−1 ⊗ I)

∂a

∂θ
+ (BHt−1 ⊗ I)

∂b

∂θ

]

Now the multivariate equivalent to (32) can be written as

[
eθt
hθt

]
=

[
1 −ΦD′

0 1

]{[
0 0

(I + >©)(Aet−1 ⊗ A) (B ⊗B)

] [
eθt−1

hθt−1

]
+ (36)

+

[
−(x′t ⊗ I)∂π

∂θ
− (h′tD ⊗ I)∂φ

∂θ

(I + >©)
[
(C ⊗ I)D ∂γ

∂θ
+ (Aet−1e

′
t−1 ⊗ I)∂a

∂θ
+ (BHt−1 ⊗ I) ∂b

∂θ

] ]}

which looks formidable, but whose implementation is not overly difficult
(consider, again, that all the terms like ∂·

∂θ
are selection matrices). Recursive

evaluation of the preceeding expression makes it possible to evaluate the score
by using

s(θ) =
[

∂`t
∂et

∂`t
∂ht

] [ eθt
hθt

]
=
[
−u′t 1

2
[(u′t ⊗ u′t)− p′t]

] [ eθt
hθt

]
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5 Computational details

Any procedure for estimating BEKK models taking advantage of the ana-
lytic score must implement equations (18) and (36) as part of an iterative
optimization scheme. The two expressions will typically be evaluated over a
loop from 1 to T , with the initialization choices discussed above. Especially
the latter expression looks rather complicated, but practical difficulties in
software implementation can be mitigated considering that:

1. The matrices D, >©, and all the ∂·
∂θ

are selection matrices, so that pre-
(post-)multiplication by any of these matrices is equivalent to selecting
the appropriate rows (columns). In a matrix-oriented programming
language, such as GAUSS, Ox or Matlab, this task can be accomplished
very easily and efficiently at the same time, thus drastically reducing
the number of floating-point operations necessary.

2. Many elements of (36), for example (B ⊗ B), are time-invariant, so
they only have to be evaluated once per iteration, outside the main
loop. This reduces the number of total multiplications and therefore
increases the speed of the algorithm.

3. The same loop can be used for evaluating both the log-likelihood and
the score. This would reduce computational time, as quantities likeH−1

t

are evaluated only once per iteration. Put another way, with little extra
computational effort it is possible to evaluate the score every time the
log-likelihood is computed. This can enhance performances if combined
with a maximization scheme like BHHH (without line search).

6 Conclusions

In this paper, explicit expressions for the score of the BEKK model with
in-mean effects are obtained. Although the resulting formulas are rather
complex (or, in Engle and Kroner’s words, “cumbersome” (Engle and Kroner,
1995, p. 139)), they lend themselves to efficient translation into a computer
algorithm. Implementation of such an algorithm would allow for efficient
estimation of large scale multivariate GARCH models.

Both theoretical and applied research would benefit for improved soft-
ware speed and accuracy: in theoretical research, the way would be opened
to large-scale simulation, needed for estimation of SV models and Monte
Carlo experiments (asymptotic properties of ML estimators for multivari-
ate GARCH models are still the object of current research: see for instance
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Jeantheau (1998)). Applied research, on the other hand, could consider es-
timation of models previously considered intractable due to the high number
of parameters.
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