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Foreword

In recent years there has been a growing interest in the structural VAR approach
(SVAR), especially in the U.S. applied macroeconometric literature, after the first works
by Blanchard and Watson (1986), Bemanke (1986) and Sims (1986).

The approach can be used in two different partially overlapping directions: the
interpretation of business cycle fluctuations of a small number of significant
macroeconomic variables and the identification of the effects of different policies.

SVAR litcrature shows a common feature; the attempt at "organizing™ - in a
"structural" theoretical sense - instantaneous correlations between relevant variables. In
non-structural VAR modelling, instead, correlations are normally hidden in the
variance-covariance matrix of the innovations of VAR models.

Structural VAR analysis tries to isolate (“identify") a set of independent shocks by
means of a number of meaningful theoretical restrictions. The shocks can be regarded
as the ultimate source of stochastic variations of the vector of variables which, moreover,
could be seen as potentially ali endogemus.

Looking at the development of SVAR literature I felt that it still lacked a formal
general framework which could embrace the several types of model so far proposed for
identification and estimation,

Following Rothenberg (1971, 1973) the present monograph tries to develop a
methodological framework for three tynes of model which encompass all the different
models used in applied literature. I have also tried to generalise the identification and
estimation set-up using the most general type of linear constraints available for the
representation of ideas about the organisation of instantaneous co-movements of
variables in response to "exogenous” independent shocks.

Trying to adapt recent work by Liitkepohl, a section contains calculations of the

asymptotic distributions of impulse response functions and forecast error variance
decompositions. This allowed me to avoid using bootstrapping or Monte Carlo



integration techniques in all the three types of model. Paragraph 5.b of this section was
written by Antonio Lanzarotti.

Another section shortly collects suggestions and wamings which may be useful in
applied work in order to treat the presence of deterministic components, typically long
run constraints in a stationary context and a way to match a cointegrating set-up.

After an Annex on the notion of structure in SVAR modelling, four appendices are
devoted to technical issues. Appendix A briefly summarizes rules and conventions of
marrix differential calculus adopted in this monograph.

Appendix B contains the calculation of the first order conditions for the
maximization of the likelihood of the "Key" model and the corresponding Hessian
marrix.

Appendices C and D have been written jointly by Antonio Lanzarotti and Mario
Seghelini: the former contains some examples of symbolic identification analysis for the
K, C and AB models; the latter contains two RATS programs that implement the ideas
put forward in this monograph.

This monograph surely overlooks a number of important topics in SVAR modeiling,
the most important of which is probably how to choose between alternative
Structuralisations of the same unstructured VAR model. Although the issue could be
treated as a problem of testing non-nested hypotheses, I believe that a recent paper by
Pollack and Wales (1991) on the likelihood dominance criterion offers the most
straightforward solution.

The present version of this monograph should be regarded as something in between
a first draft and a final version; comments and suggestions are therefore sincerely
welcome.

In preparing this monograph I have been supported by a M.UR.S.T. 40% research
grant at Ancona University labelled "Modelli macroeconomici e analisi econometrica
dinamica”.

I wish to thank Rocco Mosconi and Giovanni Amisano for stimulating discussions
and Prof. Mario Faliva for useful algebraic references. Thanks are also due to Ubaldo




Stecconi of Cooperativa Logos, Ancona, who revised the English manuscript and
managed the typesetting.

I am particutarly indebied to Antonio Lanzarotti and Mario Seghelini - who are
working with me at Pavia University as students - not only for their contribution but also
for their suggestions. They have accompanied me through a journey which had started
in a fog of confused ideas.

The usual claims cbviously apply.

Ancona, July 1991

Carlo Giannini
Dipartimento di Economia
Universita di Ancona

via Pizzecolli, 68

60121 Ancona

Italy






1. Introduction

In order to introduce the basic elements of Structural VAR Analysis, let us suppose
that we can represent a set of n economic variables using a vector (a column vector) yr
of stochastic processes, jointly covariance stationary without any deterministic part and
possessing a finite order (p} autoregressive representation.

AlL)yi=¢&

A(L)y=1—AiL— ...~ AplF
The roots of the equation det{A(L)) =0 are outside the unit circle in the complex
domain and e has an independent multivariate normal distribution with [0} mean.

& ~I MN([0.Z)

E(e)=[0]

E(e€’) =2 det (Z)20
E(ec€’s) = [0] st

{in other words € is a normally distributed vector white noise)
The y: process has a dual Vector Moving Average representation (Wold
representation)
ye=C(L)es
ClLy=A(Ly
CLy=1+CiL+Col + ..

where C(L) is a matrix polynominal which can be of infinite order and for which we
assume that the multivariate invertibility conditions hold, i.e. det(C(L}) = 0 has all roots

outside the urit circle



c)y =AW
From a sampling point of view, let us suppose we have T+p observations for each
variable represented in the y; vector; we are thus capable of studying the system
ALY yr=¢ t=1,...T
This system can be conceived as a particular reduced form (in which all variables
can be viewed as endogenous).
In order to connect our discussion to the usual Simultancous Equations Systems

formulae, this latest system can be re-written in compact form as follows’:

Y=A1Y1+A¥2+.. . +ApY p+V

or even more compactly
Y=Ix+v

where
Y=[yny2...y7l ¥ has dimension (nxT)
Yoi = [y1-i, Y2, ....¥T—il Y- has dimension (rxT}
V=[€1, €2, ....€T] V has dimension (nxT)
I1=[A1, A2, ...,Ap] IT has dimension [<(n-p}]

X=[¥_11¥2!...1¥5]"  Xhas dimension [(n-p)xT)]

1£ no restrictions are put on the IT matrix, the formulae for asymptotic least-squares
A
estimation and maximum likelihood estimation of TI, say TI, coincide®:
- 1
=YX (XX)

As usual, the symbol vecA shall indicate the column vector obtained by stacking the
elements of the A matrix column after column.

1 In relation to more usual Structural Systems Formiulae we are assuming a
"transposed” notation.

2 Notice that on the basis of this formula the estimator [} is independent of the
variance-covariance matrix of the error terms .




'mmmmwﬁ

Under the hypothesis that the elements of y; are stationary, we can assume that

. XX
plim =
T

where () is a positive definite matrix,

Under the hypothesis introduced it can be easily shown that
A d
VT(vecTI - vectl ) > M 101, "' X
d

where — means convergence in distribution.

If no restriction is imposed on the £ matrix, its maximum likelihood estimate will

be
T A
’)E b e’:
- T
=1
A A A
where & = y: — A1yi-1 ~...~Apy:—p, OT more compactly
A D
|4
I="7

A A
where V=¥ -IIX,
A
The asympiotic distribution of vec IT is simply

A 1 _1
vecTl ~ A M vecll , = (Q @):)

and the following expression gives a consistent estimate of the asymptotic

A
covariance matrix of veclIl, i.e. %(Q‘1®E),

3 Hereafter we shall employ usual asymptotic notations contained, for example, in
White (1984) and Serfling (1980).
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Recent literature on the so-called Structural VAR Approach uses different ways of
structurizing the VAR model. We will discuss three such ways: a KEY model which we
will call the K-model, the C-model and the AB-model

In addition to the hypotheses we introduced earlier, for the K-model (REY model)
the following expressions will hold:

K-model K (nxn) invertible matrix
KAL) yi=K &
Ke=e
Elete’'d)=In
The X matrix "premultiplies" the autoregressive representation and induces a
transformation on the & disturbances by generating a vector (e) of orthonormatized
disturbances (its covariance matrix is not only diagonal but also equal to the unit matrix
In).
Note that assuming to know the frue variance covariance matrix of the € terms from
Ke=e
Kege'K=ed
taking expectations, one can immediately obtain
KIK =In

The previous equation implicitly imposes 71} non-linear restrictions on the K
matrix leaving "+1)4 free parameters in X.

C-model C (nxn) invertible matrix
AL} yi=&

a=Ce

E(e) =1{0] Elet€)=In




S

sl

Sims (1988) stresses the point that there is no theoretical reason to suppose that C
should be a square matrix of the same order as K. If C were a square matrix, the number
of independent (orthonormal) transformed disturbances would equal the number of
equations. Many reasons lead us to think that the true number of originally independent
shocks to our system could be very large. In that case, the C matrix would be a nxm
matrix with m much greater than #. In a sense, this research path is opposite to the one
studied by the factor analysis, which attempts to find m (the number of independent
factors) strictly smaller than a. The case of a rectangular (s>on),re>n C matrix hides a
number of problems connected to the completeness of the model and the aggregation
over agents - see a short and not very illuminating discussion of this topic in Blanchard
- Quah (1989).

in the sequel, we will not face this problem and will assume C square and invertible.
Nevertheless, we think that many important issues can be better treated following the
research path indicated here.

Tuming back to our C model, the € vector is regarded as being generated by a linear
combination of independent (orthonormal) disturbances to which we will refer hereafier
as e;. This may have a different meaning as regards the K-model.

As for the K-model, notice that from
e=Ce
gei=Ceée:

taking expectations,
Z=CC.

If, again, we assume to know I, the previous matrix equation implicitly imposes a
set of "(*+1)4 non-linear restrictions on the C matrix, leaving ** 1) frec elements in C.

AB-model A, B are (nxn) invertible matrices”.
AALYyi=A®&
- A&g=Ber
4 The same argument discussad earlier on the size of mateix C also applies (o matrix B,



E(er) ={0} Elere)=1In

The A matrix induces a transformation on the € disturbances vector, generating a
new vector (A &) that can be conceived as being generated by a linear combination
(through the B matrix) of n independent (orthonormal) disturbances, which we will refer
10 as ¢; (obviously, this might have a different meaning as regards the models K and C).

As in the previous case from
Ag=Be
A(€)A' =B(ad) B
AZA'=BF
for £ known, this equation always imposes a set of #**+1}4 non-linear restrictions on
the parameters of the A and B matrices, leaving overall 21> — "*+1}4 free elements.
Following Sims (1986) and supposing that there are no cross restrictions on IT and
Z, or better that there are no restrictions at all on IT while a set of restrictions are imposed
on Z, the identification and the F1L.M.L. estimation of the parameters of models K, C and
AB could be based on the analysis of the following log-likelihood function
T T 12
L=c—-2—10gEEI~—Etr(Z' Z)

From this function three different log-likelihood functions can be obtained for
models K, C and AB by direct substitution of X:

K-model
T M
L(K)=c+Tlogki —-z—tr(K'KE)

remembering that, from K £ K’ =1, and taking into account the invertibility of K,

we can write
=K'kl !
Tlexk

by virtue of the fact that log I(X” B li=- log 1K K1=--2 log KT,




C-model

L(C)=c—TlogiCI—-§n'(C’_l %
remembering that

I=CC

rl=(ceyl=clc?!
and that

log IC C'l=2log ICT;

AB-model

£ (AB) = ¢ + TlogiAl — T loglB! —%:r(A’B’_I BlAS,
remembering that

AZA'=BE

s=alppa!

Tl=aplBl4
and thatlog | A~ BB’ A”  |=—21logldt +2 log| B I.

Looking at the three log-likelihood functions obtained by introducing the respective
series of non-linear constraints cn matrices K, C, A, and B, we can heuristically
understand, that lacking further information, estimators for the parameters in X, €' and
A and B cannot be found.

All the sampling information is contained ing where, with probability one we have
~(r+1)4 distinct elements. By substituting T with the respective expressions of the different
models we have overcome the problem of finding a direct estimate of the *™+1)4 different
elements in I (which in reality was not known). The problem still remains of estimating



n? parameters for the K matrix in the K-model, #° parameters for the C matrix in the
C-model and 2#? parameters (#° for A and #* for B) in the AB-modeL.
It can be heuristically understood that from the knowledge (the sampling knowledge)

of ’Z\ a maximum of &=+1}% functionally independent parameters for the three models
respectively can be estimated. Without additfonal information we find ourselves in a
typical situation of under-identification.

In general, Structural VAR Analysis has confined its aflention to cases where,
through exclusion restrictions, we can reach the exact identification of the whole set of

pammeterss.

The exclusion restrictions and the need for exact identification greatly reduce the
praciical meaning of the Structural VAR Approach for a rumber of reasons - which shall
be discussed below®.

Int what follows we have tried to solve the problem of identification, estimation and
use of K, C and AB models with additional linear restrictzons of the most general type
in a general way, namely:

RrvecK=dr - for K-model
RevecC=d, for C-model
Ravec A=dy
{ Rp vec B=ds for AB-model
5 One remarkable exception is a RATS routine, written by Doan in three different

versions (1987, 1988, 1989). Doan proposes a complete solution for the
estimation of over-identified and exactly identified models of the AB type
with 8 diagonal and exclusion restrictions on the off-diagonal elements of
the A matrix.

6 At the state of my knowledge to date, still in the case of exact identification, two
papers have tried to introduce new features. In the first paper, Blanchard and
Quah (1989), the C-model is used for n=2 and the exact identification is
obtained introducing a homogeneous restriction on the parameters of the C
matrix throngh an infinite-horizon theoretical constraint. In Keating (1990),
instead, the AB-model is used for n=3 with B diagonal and a set of
non-linear restrictions on the off-diagonal elements of the A matrix. These
restrictions derived from a variant of Taylor’s rational expectations model.




where the R; matrices (i = k, ¢, 4, b) are matrices of full row rank.
To these groups of non homogeneous linear restrictions written in implicit form
correspond three groups of restrictions written in explicit form":
vec K=SkYe+ sk
vec C=8c Yo + 3¢

VeCA=Sa'Ya+Sa
vec B=3Sb v+ 5b

where the S;, (i =, ¢, a, b) are full column rank matrices and the number of coiumns
is equal to the number of free elemens in the respective matrices®.
The following identities will hold for the R;, 4, S; and s; vectors and matrices
R: 8i=10] [0} is a matrix of appropriate order
Risi=di i=kc.ab
Following the terminology of Magnus (1988), when di=[0},i=k,c,ab, the
K, C, A, B matrices are called L-structures ({inear structures); whercas whend; # [0] they

are called gffine structures.

7 Ses for example Sargan (1988).

8 The number of rows of the §; matrices is obviously n* and the number of columns is
% minus the number of rows of the corresponding R; matrix.






2 Idenhﬁcallon analysis and FILM.L.

The K-model! is completely defined by the following equations and distributional
assumptions:;

Ke=e
£(e) =[0] E(ee’) =1
& ~IMN ([0, ) det()#0

(&4, the vector of the VAR model disturbances A(L) y: = gy, is a Gaussian vector white
noise, i.¢. a vector of independent multivariate normally distributed variables with an
associated positive definite variance-covariance matrix).

A
All the sampling information is contained in the ¥ matrix:
A A

A vy
=77

A
The Z matrix can be viewed as the unrestricted estimate of the variance-covariance
matrix of the disturbances of the "reduced form™

All) yr=¢&
The corresponding log-likelihood function of the K-model for the parameters of

interest (the n® parameters in the K matrix) is

) L(K)=c+TloglKl-%'tr(K"K§)

1 Hereafter we will drop the i index (i = &, ¢, 4, b) 0 R, d;, ¥i, s; matrices and vectors
unless ambipuity arises.

11



With respect to this function, the associated density function and the "structural”
parameter space, we will assume that all the usual reguiarity conditions hold - as quoted
in Rothenberg’s fundamental paper on identification (1971).

The conditions

KIK =Ip

obviously introduce a set of non-linear restrictions on the parameter space.
Therefore, in general, we can obtain only necessary and sufficient conditions for local
identification of the parameters in the X matrix as opposed to global identification?.

Moreover, we are interested only in the joint identification of all K matrix parameters
(in the sense of Wegge (1965), we are interested in the identification criteria of a system
of equations as a whole) and not in the "isolated" identification of a proper subset of
parameters of the K matrix’.

In order to achieve identification we will assume that the parameters contained in
the K matrix will satisfy the set of independent, non-contradictory, non-homogeneous
linear restrictions stated in implicit form as follows

4] RvecK=d

where R is a rxn® full row rank matrix and d is a possibly non zero rx1
vector, or in explicit form

€))] vecK=8v+5

where S is a 5 full column rank matrix with [ = % —r, s is a nx1 vecior

and
RS=[0
rd
2 See Rothenberg (1971), p. 578.
3 In Structural VAR Econometrics all the equations of a structuralized VAR are used

together, thus "isolated” identification of a proper subset of the parameters in
question is practically of no interest.

12
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Rs=d
rxl

Following Rothenberg (1971), in order to geometrically analyze the local
non-identification situation in the absence of a-priori information contained in (2) or (3),
we will compute the information matrix (the sample information matrix) of the
vectorized elements of the K matrix, without taking int account the set of linear
restrictions (2) or {3).

For this purpose we shall compute the vector of partial first derivatives of the
log-likelihood function with respect to vecK (the "score” vector) and then the Hessian
matrix of the log-likelihood (always with respect to vecK). From this last expression we
can now easily compute the sample information matrix.

Taking into account the symbols and notations presented in Appendix A, the score
of the likelihood function is (see Appendix B for calculation)*

ar

avecKzf’ (vec K) f (vecK)isa 1xn? row vector

A
£ (vec )=T &Y —T(vec Ky E®1)
or equivalently (see Pollock 1979), taking into account that

; (A =fvec (AN
: A
£ vec K) = T[vec(x')‘q - Tvec KY (E® 1)

obviously the first order conditions for maximization of the likelihood function are

f(vecK)y= 1[0]
(Ixn)  (1xd)

4 In order to simplify notation, the /» identity (nxn) matrix will hereafter be
substituted simply by /. Identity matrices of different orders will be indicated
with their proper corresponding index.

13




in row form, or

' vec K)) =f(vecK)= [0]
(n*x1) (731 (n®x1)

in column form.
Again referring to Appendix A for notation rules and to Appendix B for calculation,
the Hessian matrix of the log-likelihood with respect to vecK is defined as
Fr 2 ar Y

@vecK)(@vecK) dvecK|dveck |’

The resulting Hessian can be written as
Fe

H (vec K)= a(vec K) o(vec K)'

The sample information mairix of the elements of vecK (without taking into account

the set of linear restrictions on this vector) has two equivalent definitions for "regular”
likelihood functions

—T{k ek ) @+ 28 1)

* IT (vec K) = E [- H (vec K)]

(**) It (vec K)=E [f (vec K) - f" (vec K)]
Following (*) and taking into account that

E@=@ K =k iyt

I (vec K) = r{ [xlewy @+ [« & ']® 1}

and the properties of the commutation matrix ®(see Poliock 1979 and Magnus 1988)
for A, B square matrices of order n

(A® BYD =08 ® A)

we can write

TR =Tk 'en®®& ‘en+ &' enE ' &n
and finally

14




Irec Ky =T{& ! @ N 12 +®@) (& @ 1)
The corresponding asymptotic information matrix
{ (vec K)=plim 51:{1" (vec K}
T—too
will simply be:
IpecKy={Ex @n (12+®) & @D

The sample information matrix and the asymptotic information matrix are of

nixn’ order; it is easily seen however that in cur case these matrices are singular, their
rank being equal to ®(r+}s,

Since (X' @/) and (K" ®) are invertible marices, the rank of /7 (vecK) and
I (vecK) is equal (o the rank of
R2+®

Using Magnus notation and results’ (1988) we define:

“Llg2
=35 Ux+®)

obviousty® 7 (Nn) = r(I* + &), but N is an idempotent matrix’ with rank (1},
Assuming that the “true” value of the vector of parameters vec(Ko) is a regular point
of the information matrix /7 (vecK) (in the sense of definition 4 of Rothenberg 1971, p.

579), and on the basis of Theorem 1 in Rothenberg (1971) which states as necessary and
sufficient condition for the local identification of vec(Kg) the non-singularity of

IT (vec Ko)

5 See Magnus (1988) p.48. In our notation the @ matrix replaces Magnus's K s
commutation matrix.

6 As usual, r(A) stands for the rank of matrix A.

7 From the property of the P matrix, @ - @ = [,

15




we can assert, in view of the singularity of

IT(vec K)
over all the (admissible) parameter space, that vec(Ko) is unidentifiable.
In order to get necessary and sufficient conditions for the local identification of the
complete vector vecK, we must re-introduce our a-priori information contained in
R (vecK)=d
which has thus far been overlooked.
Following Rothenberg (1971) and taking into account that, since the last set of
constraints is linear, the Jacobian matrix of the partial derivatives of the system of
constraints with respect to vecK is simply R, we can construct the following matrix

Vr (vec K) =[ Ir (v;c ) :l

or equivalently
V (vec K)___[I(v;c K) :l

These two matrices are of (,,2 + r)xrx2 order.

Following Theorem 2 in Rothenberg (1971) and assuming that the “true" vector
vec (Ko) 1s a regular point (in the sense of Rothenberg) of V7 (vec K) and V (vec K), a
necessary and sufficient condition for the local identification of vec(Ko) is that the rank
of ¥ (vec K) or V (vec K) evaluated at Ko be nZ.

In other words, the V7 (or V) matrices evaluated at vec Kp must be full column rank
matrices.

This necessary and sufficient condition is very difficult to verify in our context. We
will then try o attain more tractable conditions which are still absolutely equivalent to
those of Rothenberg’s Theorem 28

8 In cur context I1{vec K), I {vec K) are matrices of constant rank ~(*+1}2 over the
admissible parameter space (looking af the information matrix, the
admissible space is also constrained by the invertibility of the K matrix). We

16




Looking at V (vecK) "augmented” matrix
: 1 ~1
R
we can operate as follows:

the rank of V (vecK) is left unchanged if we premultiply and postmultiply this matrix
by arbitrary non-singular matrices, obviously of the appropriate order.
If V (vecK) is first premultiplied by the block-diagonal matrix

1 &®n o]
2 [0 21

and then postmultiplied by
Ken

the following (n + r)xn® matrix is obtained

Nn
R(K'®)

Under the condition that K"®/ is an invertible matrix {i.e. thar K must always be an
invertible matrix), this matrix is of the same rank as Vrand V.

The condition of full column rank (nz) of this matrix is equivalent to the condition

that the following homogeneous system of (1»;2 + r) equations in (nz) unknowns

Nn

has only one admissible solution y = [0].
2
nxl

can heuristically find a necessary condition for identification: taking into
account the rank of matrix [ (vec KX), one necessary condition is that it be
"augmented” by at least a(~—1)2 independent rows. In other words, a
necessary condition for identification reads as follows: r, i.e. the number of
restrictions over vec K, must be greater than or equal to ni=1)4,

17



This system can be split into two comnected systems of equations

C) Nny=[0]

5) R (K@D y=[0]
System (4) has n? equations in »” unknowns. System (5) has r equations in n®
unknowns. The two Systems are connected because they share the same n? unknowns.

In order to find closed formulae for the identification analysis we can now proceed
in two ways: i) the general solution of system (4) is found and inserted in system G)or
if) the general solution of system (5) is found and inserted in system (4).

The former way will be followed” .

Considering system (4) and looking for the general solution of this system of
equations we will follow Magnus (1988).

The vector representing the general solul:ibn of system (4) can be represented by
y=Dnx
where the D matrix, defined in Magnus (1988), pp. 94-5, is a full column rank matrix
of n?xn+-13 order and x is a *(*1)5 vector of free elements.
The 5,. matrix’s characteristic is that for every vector x (with real components) it
generates the vectorized form of a skew-symmeiric matrix (say W, W = — W) of order
i
n.
y=vecW= 13“ X.

We can easily check that thisis a solution'® of system (4) remembering the property
of the commutation matrix @' and that for a skew-symmetric matrix

9 The alternative has the advantage to lead to more "parsimonious” conditions for
identification, which, however, are more difficult to interpret.

10 This sofution is also the general solution by virtue of theorem 9.1 of Magnus
(1988), p. 146.

it @ vec A = vec A’ for A(nxn)

18




Rl s G

vecW=—vecW

so for
1.,
ani(ln +®)
Nn 5nx=Nn vec W:%—(I,,2+®) vec W=%(vecW+®vec W)

=%(vec W+vecw‘)=%(vec W —vec W) ={0]

Having found the general solution of system (4), we can insert it in system (5),
amriving at
(6) R’ ® 1) Dnx=[0]
Assuming the invertibility of the K mairix, the necessary and sufficient condition for
identification of the "true” value vec(Ko)12 can be wholly derived from system (6) and
can be stated in two equivalent forms:

2)Condition for identificati
Assuming the invertibility of the K matrix, the true vector vec{K) is locally identified
if, and only if, the matrix

R(K'®D Dn
evaluated at K¢ has full column rank “*1)5

byCondition for identificat
Assuming the invertibility of the K matrix the "true” vector vec (Kg) is locally
identified if, and only if, the system

R(K'® 1) Dax=[0]

12 Obviously, the "true” vector vec (Ko) must satisfy the constraints R veck = d.

19



with the matrix R (K'® I) Dn evaluated at Ko, has the unique admissible solution
x={0].

In practical applications, condition a) can be used and numerically checked
remembering to use )

vecK=8§v+s

and assigning “casual" numbers to the ¢lements of the y vector in order to insert a -
"proper” matrix in the (X* ® I) nucleus of the formula.

The numerical check of the condition does not contribute much to understanding the
role and working of different typical constraints.

In appendix C condition b) is used for the rather tedious symbolic analysis of a
number of interesting cases. _

Having assured the local identification of our vector of parameters, we can now move
on to the estimation stage. In this context, it can be easily conducted using FIM.L.
techniques; the namral algorithm on which we can concentrate is represenied by the
"score algorithm".

In order to avoid using Lagrange multipliers, the restrictions

RvecK=d
will be used in the connected explicit form
vecK =S8 v+ .
Using the chain rule of differentiation we can look at the score vector for the free

elements contained in the vy vector,

wr 0L dvecK dL
I =5eck dy Odveck

Fi)=FvecK) S= %n

The first order condition for the maximization of the log-likelihood with respect to

Y are:

f'(vec K) § =[0]
1xt
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in row form, or

A7) =5 fveck) = [0]

il

in "column" form. Taking into account that

vecK=Svy+s
is an affine function of ¥ we can use Theorem 11 by Magnus and Neudecker (1988,

p.112) in order to find the Hessian matrix of y

32 ()

Yoy’
This expression clearly indicates that the sample information matrix of the parameier

=S H(vecK) S

vector v is simply
It =5 Il(vecK) S
and the corresponding asymptotic information matrix is
I(Y)=5 Kvec K) S.
One can easily understand that the two latter matrices are invertible whenever the
identifiability conditions are satisfied. The information matrix /7(y) and the score vector

J¥) can be used to implement the "score algorithm" and find a EIM.L. estimator of
vector ¥ (say ¥). Once the vector is obtained, we can get the FIM.L. estimator of

vec K (say vec IZ’) using

vecE=S?+s

The scoring algorithm for ¥ is based!> on the following updating formula:

Yotl =Yn +[IT (*/n)T1 J¥n).

Choosing the starting recursion values with great care, we can assume a consistent
estimate (¥) of the "true” y value () has been obtained.

13 See for example Harvey (1990) p. 134,
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Inserting this value in the information matrix we can immediately get the estimated
asymptotic variance covariance matrix of ¥

1
Aar TG -7 =1F" = [ph’m % Ir (?)T
T—en .
From this matrix we can get the estimated asymptotic variance covariance matrix of
vec K through the Cramer linear transformation theorem*:
Avar[NT (vec K- vecK)i=S I(i?)_l 5
under the hypothesis introduced, obviously
~ 1 -1
Y~ANy 1.2 I0)
and

vecK~AN {vecx{ —,11; Syt s’]}

Having obtained the FI.MLL. estimate of vec X, vec K we can reorganize it in matrix

form geting the F1.M.L. estimate of X (say I?) From this matrix and taking into account
the expression
L=(KK!
we can get the FLM.L. estimate of the (possibly) restricted variance covariance
matrix of reduced form disturbances, &

AlL) yi=&
through

14 See for example Theorem 4 Sargan (1988), p. 5.
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A
In the case of over-identification, this matrix will not be equal to Z, Looking at the
log-likelihood function

A
L—-—c-—%logiﬂ-—%tr(flz)

s ~—
and replacing ¥ with Z and & where appropriate, we can easily construct a test of
over-identifying restrictions

s ~
LR=2 (Z)-2 4T}
This statistic under Hp (the hypothesis of validity of the full set of identifying

~estrictions) is % distributed with a number of degree of freedom equal to the number
of over-identifying restrictions'>,

15 Looking at Appendix C, great care should be used to find the "true” number of
over-identifying restrictions.
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3. Identification Analysis and FIM.L.
estimation for the C-model

The C-model is completely defined by the following equations and distributional
assumptions;

a=Ce C square of onder n.
E(er) =[0] E(ese’)=1In
&~IMN([0,Z) detT =0

A
All the sampling information is contained in the ¥ matrix
A A A
vy
Te—m—
T

AN
where, again, the ¥ matrix can be viewed as the unrestricted estimate of the variance

covariance matrix of the disturbances of the reduced form
ALy yr=%&
The corresponding log-likelihood function of the C-model for the parameters of

interest (the n° parameters in the € matrix) is
T vl g
H £(C)=c—-710giCI—-2-rr(C’ C L)
This log-likelihood function can be writien as follows
T A
(L.b) £(C)=c+TloglK1—Etr(K' KZI)

with K=CL,
We assume that all the usual regularity conditions (see Rothenberg 1971) hold for
this function, the associated density function and the "structural” parameter space.
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The conditions £ =C ¢ introduce a set of non-linear restrictions on the parameter
space, therefore, in general, we can obtain only necessary and sufficient conditions for
the local identification of the parameters in the C matrix (as opposed to global
identification).

In order to achieve identification, we will assume that the parameters contained in
the ¢ matrix will satisfy the following set of independent non-contradictory,
non-homogeneous linear restrictions stated in implicit form as

(2) Revec C=d;

where R is a rxn® full row rank matrix and dc a possibly non-zero rx1 vector. In
explicit form

3) vec C=Sc Yo+ Se
where S is 2 n%xd full column rank matrix with / = n? —r,and 5. is an’x1 vector, and

ReSc= [O]
r<d

ReSe= dc
rxl

In order to geometrically analyze the local non identification situation in absence of
the a-priori information contained in system (2}, we will compute the information matrix
of the vectorized elements of the C matrix, without taking into account the set of linear
restrictions (2) or (3).

Using the chain rule of matrix differentiation and the two equivalent definitions of
the information matrix

fr(vec C)=—E [H (vec O} =E [fvec C) - f'(vec C)]

we can bypass the direct calculation of the Hessian matrix with respect to veeC on

the basis of the following considerations.

The score vector of the log-likelihood with respect to vecC can be obtained from the
score vector of the log-likelihood with respect to vecK on the basis of the following

formula
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dL(C) dL(C)dveck
dvecC dvecK dvecC

remembering that c=x1 k="

dL(O) .. dveck
awecC'_"r (vec K) dvecC

50

9L) . (el
dvecC f' (vecK) (C' ®C_)

But
IT (vecC) = E [fvecC) - f(vecC)]
17 (vecC) = (C™'@C ™) E [fveck) - (weck) (¢ ToC ™)
I7 (vecC) = (C"l &C’ _l)ly(vecK) (c’ “ig¢ -t
Remembering the /T (vec K) formula and C = k!
In(vecC) = (C“@C' ‘1) retonue+® « 'on) (c’ "1®C‘1)
IT(vecC) =T [UQC ™Y (2 + @) (RC Y]

I (vecC) = piim ILJT {vecC)

T—o
1 (vecC) =(I®C ™1y (12 + &) URCH).
The sample information matrix fr (vec C) and the asymptotic information matrix are

of n*xn? order but it is easy to see that up to this point these matrices are singular, their
rank being equal to ~(*+1)%,

Since (/®C’ 1) and (J®C™Y) are invertible matrices the rank of I (vec C) and
I (vec C) is equal to the rank of

12+
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and equal to the rank of
1 2
N,,=—2-(1,, +).

We assume that the "truc" value of the vector of parameters (vec Cp) is a regular
point of the information matrix /7 (vec C), in the sense of Definition 4 in Rothenberg
(1971). Theorem 1 in that same paper indicates the non-singularity of T (vec Co) as the
necessary and sufficient condition for local identification of Co. Since 1 (vec Co) is
singular, then vec Co is clearly unidentified.

Introducing the constraints
RevecC =d;

and taking into account that, given the linearity of this set of constrainis on vecC,
the Jacobian matrix of the system of constrainis is simply Re; following Rothenberg
(1971) we can construct the partitioned matrix

trie =] 7020 |

of, equivalently, the matrix

V (vec C) =[ i (v;cC) ]

These two matrices are of (n2 + r)xn2 order.

Following Theorem 2 in Rothenberg (1971), assuming that the "true” vector
vec Co is a regular point (in the sense of Rothenberg’s Definition 4) of Vr (vec Co) and
V (vec C), a necessary and sufficient condition for the local identification of vec Co is
that the rank of Vr (vec C) or V (vec C) matrices evaluated at Co be .

In other words, the V7 or V matrices evaluated at Co must be of full column rank.

In order to find more tractable conditions, we shall operate on the "augmented”
V (vec ) matriz, exactly as we have done for the K-model.

Let us ook at the V (vec C) "augmented” matrix:
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(oc Hawtech

V(vecC)=[ R
c

It can be first premuliiplied by the block-diagonal matrix

L} (1®C) [0]
2| (0] 2k

and then postmultiplied by
(I®C)

arriving at the following (n2 + r)><n2 matrix

Nn
Re (I8C)

which has obviously the same rank as the V7 (vec C) or V (vec C) matrices.
Following the same argument used for the K-model we can look at the system

[ R 1%C) }y = (0]
trying to discover under which conditions it has the only admissible solution
y=[0L.
The system can be split in two connected systems of equations:
@ Npy=[0]
(5 R:(I8C)y=10]
Sill by virtue of Theorem 9.1 in Magnus (1988), the general solution of system (4)
is
y=Dnx
This (general) solution inserted in system (5) leads to
(©) Re (I8C) Dy x=[0).
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Assuming the invertibility of the C matrix, the necessary and sufficient condition for
identification of the “true” value! vec (Co) can be derived looking solely at system (6)
and can be stated in these two equivalent forms:

a)Condition for identification: assuming the invertibility of the C matrix, the "true”
vector vec (Cp) is locally identified if and only if the matrix

Re (i8C) Dn

evaluated at Cp has full column rank 1%

b)Condition for identification: assuming the invertibility of the C matrix, the "true”
vector vec(Co) is locally identified if and only if system

Re (I1®C) Dn x= [0]
with the matrix Re (J8C) D evaluated at Cp, has the unique admissible solution
x=[0].

In practical applications condition a) can be used and checked numerically’
remembering to use

vecC =S8 ¥ + 5S¢
and assigning "casual” numbers to the elements of the yc vector in onder to insert a
“proper” matrix in the (/&C) nucleus of the formula.
The numerical check of the condition do¢s not contribute much to understanding the
role and working of different typical constraints.

in appendix C, using condition b), we will propose a symbolic analysis of some
interesting cases.

Having assured the local identification of our vector of parameters, we cannow move
on to the phase of its F1.M.L. estimation. Still trying to avoid using Lagrange multipliers
technique, we will use the following restriction expressed in explicit form

veel = SC Yc + Se

| Obviously, the “true” vector vec(Co) must satisfy the constraints R vec C=d.in
implicit form or vec C =S¢ Y + 5¢ in explicit form.
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using the chain rule of differentiation we can find the score vector for the vector of
the "free” elements Yc:

F) = dL dvecK dvecC _
)= 5 veck 3 vecC Y

=—f"(vecK) (C’ "1®C_1)Sc =f’ (vec C) S¢
The first order condition for the maximization of the log-likelihood with respect to

‘Yc are.:

() =f" (vec C) S =10]
Id

in row form, or

f¥e) =8¢ fivee ) ={0]
b

in column form,

Taking into account that
IT00) =E[ ) - /() | = S [ AvecC) - f"(vecC)] S
() =S [IT vecC:I Sc

and obviously

1

T [T (‘Yc) =Sc’ {I Veccl Sc.

1(Yc) = plim

T

Using the information matrix /7(y.) and the score vector f{yc) we can implement the

score algorithm in order to find a FLM.L. estimator of ¥ (say ¥.) using the following
updating formula:

-1
(Yedne1 = (Yoin + [IT ('Yc)n] A¥e)n
At the end of the recursion, once arrived at ¥, we can immediately obtain the FIM.L,

estimate of vec C, say vec E, using

vecC =Sc Yo+ 5c
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By inserting the ¥ value in the information matrix we can immediately get the
estimated asymptotic variance covariance matrix of ¥;:

-1
AbartNT ()} =10 = [ptim -%WC)]

ard from this matrix through the Cramer linear transformation theorem to

AVar[NT (vecC — vecC)) = Sc K%y L S
Again vecC is asymptotically normal distributed as

vecC ~ A N[vecC, % Sec I('y)_lsc’]

Once we have obtained vec(E’) we can reorganize this vector in matrix form arriving

at C (the FEIM.L. estimator of matrix C). From this matrix, taking into account the
expression

L=CC

we can arrive at the F1.M.L. estimate of the matrix of (possible) restricted variance
covariance maitrix of reduced form disturbances, e,

A(L)yi=¢:
through
I=CC.
In the case of over-identification this matrix will not be equal to the unrestricted
A
estimate of T, Z,

Again looking at the log-likelihood function

Fal
L=c—32r&ogm—-2zn(f1 )

— A
and replacing I with X and % where appropriate, we can easily construct a test of
over-identifying resirictions
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A ~
LR =2 4Z)~2 LT).
This statistics under Hp (the hypothesis of validity of the full set of identifying

restrictions} is xz distribated with a number of degrees of freedom equal to the number
of over-identifying restrictions?.

IR Sk

2 Great care must be used in order to find the true number of over-identifying
restrictions.
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4. Identification Analysis and F.LM.L.
estimation for the AB-model.

The AB-model is compietely defined by the following equations and distributional

assumptons

AE=Be A and B invertible matrices of order n
E(e) =[0] Elew'’s) =1
e~ 1 MN ([0, 2) CdetZ#0

AN
All the sampling information is contained in the Z mairix

O
b=

The corresponding log-likelihood function for the parameters of interest in the

AB-model (the 2n° parameters in the A and B matrices) is

T (rmr—lp-1s0
(1) £(AB)=c+ Tlogial ~TloglBl - ~u(A'B' '3 Az)

We can write this log-likelihoed also in the following form
T A
(1b) L(A.B)=c+TLogLK1-—§tr(K’KE)

with K=B" A,
We assume that all the usual regularity conditions hold for this function, the
associated density function and the "structural” parameter space.
Again the conditions

ATZA'=BF
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naturally induce a set of non-linear restrictions on the parameter space (that now is
2
a subset of R ) so, in general, necessary and sufficient condition can be obtained only
for local identification.

In order to achieve identification, let us assume the parameters contained in matrices

A andBa:esubjecttDMQse!sofsgmconsuaimsl.

(2a) RavecA =dg
(2b) RpvecB=dp

or, in more compact form

@) Rz [0] || vecA - dqg
[0l Re || vecB dp
where Rgisa ra><n2 full row rank matrix and Rpisa .nf.xn2 full row rank matrix while

dq is a rgx1 possibly non zero vector and dp is a rpx1 possibly non zero vector.

In explicit form we have

(3a) vecA =8a Ya+ Sa
(3b) vecB = 5p Yo+ 5b
or in more compact form

vecA| | Sal0]|| Y= Sa
o [alHas]xE
where Sg is a n®xlz full colomn rank matrix with [z = 7% — rq and sq is a 721 vector,

Spisa nleb full colomn rank matrix with I = n® - rpand spis a n*x1 vector and

RaSa=[0] Ry sa=dg
Foxda

Ry Sp=[0] Rp sp=dp.
rpxlp

1 In the following we will not examine the case of cross-restrictions on A and B
parameters taken together.
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In order to geometrically analyze the local non identification situation in absence of
the a-priori information contained in system (2), we will compute the information matrix
of the vectorized elements of the A and B matrices following this pattern of vectorization:

vec[A | B] =[ :zig ]

without taking into account the set of linear restriction (2) or (3).
Taking the following expression, we have

k=B7'a
and calculating the differential

dk=dBHa+Blaa
taking into account that (see Magnus and Neudecker 1988) the differential of 481

is equal to

d'=—(8las g

we have
_ gl -1 -1

dK=-B"dBB hA+B a4
which can be written in the following form

dk=5"da+[- (B am B 4)]
Using the vec operator we get

dvecK = (1 ® B™Y) dvecA — (A" B ® BY) dvecB

or, in partitioned matrix form

_ 1y | _oar ol g po13][ dvecA
dvecK_[U@B )| -wres )][dvecB]
This expression can be used to write the correctly defined matrix of partial
derivatives (following appendix A usual notation rules)
d vecK

vecA
vecB

@) [uesh|-wrles™)

37




where (see Magnus and Neudecker 1988, p. 176),

dvecKk | dvecK | dvecK
5| veca “| 9 vecA | 3 vecB
vecB
$0

dveck _ -1

) dvecA UBE™)
dveck  prlon-i

© dvecB (W88 )

Remembering the chain rule of differentiation we can write

0LAB) dL dveckK | vecA
3 l.vecAJ T veck {Egij 7 | vecB

vecB vech

So the "score” vector of the log-likelihood function can be obtained in the following

way

f,[vecA] =f (vecK) - d veck
d

TR e

vecB vecA
vecB
f[:zz‘;] =f' (vecK) - [(1@ B‘l)[ (A’B’_1®B'1):|

in row formn, or

vecA (8} '
fI:VeCB] = [_ (B—l A® B’_l)]f(VGCK)

in column form.

The information matrix calculated with respect to the (Zn?‘xl) vector [vzcg] )

vecA vecA .| vecA
I = Yeca ) po| Yeeo
Tl:vecB] E{f]:vecB] f |:vecB:|}’

can be calculated on the basis of fr (vecK) using the following expression:
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vecA | Iy -1 ¢ prl ol
Ir[vechl-l:“(B_lA®B’_1):’17(vecK)[(1®B )I—-(A Blen )]

From K=B1'a

wecanwrite K =A"B"}
Kl=4B
kt=pat
and remembeting that
Ir vec k) =~ T-[K 81|42+ B [ 7 ®1]
after some substitutions we can arrive at

veer|  [xl@ps ]| L .

The asymptotic information matrix, as usual, is

I vecA | _ !iml I vecA
vecB g_”T vecB

the matrix = 1 [1@] can be written in the following equivalent form

2 | vecB

2| vecB {0

1 [veca] k@8~
B Nn (01

&] [zrlmrl

(0] [y_g [0]
—(I®B L) |{ Vn —(I®B7])

This matrix has the same rank as matrix

Ny | N
Nn |Nn

obviously equal to the rank of N and so equal to "r+hs,

Taking into account the systerm of linear restrictions (2):

Ra |[0] [fvecA | _|da
(0] | Rp | vecB| | db

its derivative is simply
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Ra 1101
01 [ Rs
On this basis we can construct the "augmented” information matrix (following
Rothenberg 1971)

I} vecA
vecA:I vecB

vecB| | Ra |[0]
[O] | Re
where
[vecA]_ K'ep | 0] ][Ne|Na][K@B| [0
vecB |” [0] —(I®B'_1) n | Nn [01 —(f@B_l)

Using the usual trick we can premultiply by the block-diagonal invertible matrix

kop' | o] |01} o
110 |=p@B7| 101 | [0}

21_[0] [0] {21} 10
(0] 01 | 0] (24,

and postmultiply by the block-diagonal invertible matrix

K'®B |_[0]
[0 | @8]

arriving at the equivaleni (ie, same rank) matrix

Nu|Na -
vecA | Nn i Nn
vecB | | Ra(K'®B) | [0]
[0 Re{[®B)
From the property of the N mairi 2

Np (ABA) = Nn(A®A)Nn = (ABA)N,

2 See Magnus (1988) p. 49, property (IV).
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if we postmultiply V* [:ﬁi’;‘} by the following matrix
[(B®B) (0]
0] (B'®B)
by virtue of the fact that
(Na |Na|[@®B) (01 |_[@®B) (01 ][Na|Na
Na |Nafl 01 &®B)|T| [0 ®B) (N N’

premultiplying by the block-diagonal invertible matrix

B lep~t| 101 |01} [0}
o |8 'eeti[0]] 0}
[0} [0 | I | 0]
© | O [0

we arrive at the following equivalent matrix:

Na | Na
« | VecA _ Nn | Nn
[vecB]“ RAA'®BE) | (0]
U '

Ru(B'®BE’)

The V, V' and v** matrices are obviously of the same order (Zm2 +ra+ rb):(?_n?' and
have the same rank.

In order to obtain a necessary and sufficient condition for identification we must
look for the rank of this matrix (the necessary and sufficient condition for identification

YvecAQ
vecBo

is, as usual, that this matrix evatuated at the "true" value[ ]has full column rank

2u2).

Following arguments similar to the ones used for the K and C models, we will look
at the system

Na

Nn

Ro(A'®BB)
{0]

Na
Nn

[0}
Re(B'®BB)

y=10]
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v [ff;—g] y=[0]

whereyisa 2’1 column vector.

In order to find the necessary and sufficient conditions for having y =[0] as the
unique solution of the system, we can split the system into two connected systems
Nn

Na
M I:J\Tn ﬁ;jl)'=[0}
Ra(A'®BB) | (0] ..
[ [0] ]ms’@am]” =0k

Now, let us suppose that the y vector can be written as

e
2nx1 v

where z and v are n2x1 column vectors.

8

The two connected systems of equations (7) and (8) can be written as

Npz+ Nav=[0]
M {N,.z+N,,v= [0]
® Rz (A'®BB’) z=[0]
Ry (B'®BE) v=[0]
looking at (7) we can see that

Nn(z+v)=[0]
is the only non-repeated matrix equation.
The general solution of this equation is

z+v= Dn p
nzx"(ﬂ-l)‘g

I+v= vecW:ﬁnx,
where W =W is an arbitrary skew-symmetric matrix.

By substituting in (8) we arrive at the two connected systems of equations
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o Ra (A'®BB’) 2 = [0]
) Ry (B'®BB) (Dnx—2) = [0]

System (9) is a homogeneous system of 74 + rp equations in a° + A1} unknowns".

A necessary condition for local identification is obviously that rg+ rs 2 Rl A
necessary and sufficient condition can be stated in the following way:

Assuming the invertibility of the A and B matrices, the "true” vector

vecAo
vecBo

is locally identified if and only if the system

Ra(A'®BB’) z=[0]
Ry (B'®BB’) (Dnx—12)=[0]

evaluated at Ap and Bo has for x and z the unique soiution:
x=[0]
z=[0]

Looking for conditions that can be easily numerically checked, we can take the first
matrix equation in the preceding condition

Ra (A'®BB) z=10]

and look for its general solution which is simply
z= (A‘1®(BB')‘1) Sa-t

for every t.

We can now insert it in the second equation

3 n* unknowns for z and = (1% for x respectively.
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Ry (B'®BB’) D x— [A ‘1®(BB')“] Sa-t=[0]
and for B and A satisfying

vecA =Sq Ya + Sa

vecB =S8y yp + s5p

we can check whether the systern

Ry (B'®BE) {Dx

. X
Le., 4:?] ={0}

with Q= Ry (B®BB) (D | [4™'@(88) ] 52}

-[ae@sy]sd) [f] =[]

has the unique solution l}] =[0] or equivalently whether the Q matrix properly

constructed with "casual” values for ¥z and 1 is of full column rank.

In appendix C, using the condition stated above, we will propose a symbolic analysis -

of some interesting cases.

Now, having found the condition for local identification, we can move on to the
problem of FIM.L. estimation of the parameters through the score algorithm,
remembering the restrictions on A and B in explicit form

vecA = Sa Yo+ 5a

vecB = Sp1p+ 5b
vecA | _| Sa (0] || Ya 4| fa|
vecB || [01 Sb {| T syl

using the chain rule of differentiation

ﬁq_ JvecAl[ 3  {vecaAl)
f{ya f_vecB_ 3 Ya | { vecB B

b
ﬁ__ TvecAl Sa [01_
7 {-n, =f _vecB_{[O] Sb |

.

. -

|

B TR




or in column form:
Ya|_ 5a{0] vecA
f [Yb}-[ [015° b}f[vecB]
taking into account that the information matrix /1 (%J
Ya Ya Ya
n=l=E4f 2112
(=13
¥l §al0] I vecA || Sq [0
Yo | | [0188|"| vecB {| [O] Sb
and obviously the asymptotic information matrix

Ya|_| §al01] ) vecA || Sa[O]
Yo | [01S| | vecB || (0] S»
using the information matrix 11{%} and the score vector f (%J we can implement

the score algorithm in order to find ELM.L. estimates of (—Yé} say (%z-} using the usual

updating formula

FL AL L

at the end of the recursion we can immediately obtain the FIM.L. estimates of
vecA sa vecA usin
vecB [ 5 vecB g

vecA]_[ Sa(01)[ %], [2a
vecB |~ | 0] S5 || Y Sk

Inserting the ¥az, ¥» values in the information matrix lr[-%} we can immediately

arrive at the estimated asymptotic variance covariance matrix of vector [‘15}
Yo

(R
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and from this matrix through the Cramer linear transformation theorem to

~ e 1
A vecA) (vecAlll _| Sa[01},|Ya 5’2 (0]
Am’{ﬁ[(;;c_ﬁ]u (vecB _[ [0] Sb] I[%I [ [01§ b]
vecA

and [@J is asymptotically normally distributed as

-1
vecA | anilrecA| 11 Sa (01, Ya Sal0]
vecB vecB|'T| [0 So | | [015s
Once obtained the EI.M.L. estimates of A and B, A and B, we can calculate the
FIM.L. estimate of X:
F-AlFF A
and in the usual way calculate a test for the over-identifying restrictions
A ~—
LR=2 [(T)~2 LX)

distributed under Ho as a x~ with a number of degrees of freedom equal to the number
of over-identifying restrictions.




5. Impulse Response Analysis and
Forecast Error Variance Decomposition
in SVAR Modeling

5a. impulse Response Analysis

The technique of impulse response analysis was first introduced in VAR modeling
by Sims (1980).

The need of analyzing an incredible number’ of impulse responses is one of the main
drawbacks of "usual" impulse response analysis.

In SYAR modeling, once that a "structure” is identified and estimated, we are left
with only one namral structure for our variables, 50 we need to examine only rixa impulse
response functions (r impulse response functions for each independent shock).

Another preblem with "usual” impulse response analysis is that impulse response
functions can rarely be provided with property constructed confidence intervals®.

On the basis of recent works by Liitkepohl (1989, 1990) for the "usual” impulse
response analysis, we can obtain the asymptotic distributions of such functions for SVAR
models.

1 If one has a VAR model for n variables, s<n! impulse response functions should be
analyzed; ie, nx all the possible fully recursive structures. a! is in fact the
number of all the possible different Cholesky decompositions of the variance
covariance matrix of VAR residuals for all the possible orderings of the
variables.

2 The RATS package offers the opportunity to calculate impulse response confidence

bounds through Monte Carlo integration technique, but bootstrapping can be
used for the same purpose.
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Before moving to our proposal we must stress that SVAR modeling has an original
drawback, which derives from VAR modeling and which structuralization cannot

overcome.
VAR Modeling is not a parsimonious modeling, by which it is meant that VAR
models are usually over-parametrized. When confidence intervals are calculated (with

Monte Carlo, bootstrapping or asymptotic methods) taking into proper account VAR
parameters uncertainty, very large (see Runkle 1987) confidence intervals around the

caiculated impulse responses should hardly be a surprise?'.

There are several possible ways to correct the intrinsic over-parametrization of VAR
models* but we will not discuss this topic any further here.

Once we have obtained consistent estimates of the parameters in the X, C, A, B
matrices for the corresponding models, usual asymptotic properties assure convergence
in distribution on the following vectors: '

_ d
(K-model) NT(vecK —veck) > N [[0}, Ek].
a consistent estimate of Xy is given by
Te =Sk 1@)’15" 5
y d
(C-model) T (vecC — vecC)y 5 N [{0], zc].
a consistent estimate of Z. is given by
Ec =8 I('i"c)—lus"c;
't d
vecA vecA
(AB-model) ‘/T[[EE]— [@]] =N [[0]- Eﬂb]a

and a consistent estimate of Zap is given by

L TR e s Lt

3 In addition to Runkle’s (1987) paper see also its comment by Sims - interesting as
ever - in the same issue of the joumal.

4 For a possible "atheoretical" personal sotution sce Giannini-Mosconi (1987).
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e 1] (@5
In what follows we will use the following theorem (see Serfling 1980, p. 122)°.

Theorem: Suppose B is a (nx1) vector of parameters and B is an estimator such that

d
NT(f - B) — N ([0], )

d .
where — denotes convergence in distribution.

Let g(B) =[g1(ﬁ), 24P ..., gm(ﬁ)] ’ be a continuously differentiable function with

values in the m-dimensional Euclidean space and gf; I:gg;, , gg;

]benonzemat

Bfori=1,...,m Then

VTig) - g®)1 - N[[oz. 22598
dp (B
ap
On the basis of this theorem we can calculate the distribution of vecﬁ" where
K=F'4amdK =BA

(where -—&ls a m<n matrix and [g ﬁ} is a nxm matrix),

Starting from the distribution of [ A] and remembering that

d veck
vecA
vecB

=[1e87! | —we o™ ]

we can immediately arrive at

- d
VT (vecK* —veck” Yy N [[0], Ek‘]

5 Qur formulation is substantially identical to Liitkepohl’s (1990), minor changes are
due to our maodified differentiat notation. For a more rigorous treatment of
the problem faced here and in the following pages see Serfling (1980) p.
118-125 and in particular Theorem A (p. 122) and the corollary (p. 124).
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where veck” =vec(B'1A)
. 1| arpetoned el
T =[I®B 1]-(A ;) )]rd,[———_ rEypw=
and ,
S T R - sl
Zi =[I®B 1]—(AB'—1®B 1)]M[WJ

In order to arrive at the distribution of the calculated impulse response functions we
need the distributions of

vec(f(" 1) for the K-model

vee(C) for the C-model

vee(K* 1) for the AB-model
While for the C-model the appropriate distribution was directly obtained, for the K
and AB models we need again the theorem previously introduced and, since the inverse
iransformation is a continuous function of the elements of a matrix at any point where
the matrix is not singular, starting from

3 veck !
d veck

[MJ’ . (rlearl)

- (rl@rl)

d veck
we Obtain

. 4
VT (veck ! - veck ™) o NI:[O], I'.)c"]

where
o= lek ) o lex
It = (KoK ) 5 (K lex
for the K-model, and
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VT (vecK*™! —veck™™V —d> N[[O]. ):.e'ﬂ
where
=TI e (kIRKT )
Zet =Rk ) S (10K
(where K* = B4, and K* = B~14) for the AB-model.

With these formulae we can partially use the result by Liitkepohl (1989, 1990) with
respect to the following inverted structuratized models:

Y= [A(L)_l K 1} et for the K-model
»e= [A(L)_1 C:l €r for the C-model
ye= [A(L)“l K‘“‘] er for the AB-model, where K* =B714.

In order to simplify notation let us refer to

ye=P(L) er=Y Pieri,

=0

where

PLy={aw) " k7] for the K-model

ry=[awyc] for the C-model

Py =[aw) k] for the AB-model, where K" = B4
and

pPo=K! for the K-model

Po=C for the C-model

Po=Kk"1 for the K-model;
let us call the following matrix A (see Liitkepohl, 1989)
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A1A2... Ap14p
Ih0.. 0 0
A=t 0 ...... ... .. (npxnp)

00.. In 0
and J = [In frop! ... | [0]] the nxnp "extraction matrix”.
In view of this notation, starting from the A; values, the coefficient matrices of the
"Structured” Moving Average representation (P;) can be calculated with the two
equivalent formulae

Pi=JA' T Py i=1,2,...
or recursively

Pi=Ci-Po

i
Ci=D, CijAj
Rt
In order to arrive at the asymptotic distribution of the estimated F; we use the

i=1,..and Co=1In

additional following notation:

% =vecll = vee [A1, A2, ..., Ap]
2
npxi

pi = vecP; piis a1

pPh=vec [Po, Pi, ... Ph] Dris [(h—l—l)n%(l:l
and

VTG0~ po) > ¥ (10}, 50)
where X(0) is respectively equal to
)=z | for the K-model
Z0) =% for the C-model
Y0) =% forthe AB-model.
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Remembering that % and ﬁo under the conditions of the two-step logic are
asymptotically normally independently distributed, following proposition 2 in Liitkepohl
(1989):

A d
NT(Bh —p#) = N (0, (b))
where E(k) is a (k+1)n?(h+1)n® matrix with the ij-th n%n” block
T (h)ij = Gi Tn G'j + (Un®J A ') 2(0) (1T A FY
where, using the notation introduced in section 1 (Introduction):
'
T = var[NT (vecIl - vecID)] = (XX) '®E,

where the G; matrices are of nzxn?'p order, and
Go=0,

-1
G;=l§"{P'o-J(A')"“"‘]® 1457} for 0
=0

The Z(h)i (nZan} block is the variance covariance matrix of the

pi (n?x1), 3;’ = vecP; vector of "structuralized" impulse responses. See Liitkepohl (1989),
Baillie (1987).

Obviously, the estimated (k) matrices can be found by inserting appropriate
estimated values for the K, C and AB models; for all the models the estimated Aimatrices

are the same and the T matrix in the estimated ~Er: expression is

T=ABg A" for the AB-model

The estimated impulse responses are obviously obtained inserting the appropriate
estimated matrices in one of the two equivalent formulae
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A A,

Fa¥
Pi=JA T Py i=0,1,...

or
A A A

Pi=Ci-Po
i A
A A i=1,... and Co =1,
Ci= Z CijAj ¢ 0=1n
Fl
The knowledge of vector ﬁh of the estimated impulse responses
A AA Fa¥
Ph=vec [Po. P1, ..., Ph]
and of its associated joint (estimated) variance covariance matrix allows us to
calculate proper asymptotic confidence intervals and to perform a number of tests (sece
Lijtkepotil, 1989, 1990) connected to linear combinations of the eleraents of the Pk vector.

Sb. Variance decomposition

by Antonic Lanzarotti

The Forecast Error Variance Decomposition (FEVD) technique, introduced by Sims
in his famous 1980 paper, is a basic tool providing complementary information for a
better understanding of the relations between the variables of a VAR model.

Whenever analyses of impulse response functions are performed in order to explain
how variables react over time to innovations in other ones, FEVD allows us to compare
the role played by different variables in causing such reactions®

A recent paper by Liltkepohl" contains some results on the estimation of FEVD
coefficients and their asymptotic distribution. It gives some rather complicated formulae

6 FEVD techniques have been used in a number of SVAR applications. See, for
example, Bernanke (1986), Blanchard (1989), Blanchard and Quah (1989}
and Shapiro and Watson (1988).

7 Liitkepohl (1990).
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referred to the generic element wyj,s which represents the proportion of s-step forecast
error variance of variable k accounted for by inrovations in variable j.

This paragraph presents the same information in more compact and tractable form
using earlier results of the present monograph on the asymptotic distribution of impulse
response function coefficients.

With this purpose in mind we will introduce the Hadamard operator @ as defined in
Magnus and Neudecker (1988) p. 45.

If A = (ajj) and B = (b;;) are matrices of the same order, say mxa, then AGB gives a
matrix of dimension mxn whose ij-th element equals a;j - byj.

The following properties can be easily derived from this definition:

a) AGB=BOA

b) ACHy, = dgA if A has dimension mxm

c) vec(A®B) = vecACvecB

d) vecACvecB = {(vecA W ¥ mnlvecB = D(A) - vecA

= [(vecB WY mnjvecA = D(B) - vecB
where dgA is a mafrix with diagonal equal to that of A and zero elsewhere;
1 is a column vector of dimension n - m whose elements are all equal to one;
D(A)is amafrix with diagonat elemenis equal to those of vecA and zero elscwherea.
The first step of our procedure calculates a matrix of dimension rnxn - denoted by
Ws - whose elements are wij s, with k=1, ... ,n.
Here follows the definition of w5 as proposed by Liitkepohl (1950):

~1 _%
Wﬁ_g:Z Py
=0

MSEg (5)

8 This property is not contained in Magnus and Neudecker (1988). However it can be
easily shown by noting that [(vecA - 1) @ Ima] is a matrix whose diagonal
elements are equal o those of vecA and whose other elements are ail equal
to zero. Notice that this matrix - hereafter denoted by D(A) - radically differs
from dgA.
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1
MSEx (s)= Ze’k CiZCiex
&0

where py;,i is the kj-th element of P; and ey is the k-th column of I,

1
The matrix whose kj-th element is Y pf;i is as follows:
=]
51
M;=Y POP;
=0

By multiplying every row of Ms by the corresponding [ MSE (5)] ! we obtain the
FEVD coefficients. In other words, we must premultiply Ms by Fs'l, where Fsis a
diagonal matrix whose non-zero elements are MSE} (5). Remembering that

Z=PoPo
we can write:

1 1
MSEL(s)=Y €k Ci PoP'o C'i ex = Y rPiPiex
=0 =0
‘ s—1 .
Obviously, the matrix ZPiP’ ¢ has the corresponding MSE} (s) onits diagonal, hence:
=0

=1
Fs=dg| Y PiP’i
=0
In force of property b) of the Hadamard product:

51

Fs= EPIFI Oln
=0

9 P, is ! for the K-model, C for the C-model, A8 for the AB-model
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Now it follows that:

Ws =F;'M; fors=1,.h+1
h=onder of the "calculated” VMA representation.

(Notice that the sum of the elemems of each row of W is equal to one).

W; is a matrix which depends only on the structured impulse response functions,
whose asymptotic distribution is already known. We can therefore provide the
distribution of vecW using the theorem contained in Serfling (1980) (see also paragraph
5.a in this monograph). On the basis of this result, all we need to know is

_advecWs
§ - a Eh

where pp=vec [Pol P1)... | Pi]
Thus if
d
NT (b ~ pr) — N (0], Z(h))

where the form of matrix Z(k) is defined block by block in the present section, then
it follows that

d
NT (vecl?/s —vecWs) > N ([O}, ZsE{h)Zs’)

In order to compute Z; it must be noticed that

7= d vecWs d vecWs B
T O9pn  dvec[PolPLi...|Px
| dvecWs | 0 vecWs d vecWs
Tl ovecPo | ovecP1 | |0 vecPx
On the basis of this 1ast result we may proceed with the calculation of
o vecWs o,
avech s=1,...,h+l;j=0, .,k

Obviously, whenever j = 5, W does not depend on P;. In such cases the following
applies:

d vecW.
d ‘:.nz.t‘Pu‘T =10]
7 (P
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Whenever this derivative is not equal to [0], we will use a "computational strategy” 12

based of the following chain rule of differentiation;

d vecWs 9 vecWs ) d vec(Ms!| Fg)
d vecP; ~ 0 vec(Ms | Fy) d vecP;

Let us begin with the first factor of this product. Remembering ihat
Wi=Fs L M;

differentiating, we obtain
dWs=(dFs™") My+ F;™ (M)

dWs=—F5t (dFg) FsI Mg+ F) (dMy)

the vec notation is
dvecWg=— (M" s F's Ie Fs 1) dvecFs+ (I ® Fs_l) dvechs

dvechz[(l ®F Y| -(wye® F;‘)] dvec (M| Fy)

dvecWs 4 ) »
d vec(Ms | Fs) _[U®Fs ) |~ (W @ Fy )]
o QvecMs L)

No d vecP;

must be calculated.

This matrix can be represented as being composed by two n®xn? blocks and
organised as follows '
d vecMs
d vecP;

d vecFs
d vecP;

It is easy to note that

ey R

12 In the following we will use a set of results for matrix differential calculus
contained in chapter 8 of Magnus and Neudecker (1988).

58




51

dvecMs o vecZ(P,@P;)- a vec(PJ@P_,)

d vecPj ~ 0 vecPj

Let us calculate this last derivative starting from the differential
d (P;© P))=(dP) @ Pj+ PiO(dF))
on the basis of property a) of the Hadamard product we can wrile
d (Pi® Pj) =2 PO (dP})
or, in vec form,
d vec(Pj @ Pj) =2 vecP; © (d vecF))
On the basis of property d) we can write
d vec(P; @ Pj) =2 D(P}) (d vecPj) =2 [(vecP,- i) @1,,2] (d vecP))

Therefore we can conclude that

ad vec(Ms)
o vecP; =2D(F))

where D(P}) is the same matrix previously obtained with diagonal elements equal to
those of vecP; and zero elsewhere.
The same applies to the second block

s~1

dvecFs vec Z(PIPL On= vec(P, Py @)

3 vecPj = 3 vecP; vecPJ

By applying the usual chain rule of differentiation, we can now decompose this
derivative into two factors as follows:

d PO =~ yec(p; Py @1y - 2LPED
3 vecP; vec(PiPf O =3 (vecP;Py) vec(F; P/ O - avecP;
Imposing ¥ = Pj P/ we can calculate 3 vch vec (YOI)

d(YOnN=@@noI
d vec(Y @ I) = dvecY O vecl
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dvec(Y © N =D(I) - dvecY
We therefore obtain

1

a s
3 GecPi Py " & S (PiP? @ 1) =DAi).

Taking into consideration that

_MﬁL. =(Iy +®)(P ®D

dvecP;j
we can conclude that

d vecFs

FvecP; = D) (Io* +®) (P ® ) =D(l) 2Nn (P; @ I),

where Ny, as in the previous chapters, is defined as

1
E (I ’:2 +®)
Now all the results obtained must be put together, thus recomposing the chain of
derivatives we have just calculated

3 vecWs _ 4 4 2D(P)
Sorcp, =[18FT | v ir] [D(D 2N, Pﬁn}

or, in equivalent form,
o vecWs 1 ' i
3 vecP; = 2 | aer: ey - v s DN PBD)]

Let us not forget that, for the reasons already explained, this formula holds only if
Jj<s and that this derivative is otherwise equal to [0]. On the basis of this last result, we
can now construct matrix Zs which corresponds o

d vecWs
d vecPh

a vecWs
d vecP

0 vecWs | .0 vecWs
o ph a vecPy

The asymptotic variance-covariance matrix of vecW can be obtained by the formula

W) =ZsZ(h) Z's

L
4
0
E
e




Obviously, the estimate of this matrix can be oblained by substituting the P; matrices
A
with their P; estimates in all the formulae.

61







Deterministic Components. )
Cointegration

6a. Long-run A-priori Information

In practical applications of Structural VAR Modeling, the most interesting theoretical

constraints on the parameter space of matrices X, C, A and B probably come from some

long-run considerations.}

For the K-model, remembering that
AlL) yi=#&
Keg=e

a class of typical long-run considerations could be inserted looking at the "structured”
matrix of total multipliers of the observable (yy) variables.

Calling
A(l)=I-A1~-...—-4p
the matrix of "unstructured” total multipliers of y; variables and calling

AT()=K A1)
the matrix of "structured” total muliipliers of the same variables, identification may
be achieved by imposing particular constant values in some places of the structured

A*(1) matrix.

1 Sec for exampie Blanchard-Quah (1989) for a very simpie model of the C<lass.
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For example, forn=2

K AQ) =[ : 2]=A‘(1)

where the asterisk stands for non-constrained values.

Thus, in order to achieve identification we have introduced the theoretical
consideration that the total multiplier of the first variable y1, with respect to movements
of the second variable y2r must be zero.

This a-priori consideration algebraicaily implies that the inner product of the first
row of the K matrix multiplied by the second column of the A(1) matrix is zero.

In the general case for n>>2 this constraint together with other constraints can always
be represented with the usual formula

. RvecK=d

remembering that a row (some rows in the case of a number of Iong-run constraints)

of the R matrix contains elements of the A{1) matrix and zero elsewhere.

But in our context this type of constraint typically introduces a number of cross
(bilinear) restrictions between the parameters of the IT matrix (previously introduced)
and the parameters of the X matrix.

In view of these cross (bilinear) restrictions the asymptotic information matrix

! vecll
veck
can no longer be assumed to be conveniently block diagonal, therefore the two-stage

logic so frequently used until now for identification and estimation purposes loses its
correct asymptotic statistical base.

If we still try to use the two stage set-up we must remember that some elements of
the R matrix must be taken as a random variable instead of as a constant. Thus, instead
of

R vecKk =d

in a two-stage set-up we must work with an inexact system of constraints




A
RvecK=d

A
which will hold exactly in the limit, provided the estimated elements of the R matrix
are consistent estimates of the "true” elements:

A
plimR=R
The same obviously holds if we try to insert long-run considerations for the C-model,
ca]]jng2
C=I+C1+Cz2+...
the matrix of total multipliers of "unstructured" shocks &; and

c'y=c)c

the matrix of "structured” multipliers of structured shocks e;.

Great complications arise in our set-up if we consider unstructured VAR Modeling
as the natural starting point for Structural VAR Analysis, thus retaining two-stage logic.

The difficulties connected with the treatment of this problem are clearly depicted in
Pagan (1986), a paper devoted to the properties of two-stage estimators.

As Pagan suggests, the theory of quasi-maximum likelihood estimation (White
1982) seems to be a natural tool in order to correctly analyze the problem’.

Looking at White’s (1982) Al1-A6 lists of assumptions on the basis of his 3.1
Theorem, one can immediately see that for the K model, also in the presence of
misspecification, the conditions for identification of Theorem 1 in Rothenberg (1971)

are the same.
2 If the usual stationarity condition C(1) = A(1y™" holds
3 White (1983) shows why our two stage set-up can be treated as his two stage

quasi-maximum likelthood estimation logic (pp. 2.16, 2.17) and why two
stage quasi-maximurm likelihood estimation can be subsumed m the study of
quasi-maximum likelthood estimation (pp. 3-11 and ff.).
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On the basis of Theorem 1 in Pagan (1986) assuming the strong consistency of our
estimator of veclIl

A4S,
vecll ~» vecll

it can be shown that our estimator of vecK, locally identified for the K model, keeps
its consistency under the type of misspecification presented here,

In our framework, major complicaticns arise in a quasi-maximurm likelihood context
for the identification and estimation of the C and AB-models.

All the results in our set-up draw heavily on the so-called Information matrix
cqu.iva.lencc4

Fr 3rac) ..
”(9)“5{3933' =ElJeae Ve
Inthe presence of misspecification, however, such equivalence breaks down and can
be asymptotically restated only in the case of asymptotic negligibility of
misspeciﬁcaﬁons5 .
In view of these problems, we will proceed with the two-stage logic - even if the R

A
matrix naturally contains some (strongly consistent) estimated elements - as if the R

matrix were a “true” matrix instead of a matrix with some estimated parametersﬁ.

In doing so a wamning must be introduced. Starting from the assumptions that the
estimator of vecITis strongly consistent, and that long-run restrictions are “true”, one can
heuristically show that the estimates of the X, C, A and B matrices, previously introduced,

4 See White (1982) p. 7.

5 Other complications arise when trying to find correct formulae for the calculation of
impulse response functions in order to take into account the presence of a
ton-null asymptotic covariance matrix between vecl] and veck

6 The natural inefficiency of the estimates vecl] of the first stage and a consequent
incorrect use of the Cramer Rao lower bound must be taken into
consideration.
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are consistent. Nevertheless, the associated asymptotic variance covariance matrices’

surely risk to be "poor” substitutes to correctly calculated asymptotic variance covariance
matrices which would take into proper account the inexact nature of the

A
RvecK=d

a-priori constraints for the K model, or similar constrainis for the C and A-B models.

6b. Deterministic Components

Looking at the hypothesis introduced in chapter 1,
A(L)y: =&
ye=C(L) &
we have 5o far implicitly assumed that vector yr has zero mean
EQyn) = {0}
The assumption was made for convenience: the analysis developed so far would
remain valid with only minor modifications if we assumed that the vector of stochastic

variables bechaves in a strictly stationary fashion around vector of deterministic
components

ye=di+C(L) &

where dr may contain (for example) polynomial trends seasonal dummies and
dummies for outliers.

7 The author is carrying out further research on this subject also in the direction
outlined by Pagan’s (1986} Theorem 7 in order to find a fully efficient
estimator constructed in two-step and based on Rothenberg and Leenders
(1964).
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A common practice is to remove these components series by series, estimating their
parameters by OLS methods and then estimating the VAR model. -

In view of the results put forward by Nelson and Kang (1981) and taking into account
that using these new tools in order to find theoretically sound interpretations of cyclical
movements of macroeconomic aggregates is one of the main goals of Structural VAR
. Analysis, it is clear that we should not run the risk of introducing spurious periodicities.

In order to prevent spurious periodicity, the parameters of deterministic components
should be estimated together with the autoregressive parameters in the VAR set-up.

Assuming that the C(L) matrix of the Wold-like representation can be inverted giving
as a result a finite p-order polynomial autoregressive matrix A(L), from

yi=di+C(L) &
we can arrive at

AL) ye=A(L) d: +&
let

di =A(L) ds

In the case, for example, of a vector d of deterministic components composed by a

vector of linear trends
dr=o+Pr
di =A(L) dr=a+ bt
The vector autoregression with deterministic components can be written inextended
explicit form as

1
y=A1y-i+ ... +Apy;..p+[alb]|:?]+e,

In compact form we can write
yi=Ilx+g,

where 1= I:}”t—l. )”r—2, reey }”t—p—l I, f]
and the IT matrix can be thought as composed of two distinct parts
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I =[ I | Hg}
where
m =[A1I Az‘ ‘Ap]
M2 =[alb]
and then proceed to the estimation in the usual way following section I notation:

fl= yx ()™
o
T

A A
where V=Y -TIX

>

var [NT (vecﬁ —vecI)] = (Xx)"'@%

noting that
I I
I =[n1[nz}[[—;;f}1}=n[{—;;ﬂ
and calling '

s Ing
d [[01]

using the properties of vec operators

vecll) = vec(I1 .7) = (?@In)vecﬂ

Pt A _— A
veclli = vee(I1 J) = (J'@In)vecll

from which
var [‘JF (vecﬁl - vecl'[1)] = (}' ®I,,) I:(XX" )_1®E:| (f@!n)
or more compactly

var [‘J’F (vecﬁl - vecl'[;):l = [}(XX’)‘G]@Z

Looking at the results of chapter 5, we must insert our IT) matrix with its associated

asympiotic variance covariance matrix instead of the [T matrix in those formulae.
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Obviously, the impulse response functions must be seen as impulse responses around
a deterministic trend®.

Similar reasoning and formulac must be used in the presence of other types of
deterministic components such as seasonal dummies, dummies for outliers and intercept
region changes, obviously with a connected reasoning in the interpretation of impulse
response functions.

6¢. Cointegration

Fortunately, Structural VAR Analysis is not to be confined in the realm of stationarity
(or first order non-stationarity, partially treated under paragraph b in this section). In fact
it can be extended to non-stationarity where a consistent estimate of VAR parameters
can be obtained’.

The analysis of the K, C and AB models is exactly the same until section 5 excluded.

The difficulties arise when we try to analyze the distributional characteristics of
impulse response functions in view of the fact that, in the presence of unit roots, VAR
parameters, though consistently estimated, are typically non-standard distributed.

8 For cach series the deterministic trend around which the impulse response functions
fluctate (o + Bet, i = 1...n) can obviously be estimated by OLS methods,
one series at a time, in a consistent way if the series are truly stationary
around a trend.

9 See Sims-Stock-Watson (1990) for vector autoregressions with a “rich® deterministic

part and unit roots in the A(L) matrix and Tsay and Tiao (1986) for roolson
the unit circle for the A(L) matrix.
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Under the hypothesis of cointegration (Engle-Granger 1987)'° the situation is made
simpler.
Let us assume we have a vector of processes
ye
where each element yi: is a so-called /(1) process’® and also that
(1-L) yr=Ay
is a vector of jointly strictly stationary process without any deterministic part
possessing a Wold representation
Ay;=C(L) e
where g is a multivariate normally distributed vector white noise with
E(er €)= Z, den(L) = 0.
Furthermore let us assume that the vector of /(1) variables y; has a finite (p-order)
autoregressive representation
Al yi=&
Under the hypothesis of ¢ointegration the A(1) matrix
Al)=I-A1-A2~...4p
is singular and can be written as the product of two rectangular matrices

Al)=yo
nxn  rxXrrxn
where ¥ and o are full column rank matrices and r is the so-called cointegrating rank

(e, the number of independent cointegrating vectors) and oyr is a rx1 vector of K0)
variables.

10 See also Johansen (1988, 1989) and for a review Hylleberg-Mizon (1989,

3 Following Engle and Granger (1987), we call /(1) a process whose difference Ayi
has a stationary and invertible ARMA representation.
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In a recent paper Liitkepohl and Reimers (1990), taking inlo explicit account the
cointegrating restrictions on the A(1) matrix (following Johansen's (1989) ELM.L.
approach), calculated the asymptotic distribution of

I:;i 1... Zp] = ﬁ
(where I stands for Johansen FLM.L. estimation), demonstrating the asymptotic

normality of T (vet‘ﬁ — veclT).

If the cointegrating restrictions on the A(l) matrix are not explicitly imposed, the
usual A L.S. (Asympiotic Least Squares) formulae can still be used for the estimation of
In

- 1
IT= YX'(XX')™
giving a consistent estimate of the A1...4p coefficient matrices and, on the basis of
the results in Park and Philips (1987) and Sims-Stock and Watson (1990), we can assume

At
that (vecIl — vecIT) possesses a zero mean asympiotically normal distribution with a

singular covariance matrix that, from a sampling point of view, can be approximated
with the usual formula

_]_ A
(XX 'Rz,
On the basis of these results Ll‘.itkep(;hl and Reimers have demonstrated that the
A
coefficients of the A(L)™" matrix (calculated with the usual formulae)
h
A A A
Dp=) Oh-m Am h=1,2, ...

m=1
Q=]
also have asymptotic normal distributions, and so the setting for "structural” impulse
response analysis proposed in chapter 5 of this monograph stiil holds.

Obviously some differences do exist with respect to the stationary case.
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The coefficients of 5 matrices and those of Py "structuralized” (see chapter 5)
impulse response matrices "will in general not die out in the long run. In other words
{they] may be permanent rather than iransitory. Therefore the @z and P cannot be
interpreted as [unstructured or "structured"] MA coefficient matrices and their sum will
in general not be finite"12.

Surely, following Liitkepchl and Reimers, in a cointegrated context it may be
advantageous to impose rank constraints on the A(1) matrix in order to isolate the
equilibrium relations.

Thus, following Johansen (1989 b), we may proceed in our two stage set-up and
structuralize (interpreting the cointegration space) the long run relationships. In the first
and second stages we can then organize (structuralize) the instanteneous reactions to
extemnal independent shocks.

For the K-model, for example, we can structuralize the matrix of the long-run

multiplier of observable variables finding a unique decomposition of the A(1) matrix'>,

A=y’

xrrxa

and then, in order to identify the K matrix, we can proceed in the usual way
remembering that with
RvecK=d
we could introduce restrictions on the form of the matrix of "structuralized"
loadings'*.

Y =Ky

12 Liitkepohl and Reimers (1990) p. 3.

13 Long-run structuralization implies that no mairix different from [, can be inserted
between yand o’

14 See Johansen (1989 b) for the interpretation of the +y matrix as a mairix of "loading”
coefficients.
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ANNEX: THE NOTIONS OF

MODELING

Following Sims (1986) the present Annex attempis o illusirate the particular notion
of structure in Structural VAR Analysis. The notions of structure, identification and
reduced form are deeply connected in any econometric approach. In Structural VAR
Analysis the reduced form of a vector y: of economic variables is simply represented by
a vector autoregression of the type:

AllYyt=¢&

A(Ly=I-A1L ... APLP
and & is a vector normal white noise with

E(ge)=X

The first stage of Structural VAR Analysis is the estimation of the reduced form.

At this stage one can 50 act as to impose no theoretical a-priori consideration (apart
from the number and type of economic variables included in the y; vector). Thus
unconstrained VAR Analysis can be seen as nothing more than a convenient way of
organizing the correlations between the variables of interest.

There is no reason to leave the first stage at this level of generality. For example,
think of the problem of non-stationarity and cointegration. Cointegration is a property
of the data and if the so-called “cointegration space” is not subject to structural
interpretation, cointegration pertains only to statistics, not to economic theory.
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Inserting cointegration constraints in 2 VAR in levels is only a way to arrive at a
reduced form that "better*? summarizes the correlations between the variables under
study.

In the first stage of Structural VAR Analysis one may decide to move further on: the
notion of non-causa]ity2 is stilt a property, conceming subsets of variables in y;, which
may be delected on the basis of reduced form estimation. In this sense non-causality (as
was the case for cointegration) is a property of the data and not of any economic
theoretical model. In the first stage then, non-causality restrictions can be used to arrive
at reduced forms that “better” summarize the correlation between variables”.

Let us assume for simplicity that the first stage of Structural VAR Analysis could
end with an estimate of the parameters of an unrestricted reduced form

AlLyyr=8:  E@®e=X

obtaining estimates of
A Fat
Al...ApasA; ... 4
A
g =A(L) y:
T
‘%_ & &
&T
=1

In VAR Analysis the only source of variation of y; variables (apart from hypothetical
changes in initial conditions or changes in a vector of deterministic part) are random
shocks that in the reduced form are represented by the vector while noise &;.

The vector of unobservable g variables, often called vector of innovations or vector
of surprise variables, can also be seen as the vector of unexplained random variations

i "better” should be understood as "more efficiently”.

2 Obviously unlike the problem of imposing direction to instantageous causality.

3 Obviously a number of other considerations should be used to extend the restrictions
on the reduced form in the first stage and find more efficient reduced form
representations,
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obtained as a residual from the projection of y: vector over its possibly infinite past
(truncated at p by virtue of plausible approximation rules).

In the & vector of unobservable variables one can expect a substantial amount of
contemporaneous correlation - not necessarily due to problems connected to temporal
aggregation - which gives rise to a "theoretical” variance covariance matrix of g, Z,
typically not diagonal.

Structural VAR Analysis focuses its structural effort onto the organization of
istanteneous correlation between innovation variables.

In the most general model studied in this monograph (the AB-model) the € vector
must satisfy the following set of conditions:

Ag=Bet A and B invertible matrices of ordern
E(er)=10] Eled)=1In

80
ATA =BF

The vector of ¢; variables is a vector of orthonormat random variables whose
components are equal in number and corresponding in content to the list of variables
contained in the y vector and can be thought as independent unit variance random shocks
of the corresponding yir variables. These independent unit variance random shocks can
be assigned the task of being the ultimate independent source of variation of y; variables
in time.

With the information contained in the estimated variance covariance matrix of the
unrestricted reduced form, £, and an appropriate number (and form) of a-priori
restrictions on matrices A and B (together with some normalization restrictions) one can

presumably arrive at the conditions for unique identification of the A and B matrices.
In this case the structural form of the VAR model becomes

A*(L) y=Be:

where

ANL)=A A(L)
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This structural form, on the basis of its parametets (once estimated), can be used to
examine the path of estimated effects of (unit) changes (shocks) in the vector e; of
independent zero mean variables.

1n the words of Hurwicz (1962) the equation

A*LYy=Be _
is in structural form with respect to modifications of er.

Obviously this structural form has behavioural conent if the A and B matrices contain
the supposed "true" agent’s behaviour in response to modifications of the e; vector.
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APPENDIX A

Matrix differentiation: first derivative

Let f= (fi, ... fm)’ be a vector function with values in R™ which is differentiable on
a set S of values in R”. Let
d fi(x)

d xj
denote the partial derivative of f; with respect to the j-th variable. Then the mxa

matrix

A  filx)
dx; 7 dxp

dfm(x)  dfmlx)
| dxn T dxa

is called the derivative or the Jacobian matrix of f{x) and is denoted as

afix)
dx

On the basis of the preceding definitions, the following rules will hold

a) if fx)=dax="% ax;
(1x1) 5
then ) _ ad
dx (1x)
by if ) =Ax=y
{mx1) mxn
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afx) _
then Fpe =A

c)if Y=AXB, vecY=y and vecX =x
then y = vec(AXB) = (B'®A) vecX = (B'®A) x

3y _
052 =(8'e)

d) vec X =D vecX”
{row)

Disa nxn* matrix

d vecX
3 vecX” =®

@ =12 T=0=0"
(See Poltock 1979, p. 72)
¢)if y=x"
taking differentials (see Magnus and Neudecker 1988)
dy=—X"1 (@) x°! ‘
ardd vectorizing
\-'er:d}’=—(}l"'_1 ®X_1)vech

avecY__ 1 i
dvecX X ®X)

f) Chain rule (Pollock 1979)
If u=u(y) is a vector function of y and y = y{x) is a function of vector x, so that
u=u[y(x}], then

Qs

u Bu.

x"dy

Q
b1
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Matrix differentiation: second derivatives

(Magnus 19838)

Let fix) :S->R be a real-valued function defired and twice differentiable on a set S
in R™.
Let Bzf(r)éax.- ax; denote the second order partial derivative of f{x) with respect to the
i-th and j-th variables. Then the nxn matrix
20
0 x; 0x;
is called the Hessian matrix of fx) and is denoted as H [f{x)] or

2% fx)
dxdx

following Dhrymes (1978), Pollock (1979) the Hessian matrix can be obtained as

? fix) _i[aﬂx)]

dxdo¥ Jdx| dx
where

9fix) [ _ 9 f(x)

dx | 9x
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APPENDIX B

In this appendix, strictly following the notation and rules used in Pollock (1979, pp.
62-82) and Dhrymes (1978) we will calculate the first order conditions for the
maximization of the likelihood function of the K model and the corresponding Hessian
matrix.

Let us start from the log-likelihood

A
t=c-Ligm-Tozly
2 2
where
K E K’ = ln,

assuming det X # 0, £ =(K'K)"., and R vecK =d, or vecK = Sy+5
Substituting X = (K'K) " in the log-likelihood we immediately arrive at
T Fal
L=c+Tlog Kl -Ea-(K"K):)
Using Pollock's {1979) notation
(K) = [vec(K))’
and using Polleck’s (1979, pp. 81-82) rules, we can write

dL

A
= Ly . ’
3 veck T(K 'Y =T (vecKY (Z®D
using the chain rule of matrix differentiation

dL_ dL dveeK dL
0Y dvecK oJy  dveck

Then the first order conditions for the maximization of the log-likelihood are
respectively for vecK and y
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T T (vecK) (T81) = [0]

nle
A
[T (KLY ~T (vecky ():@1)] S =[0]
1

Now, on the basis of the obtained formula for the gradient vector, we can calculate
the corresponding Hessian matrices:

@ oL

) d veck d veck’
Pz

1)) FPrrd

remembering that on the basis of the definition of K
(X—l)f= {vec{(K'_l)']]
the gradient vector

dr
o veck

can be rewritten in the following way

dr

Fveck L {v“{(rl)':”’ ~ T (vecKy (,I\'@D

Following Dhrymes (1978) we can calculate the Hessian matrix as

Hiveck) = ¥r 3 (LY 3 ac
"~ dvecK dvec(K')  ovecK |dvecK | 0 vecK | d (vecKY

L =T vec(K 1)—T(%@I)(wzek)
dvec(K) ' €
and then
2 L
9° L - d vec(K~ )—T(’)E®1)

H(veck) = d vecK d vec(K) d veck

Let us concentrate on the first member of the last expression. Using the chain rule

we can write
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d vec(K'_l) _d vec(K1) 0 vec(K')
dvecK =~ dvec(K) dveck

Using the rules introduced in Appendix A (see Pollock 1979, p. 81) we can write

1
Qe ) [cleuwy'] @

S0 we can arrive at

s 1 -1 >
H(vecKy= 5 eck dveck’ T[K_ ® (k) b + (“:@0}

Remembering that vecK = §y+ s is an affine function (see Theorem 11 in Magnus
and Neudecker 1988, p. 112 ), the following Hessian matrix is simply

"QZL =S8 H(vecK) §

H('Y)za,ra,rr—
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APPENDIX C

| by Antonio Lanzarottl and Mario Seghelini

This appendix is devoted to the symbolic identification analisys of some, maybe,
interesting examples for the K, C and AB-models.

Its main purpose is to show the practical working of the identification conditions
developed in this monograph, doing it by means of some particular features of the models
considered.

For the first example we will present the calculations in more detail, while for the
other we will skip some obvious passages.

K-model

Remembering condition b) at page 19, the model is locally identified if and only if
the system

Re (K'®1) D x

has the unique admissible solution x = [0].

EXAMPLE |

We focus our attention on the K-model considered in Bekker and Pollock (1986).
The K mairix takes the form:

ki1 O ki3
K=|kaikan O
0 k32133
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obtzined imposing the homogeneous constraints; k12 = k23 = k31 =0.

The Ry matrix thus can be:
000100000

Re= 000000010
001000000

and the Dp, matrix, following Magnus (1988), can take the form:

L]
1

000
100
010
- -100
Dn= 0 0 0
001
0-10
0 0-1
. 000 |
Simple calculations yield:
. —k22—%32 0
Re(K'® Dp={ ki3 0 —&33
0 ki kxn

Now we have to solve the system:

—422 432 0 X1
k13 0 —k33 |- jxzi=[0]
0 ki1 k2 x3

i.e. solve simultaneously the equations:

(1) —kpx—k3zxz=0
(2) kizx1—k33x3=0
3 kitx2—-knx3=0.

Considering equations (1) and (3} we get x1 and x3 as funcions of xz; inserting this
values in equation (2), we get:
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. ki3k32  k3zku )
@) ﬂ[ 2 ka1 )‘"0
with solution x2 = 0; and then

(1) =2 x1=0
with solution x; =0,

(39 —k21:3=0
with solution x3 = Q.

The model is just identified (the number of contraints being equal to ®7-1)5),

EXAMPLE2

This example aims 10 show that a number of constrains greater than *-1}4 does not
necessarly implies the over-identification of a model; in certain sitations, also the
constraints form piays an impontant role.

Let us consider a bivariate K-model with the consiraints: k21 = ~&12;

the K matrix, then, takes the following form:

=[ kip —kz1 ]
k21 k22

and a possible form of R is:

fet10
R"‘[100—1}

k
1 In this equation if — 1;32 = h::l U ihen xa =0 would not be the unique solution but

we can exclude this situation by noting that, for free k;j,

k k . . . .
Pr {— 1T3kzsz = %} = 0. This consideration obviously concemns also the
solution of the equation sysiems appearing in the following,

87



It is easy to show, following the same steps as in the previous example, that this
model is just identified: in fact
x1 (k11 +k22)=0

has the unique solution x; = 0. If we go further, adding the constraint k1] = k22, the
model becomes unidentified. In fact with:

_| k11 =k {0110
K“[kzl ki1 Jande_[IOO—I ]

we get
Ri(K'®I) Dn=[0}

Now

[g]n =[0]

has solution for every x1.

C-MODEL

According to condition b) at page 28, we get identification of a C-model if the system
Re ('®C) Dn - x = [0]

has the unique admissible solution x = [0].
EXAMPLE 3

In this model we impose three homogeneous constraints, c12=c13=c31 =0,
together with the additional constraint c32 = ¢23, 50 the C-matrix becomes:

ci1 0 O
C=f 21022023
0 c23033
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and a possible R, is:

001000000
000100000
0000010-10
000000100

Rc=

Simple calculations give us the following system:

€3 €33 0 r

11 0 0 _ 2 =0
0 21 (c33+0c22) o
0 —n 0 X
We have to solve the equations:
(D e x1+c3me=0
2 ~c11x1=0 -
3 e21 x2+(caz+c22) 3 =0
@ —11x2=0.

Equations (2) and (4) retum immediafly the solutions x1 =0 and x2 = 0. Inserting the
former in equation (1) or the latier in equation (3) we easily get x3 =0. The model is

identified, i.e. generally over-identified, the number of constraints being greater than
n(n—l)/&_

EXAMPLE4

Now, let us consider a model derived from a block diagonal structure, The C-matrix
takes the form:

cit 0 ci3
C=| 0 c2 0
31 0 33

obtained imposing four homogeneous constraints: ¢12=c2; =23 =c32 =0 50 we
can construct an R matrix of the following form:
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010000000
000100000
000001000
000000010

Proceeding as usual we arrive at the system:

20 0
=110 c13
=310 ¢33
0 O0—c22

Rc=

x1
-| %2 1=[0]
x3

The second column of the coefficient matrix is [0], so the system accepts every x2
as a solution. The model is unidentified and the non-identification rank is ! (i.e. the
difference between the number of column and the actual rank of the ‘identification
matrix*).

This example is connected to the Bemanke.src procedure (last version 1990) created
by Thomas Doan for the RATS econometric package. In the introduction the author
mentions the concept of weak identification with respect to an AB-model where
constraints of the same form as the ones we have imposed hold, except forone parameter
which, instead to be constrained to be zero, has a free estimate close (0 zero.

The difficulties about the model, outlined by Doan, are due to the fact that in these
cases we are facing a structure near to be block diagonal and the parameter close to zero
is the one which connects two different blocks, so the iterative algorithm can casily fail
to achieve convergence,

Following the approach of this monograph, there seems to be no room for an
ambiguous concept like weak identification of some parameter: the whole set of
parameters are either identified or non-identified. In our view, the problem faced by Doan
is one of numerical difficulties in estimatiun of a set of identified parameters.

AB-MODEL

For the AB-model we follow the identification condition outlined in section 4, 50
our model is identified if the system:




Ry (B'®BB’Y (Dnx—z) = [0]
has the unique solution x = [0] and z = [0]. In the example below, we will proceed
solving the first sub-system and then inserting the solutions in the second one.

{Ra (A®BB’) z=(0]

EXAMPLE 5

We stant defining the A and B matrices:

1 00 b1 0 b13
A=!m1 1 0],B=] 0 b2 O
0 a2l 0 0 b33

obtained imposing the homogeneous constraints a12=a13 = a2 = a31 =0,
biz=l1=bn=b1=b2=0 and the non-homogeneous constraints
a1 =an=a3=1.

We introduce this constraints in the system by means of the following R matrices:

(100000000

001000000 010000000

000100000 001000000
Ra={ 000010000 [andRb=| 000100000

000000100 000001000

000000010 000000010

000000001 |

Now we can solve the first sub-system:
Ra (A®BB") z=[0]
where

RAA®BB’) =

91



zi=0

n= Z8

asaazl

3=0

Z4=
ca3z

d
Z7=——2z8
c

z8 =28

Z9 =2Zz9.

92

which has the =2 solutions {zg and zg are parameters):

Now we can insert the z vector in the second sub-system:

[ bt 0 bmbi 0 0 0 ¢ ¢ 0
bbia 0 bt 0 0 0 0 o0 ©
au(ubind) O anbnby buli’ 0 babn 0 0 O
0 anbn® 0 0 b 0 0 0 0
0 0 0 anlbultb) 0 aubasbia buthis® 0 bubis
0 0 0 0 ot 0 0 b2’ 0
0 0 0 awbibn 0 amby’ bubis 0 bn’
Substituting b%1+b%3=cand b33 b13 = d, we have to solve
c 0 d 0 0 0 00 O
d 0 bu 0 0 0 00 O
anc 0 aud c 0 d 00 O
O anbx*> 0 0 bx* 0 00 0 |z=[0
0 0 0 asac 0 aad ¢ 0 d
0 0 0 0 amm® 0 0bx* O
0 0 O apbuby 0 anbi’d 0 3%




Ry (B'®BB') (Dpx ~ 2) = (0]

where
(0 bubn® 0 00 O 0 0 O
bud 0 bubs® 00 0 0 0 O
Ry(B®BBY=| 0 0 0 b2c0 bpd 0 0 0
0 o 0 budObubi®0 0 0
0 bt 0 00 0 Obmbn’o)
and
S
X1—22
xX-z3
~ —X1—Z4
Dpnx—z=1 —z5
X3—Z§
—x2-77
—X3—ZI8%
—2ZQ

5o we have to solve the system:

) bi1 b (11-22) =0

@ ~21b11d + b11b33 (xr-z3)=0

3 br2e(—x1-z4) + b22d(x3—26) = 0

4) bad(~x1-24) + baabA3(x3-26) =0
(3) b13bhax1—z2) + bssﬁz(—n—zg =0.

Substituting to z]...z7 their values with respect to zg and zg, obtained from the first

sub-system, we get:

1

1 =
( ) * a324a2t %
(27 =0
(3" —cxt +dxy =9
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@ ane B Lt

as2 cas2
(5" x3=-z8.

Now let us focus our attention on equation (3') where:

Y ¢
7 ( " a32a21

which yields: x; =0 and x3 =0 in (1°) and (4"} respectively.

)zs=0=>28=0

Now looking at equation (4"), after some substitutions, we remain with:

@) (93—3— b1s ]29=0=->29=0

a3z  asazl

Inserting zg =z9 =0 in the first sub-sysiem we get z1...z7=0, so the system is
identified. In the same way we can get a generally over-identified model, simply adding
- for example - the homogeneous constraint @32 = 0 so the A matrix becomes:

1 00
A=!anl0
001

and a possible form for Ra is:

100000000
001000000
000100000
000010000
000001000
000000100
000000010
000000001

Ra-_—-

Calculations for this example will not be included since they are very similar to those
developed earlier.
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APPENDIX D

by Antonio Lanzarotii and Mario Seghelini

introduction

In order 1o allow a practical use of the instruments provided in the previous pages,
we have developed two procedures working as additional instructions of the RATS
econometric packagel.

The first procedure, called SVAR.SRC listed below, performs identification analysis
and FIML estimation of all the three models. It considers the K and C models as particular
cases of the AB model. This approach forced us to tackle the identification problem using
sets of formulae that are different though equivalent to those already introduced in this
monograph. Though old formulae were more easily treatable and symbeolically more
meaningful, the new ones require that constraints are expressed only in explicit form.

We suggest that the problem can be better understood starting from the V matrix
defined in section 4 as follows

2[[(4@3’_1 0] ][& &]{r@a‘l [0] ]

lreeal | L _[O1  |ges™h[[Na|Na]] 101 |-geph|
vecB |~ Ra [[0]
[0] | Ry

premultiplying by the block diagonal matrix

1 For further details see Doan (1990} chapter 4.

95



keE| (01 |00
1| _[0] |-pe#]| 10| [0}

2(_I0] 0] |21r] {0)
[0 01 |02/

we get

[gi ﬁ] [K'_1®B_1 [0]
vecA _Nn Nn 0] —(1®B__1)_.
v jeg]- AT

[0] | Rs

of the same order and rank as V.

To state the necessary and sufficinet identification conditions, we consider the
system

vecA
V[vecB] y=10]
Which must have the unique solution y = [0]. Supposing that the 2r°X1 vector can

bewﬁttenasy:[;vz—},thesystemcanbesplitinmtwoparts.

We can therefore write two connected systems of equations:

Na |Nallx—'@B™ | 0} 2]
(1) 1:Nn. N"][ [0] —(I@B_l) [W] - [0]
Ra (01} 2 |_
@ [{0} Rb][w]_ (o1
Solving sub-system (2), we obtain
z2=SaYa
w=358"

Inserting the two solutions into sub-system (1), we get:
™

where
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. * N n
3 W=ha

N[k '@~
Nn {0

MAJS
~(I®B™)
and

_| 8« 0]
S": [0] Sb]

Now we have (o analyse the (column) rank of V** which is a 2n7x([a + [y matrix.
The model is identified if this matrix has full column rank.

Simple calculations yield:

e | N & '®87Y) s,
Na (K'®B7Y) 5,

—Nn (I®B ) 5,
—Na (I®B7Y 5,

We can obviously focus our attention either on its upper or lower part since they are
equal,

We can finally confine our efforts to checking the rank of

I:Nn &'@Y s,

—Na (I®B7Y) Sb].
or, substituting X with B°A"L, the rank of

(4) [N,, B'A7'®8Y) 5,

-Nn (I®B 7] Sb]
Now it is easy 0 note that the K model and the C model identification analysis are
embedded in the previous formula as sub-cases,

In the K model analysis we simply have A = K.B=land§ =|i£‘3-} 50 we have to

(0]
study the rank of

[¥n (0D 54
The same arguments hold for the C model identification analysis withA=/,B=C
(0]

and § = [S_b:, Getting

[-Vn@E™) b]
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Notice that in matrix (4) the number of columns (equal to /; + /) decreases the more
the model is constrained. This makes numerical evaluation easier.

For the FIML estimator, the formulae at page 45 are used allowing for the presence
of a step-length factor (A) whose function is to reduce the width of the parameter
movements between two iterations of the scoring algorithm.

-1
Ya Ya Ya Ya Ya
4 =L +A[fr| = fl—| ={~—| +ADIR,
AL ARl {elx] | ] ] erom
n
The A factor, suggested by many aﬁthors(see, for example, Harvey 1990, p. 124),is
defined here as:

“

maxis .
A= length if length>maxis
A=1 otherwise

Where length = max [DIRn |

and maxls is the chosen maximum movement of parameters between two iterations.

The SVAR.SRC procedure

The Rats package compiles our procedure with command?
SOURCE SVAR.SRC

and runs it with

@SVAR(OPTIONS) SIGMA START SA SB DA DB

The input parameters are as follows:

SIGMA: The estimated variance covariance matrix of the first-stage VAR
(stored by option QUTSIGMA=SIGMA under the ESTIMATE
command).

2 Before running our SYAR procedures, basic memory allocation must be reset with

the command BMA COMPILE=4000 LOCAL =60
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START: The vector of ¥ starting values for the scoring algorithm (as
remarked earlier, this is a the crux of the whole analysis).

SA: The matrix of the coefficients of the constraints in the A matrix.
In order to build a C-model, one should DECLARE SA as a Ix1
matrix and set SA = [0]. The procedure excludes the presence of

free parameters in the A matrix.

SB: the same as SA with respect to the B matrix. In order to analyse
the K-model, one should declare SB as a 1x1 matrix and set SB=
[,

DA: The vector representing the non-homogeneous part of the
constraints put on the A matrix. Working with a C-model, DA
should be set as equal to vecl.

DB: The same a DA with respect to the B matrix. For the K-model, DB
shouid be set as equal o vecl.

Screen output gives the estimated A and B matrices (or X, C, eic.), the result of the
over-identification test (if required) and a table containing what follows:

- estimated coefficients of A and B:
- the standard errors;

- t-test values and significance levels.

';Ef:_' E The following options are also available (default values are included in square
. brackets):
REC: maximum number of iterations [100]
TEST: over-identification LR test [test]/notest
MAXLS: maximum movement between iterations [1]
The procedure leaves the following matrices and vectors as accessible variables:
A, B: the matrices of the estimated coefficients
ABSIGMA: the estimated variance covariance matrix of the vec(A | B) vector
TSTAT: the vector containing the t-statistic of A and B coefficients
GAMMA: the estimated ¥ vector.
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SVAR.SRC listing

The procedure is listed below”

i’*itii’l'ti’t**ttti’tttt!t**t*it*t*ti’t*****il‘l‘t*t*ti****tii’i*t*.k***t*tttti’i"t**it
kk Ak kkk kb ok k kb K
* PROCEDURE SVAR.SRC *
khkkhkkkhkkkkkrwkrkhrehkkkkkx
by Antonio Lanzarotti and Mario Seghelini
University of Pavia

THIS PROCEDURE IMPOSES, TROUGH A SET OF CONSTRAINTS,A fSTRUCTURAL’ FORM
ON A VAR MODEL, CHECKS FOR IDENTIFICATION CONDITIONS AND PERFORMS A
FIML ESTIMATION OF THE ’STRUCTURAL’ PARAMETERS.

first version 8/3/1991

*

*

L 4

*

*

L]

*

*

*

*

BMA requirement: Compile 4000 Local 60 *
Syntax: @svar{options) sigma start sa sb da db *
: sigma= estimated V-Cov of VAR residuals *

start= vector of starting values for gamma *

sa= matrix of the explicit form constraints on A *

sb= matrix of the explicit form constraints on B *

da= vector of the non-homogeneous part of *

constraints on A *

db= vector of the non-homogeneous part of *

constraints on B *

Options: rec= maximum number of iterations [100] *
{test] /notest= over-identification LR test *

maxls= maximum movement of the parameters between *

two iterations of the scoring algorithm. *

*

*

*

*

*

*

NOTE: If you want to build up a K {or C) model, all you need is to declare
sb (sa) as a 1x1 matrix, set it equal to {0] and input db=vec{I} (or
da=vec(I)).

!I-!I-ﬁl?l**ll‘***!!ll‘ﬂ-i**!“l‘****&*

Ehkk kN kkk bk hkkkkkkk BLEASE WAIT WHILE COMPILING ***tt*tt**ttttt*t_t**tt
output noecho

procedure svar sigma start sa sb da db

x

option rec integer 100

option test switch 1

optioen maxls real 1.0

3 We have run our procedures on an Apple Macintosh® SE 30 with the following
confignration: Motorola 68030 CPU at 16 MHz, 63882 math coprocessor, 8
Mb RAM memory.
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*
type symm sigma
type rect sa sb

type vect da db start
L2 2 5 N3

TERNER This sectlon declares the variables.
A X Exw

declare rect a b

declare symm absigma

‘declare vect tstat gamma

local int 1 11 12 rni nsq i 3 iters degrees

local rect s tenx h v vl v2 idmat k ktmu derk derkl derk?2

lacal symm infk infgamma rsigma mid mid2 ms

local vect d vecab auto veck vecktmu z fveck fgamma dir signlev

local real cveri lenght lambda detl det2 lrtest signif

local label name namel name?

*

inquire (matrix=sigma) n

inquire {matrix=sa) ansq afree

if ansg==l

ieval afree=Q
inquire (matrix=sb) bnsg bfree
if bnsg==
ieval bfree=0

ieval nsgq=n**2

ieval l=afree+bfree

Ls

dim s(2*nsq,l} tenx(nsg,nsqg) hin,n} v{nsq,2*nsq} vl(nsq,nsq) v2{nsq,nsq)

dim a{n,n) b{n,n} idmat{nsq,l) mid(n,n) mid? (nsq,nsq} ms{l,1l)

dim d{2*nsq) gamma(l} vecab{2*nsg) auta(l}
Ahkkkrw
Ekkxkx This section defines the S matrix and the d vecter
FEEELX (Sargan 1988, 33-34) accerding to the selected mode],
AAkKkKkXK

if afree==
{
de i=l,nsg
do j=1,bfree
eval s(i,j}=0.0
eval s(i+nsq, j}=sb(i, j}
end do j
end do i
eval name=’(*
}
else if bfree==
{
do i=1,nsqg
do j=1,afree
eval s{i,ji=sali,j)
eval s{i+nsqg, j}=0.0
end do j
end do i
eval name=’K‘
}
else
{
do i=1,nsq
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do j=1,afree
eval s (i, j}=sa(l, )
eval s{i+nsq, }}=0.0
end do j
do j=afree+l,l
eval s5(i,3}=0.0
eval s(i+nsq, j)=sb{i, j-afree)
end do j
end do 1
eval name='AB*
}
- do i=1,nsq
eval d{i)=da (i)
eval d({l+nsq)=db{i}
end do i
LR & £
TR x This sectlon defines the commutation matrix (tenx)
Tk following Magnus (1988, 37).
[ st
matrix tenx=const(0.0)
do 1l1=1,n
do 12=1,n
ewise h(l, j)=(i==1l1l.and. j==12}
matrix tenx=tenx+kroneker (h,tr{h})
end do 12
end do 11
*koh o
XhxKIE This section checks numerically the ldentification conditions,
Xk ko kx assigning random values to the elements of gamma and leoking
*Ek Kk at the eigenvalues of the matrix {IDMAT’*IDMAT], where IDMAT
kexakx  jg defined with formula (4) of Appendix D in Glannini (1992)
b2 222 24
matrix gamma=ran{l.0}
overlay vecab(l) with a{n,n}
averlay vecab(nsg+l) with b{n,n)
matrix vecab=s*gamma+d
n
overlay v{l,1) with vl{nsq,nsq)
overlay v{l, nsqt+l} with v2{nsq,nsq}
matrix mid2=iden{l.0)
matrix mid=iden{1.0)
mat vli={mid2+tenx)* (kroneker(tr{inv(a)*b),invib}}}
mat v2=scale{-1.0)*{midZ+tenx}* (kroneker{mid, invi{b)})
mat idmat=v*s
mat ms=tr{ldmat}*idmat
*
eigen ms auto
ieval rni=0
do i=1,1
if auto(i).le~10
ieval rni=rni+l
end do i
display 'ms eigenvalues vector’
display * -
write auto
if rni==0

102




if l==n*(n+l}/2
display ‘The ’ name '-model is just-identified.’
else
display ‘The * name ‘-model is over-identified.’
else
{ .
display *The  name f-madel is unidentified,”
display * *
display ‘The non-identification rank is * rni
return

}

W Arkkd
ErkAAN This section performs a FIML estimation of the structural
el parameters by means of the scoring algorithm (see, for example
*Exkxx  Paryey 1990, 134)
kKo kh

dim k{n,n) ktmu{n,n} derk(nsq,2*nsq) derkl (nsq,nsq} derk2{nsq, nsq)

dim lnfk(nsq,nsq) infgamma(l,1l} rsigma{n,n) veck (nsq) vecktmu(nsq)

dlm z{l) fveck(nsq} fgamma(l) dir(l) tstat (2*nsqg) signlev(2%nsg)

dim absigma{2*nsq,2*nsq)

w

overlay veck(l) with k(n,n}

overlay vecktmu{l) with ktmu({n,n)

overlay derk{l,l) with derkl {nsq, nsq)

overlay derk(l,nsq+l) with derk2(nsq,nsg}

*

ieval iters=0
mat gamma=start
*

untll cveri.le-g

mat Z=gamma
mat vecab=s*gamma+d
mat k=inv(b)*a
mat ktmu=tr(inv(k))
mat derkl=kroneker (mid, inv (b))
mat derkZ=scale{-1.0)*kroneker (tr(k}, inv(b})
mat infk=kroneker{inv(k),mid)*(mid2+tenx}*kroneker(ktmu,mid)*scale(nobs)
mat infgamma=tr{s)*tr{derk}*infk*derk*s
mat fveck=scale(nobs)*(vecktmu-kruneker(sigma,mid)*veck)
mat fgamma=tr(s)*tr(derk)*fveck
mat dir=inv(infgamma}*fgamma
write dir
mat lenght=maxvalue (abs{dir)}
if lenghtmaxls
eval lambda=maxls/lenght
else !
eval lambda=1.0
mat gamma=gammat+scale{lambda)*dir
ieval iters=iters+l
display iters
display * -
write gamma
mat z=z-~gamma
mat cveri=maxvalue (abs(z))
if iters==rec
break
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}
1f cveri.le-6
display 'Convergence achieved after’ iters 'iteratiens’
else
{
display ’Convergence not achieved after’ rec ’iterations’
display ‘Convergence value:’ cverl
}
mat wvecab=s*gamma+d
1f name=='K’
{
display ‘Bstimated K matrix’
write a
}
else 1f name=='C‘’
{
display ‘Estimated C matrix’
write b
i
clse
{
display ‘Estimated A matrix’
write a
display * ¢
display 'Estimated B matrix’
write b

}

*
mat absigma=s*inv{infgamma)*tr(s)*scale(l.0/nobs)
EX kKKK
Axkkwx This section provides a LR over-identification test.
"k kv ok
1f test
{
ieval degrees={n+l)*n/2-1
if degrees==
display ‘The’ name ‘model is just identified. No test is poasible.’
else
{
mat rsigma=inv(a)*b*tr(b)*tr(inv(a))
mat detl=det {rsigma}
mat detl=det {(sigma)
eval lrtest:(loq{detl)—log(detZ))fnobs
cdf (noprint) chisqr lrtest degrees
fetch signif=signif
display ’OVER-IDENTIFICATICN LR TEST *
display *
display ‘Chi-squared(’ degrees ’{=' lrtest * Signficance level=' signif
display *
}

kkkkxx

FhHak This section computes the values and the significance levels
EhEE ko of the t-statistics of the structural parameters.

LER SRR ]

do i=l, 2*nsg
if absigma(i,i)0.0
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{
eval tstat(i)=vecab(i}/sqrt(absigma(L,i)i
cdf (noprint) ttest tstat (i} {ncbks-1}
fetch signif=signif
eval signlev(i}=signif
}
else
{
eval tstat{i)=0.0
eval sighlewv(1)=0.0

}
end do i
dis / STATISTICS ON’ name ‘-MODEL PARAMETERS '’
dis f itl‘*ittttt‘tiittttt*t*i**ttt***t*ttl'*t*i!t***t*tttttti*i*tt*tt*ltttt*il ’
dis * | Parameter | Coefficent | Std.Error | T-value | Sign. Level | !

dis L3 Itittt*t'*iitttttt**tttttttiittt*t**t*t*****tttt***'*i‘ttt***l‘ttti*tl* r
if name=='AB'
{
eval namel='A’
eval namel-='B’
i
else
{
eval namel="K’
eval name2='C*
}
if name=="K'_.or.name=='AB'
{
do i=1,n
do j=1l,n
dis 81 *|" @3 namel @5 7(' @6 #% i B8 ',’ Q9 €& j B1l *)* §
814 i 815 a{i,j} @28 7{’ 8§
829 sgrt (absigma{(j-1l}*n+i, (j~1)*n+i)) §
842 7 |* 843 tstat{(j-1)*n+i) 856 7| @57 signlev ((j=1}*n+i) B7C *{*
end do j
end do i
}

if name==’C’.or.name=='AB'

{
do i=1,n
de j=1,n
dis 8l f1* B3 name2 @5 ' {’ @6 %% i €8 *,’ @9 #& § €11 *}¢ s
814 * (¢ @15 b(i,3) @28 7| 3
829 sqrt(absigma((j-l}*n+i+naqg, (j-1)*n+i+nsq)) §
842 ' |’ B43 tstat((j-1)*n+i+nag) 856 *1¢ RS7T signlev((j-1)*n+i+nsq) 3
70 rif
end do j
and do i

}

dis t ***kttttttt**itttttitt*tttt*tl’kttﬁ**tt"*itt*ttttt*ttt**!tttt***ttﬁ*tl’t!

display

display ‘Now you can access te the following matrices and vectors:’

display fa, b containing the structural parameters’

display 'absigma containing the estimated v-cov of vecla|b]’

display "tstat containing the t-statistics of the structural paramgters'
display ‘gamma containing the estimated free elements of vecfalb}r

end
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The VMA.SRC procedure

In addition to the procedure listed above, we propose one further procedure, called
VMA.SRC, which performs the estimation of the Structured Impulse Response
Functions and Forecast Error Variance Decomposition with asymptotic confidence
bounds® evaluated following section 5 and taking as input part of the resuit of the
SVAR.SRC procedure.

The RATS package c:-:)trq::i]::s5 the procedure with the instruction:
SQURCE VMASRC

and runs it with

@VMA(OPTIONS) A B ABSIGMA IXIX VARPARAM

The respective input paramateres are as follows:

AB: the matrices of the estimated structural parameters of the SVAR
model;

ABSIGMA: the estimated variance covariance matrix of vec[A [ B];

IXIX: the (X'X) ' matrix introduced earlier. It can be obtained with the
instruction KFSET IXIX included within the command needed to
setupa VAR model®.

VARPARAM: the (nxnp) matrix containing the estimated coefficients of the
first-stage VAR; its form is as follows:

4 A recent paper by Griffiths and Liitkepohl (1990) indicates that confidence intervals
for impu!se response functions, based on asymptotic theory behave in a
better way with respect to normal simulation and bootstrapping intervals,
under different sampling and distributional assumptions.

5 Basic memory allocation is: BMA COMPILE 4000 LOCAL 60.

6 We use the same notation as Doan (1990) for the (X’X)'1 matrix, ie, a transposed
notation with respect (o the one used in this monograph.
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VARPARAM:[A1 lA2] ... IA,,]

This matrix can be built by saving the VAR coefficients in n series and then storing
them by the following instructions

DO serie = 1,n
DO 1 =1,n
Do § =1,p
EVAL VARPARAM(serie, (j-l)n + i) = serle{{i-1l}p+j)
END DO 3
END DO {
END DC serie

where n = number of variables and p = order of the VAR.

Notice that the VARPARAM does not have o contain the coefficients of the
deterministic components of the VAR model.

The following options are also available;

ERROR = Forecast Error Variance Decomposition parameters

S1 = order of the VMA representation [20]

52 = number of steps for FEVD (obviously S2<S1) [15].

CLEVEL = confidence level for the asympiotic bounds [0.05].

The VMA'’s output gives the following matrices as accessible variables:

IRF = contains the non-structured VMA parameters

IMPULSE = struchured parameters

IRFVAR = contains the variances of the IMPULSE parameters.
IRFBOUND = widths of the structured parameters asymptotic confidence bounds.
Choosing ERROR option one can get:

FEVD = containing the Forecast Error Variance Decomposition parameteres
DECVAR with the FEVD paramelers variances

DECBOUND = containing FEVD paramelers asymptotic bounds’

7 The matrices in output have all the same structure. For example, IRF contains in its
s-th column the vec form of the matrix on the non-structured impulse
response functions after (s-1) steps; FEVD contains in its s-th columnn the
vec form of the matrix of s-steps forecast error, and so on.
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VMA.SRC listing

The procedure is listed below.

******l**iiitit*ttttttllliti***l***I*i"il"l'i'ttlt*ti*itiiittti*tt**Ittt'i‘l*tttt*t

THIS PROCEDURE RETU

tl’l’tt**tiii'*t******i*

* PROCEDURE VMA.SRC *

(2R 222222 R0 R AR RN ESS] S

by Antonio Lanzarotti and Mario Seghelini

University of Pavia

RNS THE VMA REPRESENTATION OF A STRUCTURAL VAR MODEL

AND COMPUTES BY ASYMPTOTIC FORMULAE THE BOUNDS ARQURD THE IMPULSES AT A

PRESELECTED CONFIDE
ASYMPTOTIC BOUNDS)

*

2 4

*

*

*

*

*

*

*

*

* BMA requlirement:
* Syntax:
*
1 3
*
*
L3
*
1
1
1
*
*
*

Cptions:

NCE LEVEL.FORECAST ERROR VARIANCE DECOMPOSITION (WITH
IS ALSO PROVIDED, AS AN OPTION.

Complle 4000 Local 60

dvma (options) a b absigma ixix varparam

a, b = matrices of structural parameters

absigma = estimated V-Cov matrix of vec[a|b]

ixix = invi{x'x)

varparam = matrix of the first stage VAR parameters
sl = order of the VMA representation [20}

error = forecast error variance decomposition [1}
52 = order for the FEVD [15]

clevel = bounds confidence level [0.03]

VERSION 1.1 may 1991

% % * % % % % ® o* % W F * K A X ® F A * R ® *

AXAA TN A AR AAA bk kxwwvarx®x DIEASE WAIT WHILE COMPILI'NG b2 AR 2R R R R RRR Rl sl |

output noecho

procedure vma a b absi
*

type symm absigma ixix

gma ixix wvarparam

type rect a b varparam

*

option sl integer 20
option s2 integer 15
option clevel real .05

option error switch 1
khkddkkk

Ahwkkw This section declares the variables

TANTNN

local rect apower k derk derkl derk2 amat g jota xjota ggg gi gj sigmahh

local rect wold swold
local symm sigma0 mid

woldi woldj mh wh p2 zh uu dz f uuu iu sss sigmah
midnp sigmak sigmap fh pp pd

local symm sigmawh mid2

local vector normal vecsw u veci

local integer i j n nsg s € np X y npar h stepl step2
local real z asum bsum

*

declare rect irfvar irfbound Impulse irf
declare rect fevd decvar decbound tenx

*
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inquire (matrix=ixix} npar
inquire{matrix=a) n n
inquire{matrix=varparam) n np
ieval nsg=n¥**2
ieval stepl=sl
ieval step2=s?
if stepl.lt.step2

{disp fheEx WARNING **wks

disp ‘FEVD order exceed the VMA repreaentation order.This has no meaning.-’

disp ‘The procedure will set s2=gl*
ieval step2=stepl
}

&
dim apower (np, np} k(n,n} derk {nsq, nsq*2) derkl (nsq, nsq) derk2{nsq, nsqg)
dim amat{np,np) g{nsg,n*ap) jota(n,np) xjota(npar,np} woldin,n} swold{n, n}
dim sigmal{nsq,nsq} mid(n,n) midnp{np,np} sigmak (nsq, neq) sigmah (naq,nsq)
dim sigmap{n*np,n*np) normal (20} irf{nsq, stepl)
dim irfvar (nsq, stepl) irfbeound{nsq, stepi) impulse {nsq, stepl)
dim ggg{nsq*stepl,n*np) gi (nsq, n*np} g3j (naq,n*np} sigmahh (nsq, n3q)
dim uu{nsq,nsg} dz{nsqg,nsqg) woldi (n,n} woldj(n,n) mh(n,n} fh{n,n} wh(n,n)
dim p2(n,n} zh{nsq,nsg*step?} sss(nsqg*stepl, nsq*step?}
dim pp(n,n} pd{n,n} tenx{nsq,naq} sigmawh (nsq, nsq) mid2{nsq, nsqg)
dim vecswi{nsq) veci(nsq} u(nsq) f{n,n} uuu{nsq,nsq) iu{nsg,nsq)
dim fevd(nsq, step2) decvar (nsq, step2) decheund (nsq, step?)
*
overlay derk(l,1) with derkl{nsq,nsq)
overlay derk{l,nsq+l} with derk2 (nsq, nsg}
mat veci=const {0.0)
mat sss=const {0.0}
doe x=1,n
eval veci{n*{(x~1)+x)=1.0
end do x
TXRk K K
KREEL L This section computes the (0) matrix
kkkuHRwk
matrix tens=const{0.0)
do x=1,n
do y=1,n
ewlse E(i, jt={i==x.and. j==y)
matrix tenx=tenx+kroneker{f,tr(f}})
end do y
end do x
mat absigma=absigma*scale {(nobs)
mat u=const{1.0)
mat midZ=iden(1.0)
mat mid=iden{l.0)
mat midnp=iden{l.D)
mat k=inv(b)*a
mat asum=sum{a)
mat bsum=sum(b)
if asum==n
ewise siqmaO(i,j)=absiqma{nsq+i,nsq+ﬂ
else
{
if bsum==n
ewise sigmak(i, j)=absigma{i, j}

109




else
{
mat derkl=kroneker {mid, inv{b}}
mat derkZ=kroneker{tri{k},invib)}*scale(-1.0}
mat sigmak=derk*absigma*tr(derk) i
! E
mat sigmal=kroneker(tr(inv(k)),inv(k))*sigmak*kroneker (inv(k),tr(inv(k}}) :
} V I
i3 283
*¥wxxx  This section builds up the A matrix {here named AMAT} following
bbbl Litkepohl (198%), p.372.

ook ok oo

mat amat=const {0.0}
do i=l,a
do j=1,np
eval amat{i, j}=varparam(l, j)
end do j
end do 1
do i=1,np-n
eval amat (n+i,1)=1.0
end do 1

*

mat jota=const (0.0) !
do i=1,n
eval jota{l,i}=1.0
end do i
khkkkw

b o This section returns the impulse response functions of the

* kX structural VAR model.
Fh ko

mat apower=midnp
do e=1, stepl
mat wold=jota*apower*tr{jota)
mat swold=wold*inwv (k)
do i=1,n
do j=1,Rm
eval irf((j~1)*n+i,e}=wold(i, )
eval impulse({j-1}*n+i,e)=swold (i, j}
end do 3}
end de i
mat apower=apower*amat
end do e
L8253 4

el beded This section performs the estimation of the p matrix equivalent
wkok kWK to the alfa matrix in Liltkepohl (1389), p.374
Wk ok ok ok

mat xjota=cansat {0.0)

do i=1,np

eval xjota(i,i)=1.0

end do i

mat sigmap=kroneker{tr{xjota)*ixix*xjota,invitr (k) *k))
ok ok k
* kK k This section computes the asyptotic confidence bounds on the
ThEEAN basis of the formulae of Liitkepohl (1989), p-373

*EEH KK

display "IRF STEP’ 1
L i
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mat ggg=const {Q.0}
do i=1, stepl-1
mat apower=midnp
mat g=const {0.0}
do a=1,i-1
ewise wold({x,y}=irf{{y-1)*n+x,i-s}
mat g=g+kroneker (tr{inv(k)}*jota*apower,wold)
mat apower=apower*tr {amat}
end do s
do x=1,nsq
do y=1,n*np
eval ggg{x+nsq*i,y}=g{x,y)
end do y
end dao x
end do i
*
do i=1, stepl-1
mat sigmah=const (0.0)
ewise wold(x,y)=irf{{y-1}*n+x,1+1)
ewlse g(x,y)=ggg{x+nag*i,y}
mat siqmah=g‘sigmap'tr(q)+kroneker(mid,wold}*sigmaﬂ*tr(kroneker(mid,wold))
if error.and.i
{
do x=1,nsq
eval irfvar{x,i+l)=sigmah {x,x}/nobs
do y=1,nsg
eval sss({i*nsq+x,i*nsq+y}=sigmah {x,y)
end do y
end do x
}
display ‘IRF STEP' {+1
end do i
T
do x=1,nsqg
eval irfvar(x,1l)=sigmal(x,x)/nobs
do y=1,nsq
eval sss{x,y)=sigma0{x,y)
end do y
end do x
Wk kk ok ok

o This section computes the width of the asymptotic bounds

Fhokkkk according to the selected confidence level.

kkk kW
read{unit=input} normal
2.57 2.33 2.17 2.01 1.96 1.88 1.81 1.75 1.69 1.64
1.60 1.55 1.51 1,47 1.44 1.40 1.37 1.34 1.31 1.28
ieval e=flx{clevel*100+.5)
eval z=normal {e)
ewlse irfbound(i,jJ=z*sqrt{irfvar(i,j))

AW W W
ke This section computes the forecast error variance decomposition
kK E*w foer the structural model {if required} and provides asymptotic
b L confidence bounds following section 5.b of this manograph.
kkkkhkx

if error

{
display '*%**x HARNING ***x/
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display ’‘The program is calculating the whele varlance—covariance matrix of’
display 'the VMA representation. For example this will take up to one hour’
display ‘for 15 steps in a five-variables system. PLEASE WAIT.’
do i=0, step2-2
do j=1+l1,step2-1
display i 3}
ewlse gi{x,y)=gggi{x+nag*l,y)
ewise gj(x,y)=ggg(x+nag*],y}
ewise woldl{x,y}=1rE{{y-1)*n+x,i+1)
ewise woldi(x,y)=Iirf{({y-1}*n+x,]+1}
mat sigmahh=gi*sigmap*tr{gj}+kroneker{mid, woldi) *sigmaQ* s
tr (kroneker {mld,woldj})
do x=1,nsq
do y=1,nsqg
eval sss({i*nsq+x, j*nsq+y}=sigmahh {x,y)
eval ss3s{j*nsqty,i*nag+x}=sigmahh{x,y)
end do ¥
end do x
end do j
end do 1

mat fh=const {0.0}
mat mh=const (0.0}
mat wh=econst (0.0)
do h=0,step2~1
ewise swold({x,y)=impulse{{y~1l)*n+x, h+l})
ewise p2{x,y}=swold(x,y}**2
mat mh=mh+p2
mat pp=swold*tr{swold)
ewise pd(x,y)=pp(x,y)*mid(x, y}
mat fh=fh+pd
mat wh=inv (fh} *mh
do x=1,n
do y=1,n
eval fevd{(y-1)*n+x,h+1}=wh(x,¥y)
end do y
end do x
mat sigmawh=const (0.0}
mat zh=const (0.0)
do 3i=0,h
ewise swold(x,y)=impulse ((y-1}*n+x, 3+1}
ewise vecsw(x)=1mpulse (x, j+1}

mat uu=u*tr{vecsw}
ewise uu(x,y}=uu (=, y}*mid2(x,y)
mat uuu=veci*tr{u)
ewise iu(x,¥y}=uuu(x,y)*mid2(x,y}
mat dz=scale (2.0)*kroneker (mld, inv(fh)}*uu-kroneker{tr{wh},inv(fh)}* %
iu* (mid2+tenx) *kroneker (swold, mid)

do x=1,nsqg

de y=1,nsqg

eval zh{x, j*nsq+y)=dz (x, ¥}

end do y

end do x
end do j

mat sigmawh=zn*sss*tr(zh}
do x=1,nsg
eval decvar{x,htl)=sigmawh{x, x) /nabs
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eval decbound (x, h+l)=sqrt (sigmawh (x, x) fncbs) *z
end de x
display ‘FEVD STEP' h+li
end do h
}

display ‘Mow you can access the following output matrices’

display ‘IRFVAR containing the structured VMA parameters variances’
display ’IMPULSE containing the structured VMA parameters’
display ’IRF containing the non-structured VMA parameters’

display ‘IRFBOUND the width of the confldence bounds’
if error

{

disp *PFEVD cantaining fevd parameters’

disp "DECVAR the parameters variances’

disp ‘DECBOUND the width of fewd confidence bounds”’
}

end vma
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